Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 210(3): 283-296, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548461

RESUMO

Foot-and-mouth disease virus (FMDV) is the causative agent of foot-and-mouth disease, one of the most highly infectious animal viruses throughout the world. The JAK-STAT signaling pathway is a highly conserved pathway for IFN-ß-induced antiviral gene expression. Previous studies have shown that FMDV can strongly suppress the innate immune response. Moreover, although STAT1 and STAT2 (STAT1/2) have been well established in JAK-STAT signaling-induced antiviral gene expression, whether FMDV proteins inhibit IFN-ß-induced JAK-STAT signaling remains poorly understood. In this study, we described the Lb leader protease (Lbpro) of FMDV as a candidate for inhibiting IFN-ß-induced signaling transduction via directly interacting with STAT1/2. We further showed that Lbpro colocalized with STAT1/2 to inhibit their nuclear translocation. Importantly, Lbpro cleaved STAT1/2 to inhibit IFN-ß-induced signal transduction, whereas the catalytically inactive mutant of LC51A (Lbpro with cysteine substituted with alanine at amino acid residue 51) had no effect on the stability of STAT1/2 proteins. The cleavage of the STAT1/2 proteins was also determined during FMDV infection in vitro. Lbpro could cleave the residues between 252 and 502 aa for STAT1 and the site spanning residues 140 - 150 aa (QQHEIESRIL) for STAT2. The in vivo results showed that Lbpro can cleave STAT1/2 in pigs. Overall, our findings suggest that FMDV Lbpro-mediated targeting of STAT1/2 may reveal a novel mechanism for viral immune evasion.


Assuntos
Endopeptidases , Vírus da Febre Aftosa , Interferon beta , Fator de Transcrição STAT1 , Fator de Transcrição STAT2 , Animais , Vírus da Febre Aftosa/enzimologia , Imunidade Inata , Peptídeo Hidrolases , Transdução de Sinais , Suínos , Interferon beta/imunologia
2.
Commun Biol ; 5(1): 61, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039618

RESUMO

Replication of many positive-sense RNA viruses occurs within intracellular membrane-associated compartments. These are thought to provide a favourable environment for replication to occur, concentrating essential viral structural and nonstructural components, as well as protecting these components from host-cell pathogen recognition and innate immune responses. However, the details of the molecular interactions and dynamics within these structures is very limited. One of the key components of the replication machinery is the RNA-dependent RNA polymerase, RdRp. This enzyme has been shown to form higher-order fibrils in vitro. Here, using the RdRp from foot-and-mouth disease virus (termed 3Dpol), we report fibril structures, solved at ~7-9 Å resolution by cryo-EM, revealing multiple conformations of a flexible assembly. Fitting high-resolution coordinates led to the definition of potential intermolecular interactions. We employed mutagenesis using a sub-genomic replicon system to probe the importance of these interactions for replication. We use these data to propose models for the role of higher-order 3Dpol complexes as a dynamic scaffold within which RNA replication can occur.


Assuntos
Vírus da Febre Aftosa/enzimologia , Genoma Viral , RNA Viral/genética , RNA Polimerase Dependente de RNA/química , Replicação Viral
3.
Viruses ; 13(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34834926

RESUMO

Foot-and-mouth-disease virus (FMDV) is a picornavirus that causes a highly contagious disease of cloven-hoofed animals resulting in economic losses worldwide. The 3C protease (3Cpro) is the main protease essential in the picornavirus life cycle, which is an attractive antiviral target. Here, we used computer-aided virtual screening to filter potential anti-FMDV agents from the natural phytochemical compound libraries. The top 23 filtered compounds were examined for anti-FMDV activities by a cell-based assay, two of which possessed antiviral effects. In the viral and post-viral entry experiments, luteolin and isoginkgetin could significantly block FMDV growth with low 50% effective concentrations (EC50). Moreover, these flavonoids could reduce the viral load as determined by RT-qPCR. However, their prophylactic activities were less effective. Both the cell-based and the fluorescence resonance energy transfer (FRET)-based protease assays confirmed that isoginkgetin was a potent FMDV 3Cpro inhibitor with a 50% inhibition concentration (IC50) of 39.03 ± 0.05 and 65.3 ± 1.7 µM, respectively, whereas luteolin was less effective. Analyses of the protein-ligand interactions revealed that both compounds fit in the substrate-binding pocket and reacted to the key enzymatic residues of the 3Cpro. Our findings suggested that luteolin and isoginkgetin are promising antiviral agents for FMDV and other picornaviruses.


Assuntos
Proteases Virais 3C/antagonistas & inibidores , Antivirais/farmacologia , Biflavonoides/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/enzimologia , Febre Aftosa/virologia , Luteolina/farmacologia , Proteases Virais 3C/química , Proteases Virais 3C/genética , Proteases Virais 3C/metabolismo , Animais , Antivirais/química , Biflavonoides/química , Simulação por Computador , Inibidores Enzimáticos/química , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/genética , Humanos , Luteolina/química , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia
4.
mSphere ; 6(4): e0001521, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34259558

RESUMO

RNA structures can form functional elements that play crucial roles in the replication of positive-sense RNA viruses. While RNA structures in the untranslated regions (UTRs) of several picornaviruses have been functionally characterized, the roles of putative RNA structures predicted for protein coding sequences (or open reading frames [ORFs]) remain largely undefined. Here, we have undertaken a bioinformatic analysis of the foot-and-mouth disease virus (FMDV) genome to predict 53 conserved RNA structures within the ORF. Forty-six of these structures were located in the regions encoding the nonstructural proteins (nsps). To investigate whether structures located in the regions encoding the nsps are required for FMDV replication, we used a mutagenesis method, CDLR mapping, where sequential coding segments were shuffled to minimize RNA secondary structures while preserving protein coding, native dinucleotide frequencies, and codon usage. To examine the impact of these changes on replicative fitness, mutated sequences were inserted into an FMDV subgenomic replicon. We found that three of the RNA structures, all at the 3' termini of the FMDV ORF, were critical for replicon replication. In contrast, disruption of the other 43 conserved RNA structures that lie within the regions encoding the nsps had no effect on replicon replication, suggesting that these structures are not required for initiating translation or replication of viral RNA. Conserved RNA structures that are not essential for virus replication could provide ideal targets for the rational attenuation of a wide range of FMDV strains. IMPORTANCE Some RNA structures formed by the genomes of RNA viruses are critical for viral replication. Our study shows that of 46 conserved RNA structures located within the regions of the foot-and-mouth disease virus (FMDV) genome that encode the nonstructural proteins, only three are essential for replication of an FMDV subgenomic replicon. Replicon replication is dependent on RNA translation and synthesis; thus, our results suggest that the three RNA structures are critical for either initiation of viral RNA translation and/or viral RNA synthesis. Although further studies are required to identify whether the remaining 43 RNA structures have other roles in virus replication, they may provide targets for the rational large-scale attenuation of a wide range of FMDV strains. FMDV causes a highly contagious disease, posing a constant threat to global livestock industries. Such weakened FMDV strains could be investigated as live-attenuated vaccines or could enhance biosecurity of conventional inactivated vaccine production.


Assuntos
Vírus da Febre Aftosa/genética , Genoma Viral , Fases de Leitura Aberta , RNA Viral/química , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Vírus da Febre Aftosa/enzimologia , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo
5.
Wiley Interdiscip Rev RNA ; 12(4): e1645, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33605051

RESUMO

RNA viruses have developed specialized mechanisms to subvert host RNA-binding proteins (RBPs) favoring their own gene expression. The Leader (L) protein of foot-and-mouth disease virus, a member of the Picornaviridae family, is a papain-like cysteine protease that self-cleaves from the polyprotein. Early in infection, the L protease cleaves the translation initiation factors eIF4GI and eIF4GII, inducing the shutdown of cap-dependent translation. However, the cleavage sites on the viral polyprotein, eIF4GI, and eIF4GII differ in sequence, challenging the definition of a consensus site for L targets. Identification of Gemin5 and Daxx proteolytic products in infected cells unveiled a motif centered on the RKAR sequence. The RBP Gemin5 is a member of the survival of motor neurons complex, a ribosome interacting protein, and a translation downregulator. Likewise, the Fas-ligand Daxx is a multifunctional adaptor that plays key roles in transcription control, apoptosis, and innate immune antiviral response. Remarkably, the cleavage site on the RNA helicases MDA5 and LGP2, two relevant immune sensors of the retinoic acid-inducible gene-I (RIG-I)-like receptors family, resembles the L target site of Gemin5 and Daxx, and similar cleavage sites have been reported in ISG15 and TBK1, two proteins involved in type I interferon response and signaling pathway, respectively. In this review we dissect the features of the L cleavage sites in essential RBPs, eventually helping in the discovery of novel L targets. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Translation Regulation.


Assuntos
Fatores de Restrição Antivirais/imunologia , Vírus da Febre Aftosa , Imunidade Inata , RNA , Animais , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/genética , RNA Helicases
6.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028719

RESUMO

The low fidelity of foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase allows FMDV to exhibit high genetic diversity. Previously, we showed that the genetic diversity of FMDV plays an important role in virulence in suckling mice. Here, we mutated the amino acid residue Phe257, located in the finger domain of FMDV polymerase and conserved across FMDV serotypes, to a cysteine (F257C) to study the relationship between viral genetic diversity, virulence, and transmissibility in natural hosts. The single amino acid substitution in FMDV polymerase resulted in a high-fidelity virus variant, rF257C, with growth kinetics indistinguishable from those of wild-type (WT) virus in cell culture, but it displayed smaller plaques and impaired fitness in direct competition assays. Furthermore, we found that rF257C was attenuated in vivo in both suckling mice and pigs (one of its natural hosts). Importantly, contact exposure experiments showed that the rF257C virus exhibited reduced transmissibility compared to that of wild-type FMDV in the porcine model. This study provides evidence that FMDV genetic diversity is important for viral virulence and transmissibility in susceptible animals. Given that type O FMDV exhibits the highest genetic diversity among all seven serotypes of FMDV, we propose that the lower polymerase fidelity of the type O FMDV could contribute to its dominance worldwide.IMPORTANCE Among the seven serotypes of FMDV, serotype O FMDV have the broadest distribution worldwide, which could be due to their high virulence and transmissibility induced by high genetic diversity. In this paper, we generated a single amino acid substitution FMDV variant with a high-fidelity polymerase associated with viral fitness, virulence, and transmissibility in a natural host. The results highlight that maintenance of viral population diversity is essential for interhost viral spread. This study provides evidence that higher genetic diversity of type O FMDV could increase both virulence and transmissibility, thus leading to their dominance in the global epidemic.


Assuntos
Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/virologia , RNA Polimerase Dependente de RNA/fisiologia , Proteínas não Estruturais Virais/fisiologia , Animais , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/genética , Aptidão Genética , Variação Genética , Camundongos , Mutação , Fenótipo , RNA Polimerase Dependente de RNA/genética , Suínos , Proteínas não Estruturais Virais/genética , Virulência
7.
Molecules ; 25(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784761

RESUMO

The development and evaluation of a Boc-AL(Boc)Q(Trt)-AMC fluorophore to detect 3C Protease, produced by Foot and Mouth Disease Virus (FMDV) is reported, with a view to a potential use as a rapid screen for FMDV infected livestock The peptide-linked conjugate fluorophore is evaluated in vitro for sensitivity, specificity, stability and rapidity and shows statistically significant increases in fluorescence when exposed to physiologically relevant concentrations of 3C Protease and selectivity when compared with other common proteases likely to be located, typically in the absence of FMDV. The stability of deprotected Boc-AL(Boc)Q(Trt)-AMC is reported as a limitation of this probe.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Vírus da Febre Aftosa/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteases Virais 3C , Linhagem Celular , Técnicas de Química Sintética
8.
J Gen Virol ; 100(3): 446-456, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30702422

RESUMO

The production of experimental molecular vaccines against foot-and-mouth disease virus utilizes the viral encoded 3C protease for processing of the P1 polyprotein. Expression of wild type 3C protease is detrimental to host cells. The molecular vaccine constructs containing the 3C protease L127P mutant significantly reduce adverse effects associated with protease expression while retaining the ability to process and assemble virus-like particles. In published 3C protease crystal structures, the L127 residue is contained within the B2 ß-strand as part of the A2-B2 ß-sheet. To provide insight into the mechanism by which the L127P mutant alters the properties of the 3C protease, we performed scanning proline mutagenesis of residues 123-128 of the B2 ß-strand and monitored expression and P1 processing. Simultaneously, we utilized random mutagenesis of the full 3C sequence to identify additional mutations presenting a phenotype similar to the L127P mutation. Six of the tested mutants enhanced expression over wild type, and the I22P, T100P and V124P mutations surpassed the L127P mutation in certain cell lines. These data areinterpreted in conjunction with published 3C protease crystal structures to provide insight into the mechanism by which these mutations enhance expression.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Vírus da Febre Aftosa/enzimologia , Febre Aftosa/virologia , Peptídeos/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteases Virais 3C , Animais , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/metabolismo , Regulação Viral da Expressão Gênica , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Mutagênese , Peptídeos/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Prolina/genética , Prolina/metabolismo , Conformação Proteica em Folha beta , Processamento Pós-Transcricional do RNA , Proteínas Virais/metabolismo
9.
J Virol ; 93(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30404792

RESUMO

Like other viruses, the picornavirus foot-and-mouth disease virus (FMDV; genus Aphthovirus), one of the most notorious pathogens in the global livestock industry, needs to navigate antiviral host responses to establish an infection. There is substantial insight into how FMDV suppresses the type I interferon (IFN) response, but it is largely unknown whether and how FMDV modulates the integrated stress response. Here, we show that the stress response is suppressed during FMDV infection. Using a chimeric recombinant encephalomyocarditis virus (EMCV), in which we functionally replaced the endogenous stress response antagonist by FMDV leader protease (Lpro) or 3Cpro, we demonstrate an essential role for Lpro in suppressing stress granule (SG) formation. Consistently, infection with a recombinant FMDV lacking Lpro resulted in SG formation. Additionally, we show that Lpro cleaves the known SG scaffold proteins G3BP1 and G3BP2 but not TIA-1. We demonstrate that the closely related equine rhinitis A virus (ERAV) Lpro also cleaves G3BP1 and G3BP2 and also suppresses SG formation, indicating that these abilities are conserved among aphthoviruses. Neither FMDV nor ERAV Lpro interfered with phosphorylation of RNA-dependent protein kinase (PKR) or eIF2α, indicating that Lpro does not affect SG formation by inhibiting the PKR-triggered signaling cascade. Taken together, our data suggest that aphthoviruses actively target scaffolding proteins G3BP1 and G3BP2 and antagonize SG formation to modulate the integrated stress response.IMPORTANCE The picornavirus foot-and-mouth disease virus (FMDV) is a notorious animal pathogen that puts a major economic burden on the global livestock industry. Outbreaks have significant consequences for animal health and product safety. Like many other viruses, FMDV must manipulate antiviral host responses to establish infection. Upon infection, viral double-stranded RNA (dsRNA) is detected, which results in the activation of the RNA-dependent protein kinase (PKR)-mediated stress response, leading to a stop in cellular and viral translation and the formation of stress granules (SG), which are thought to have antiviral properties. Here, we show that FMDV can suppress SG formation via its leader protease (Lpro). Simultaneously, we observed that Lpro can cleave the SG scaffolding proteins G3BP1 and G3BP2. Understanding the molecular mechanisms of the antiviral host response evasion strategies of FMDV may help to develop countermeasures to control FMDV infections in the future.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Vírus da Febre Aftosa/enzimologia , Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Animais , Aphthovirus/enzimologia , Linhagem Celular , Cricetinae , Vírus da Encefalomiocardite/enzimologia , Febre Aftosa/virologia , Células HEK293 , Células HeLa , Humanos , Estresse Fisiológico , Proteínas Virais/metabolismo
10.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068642

RESUMO

Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop ß9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop ß9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.


Assuntos
Vírus da Febre Aftosa/enzimologia , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo , Substituição de Aminoácidos , Animais , Antivirais/metabolismo , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Sinais de Localização Nuclear , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Ribavirina/metabolismo
11.
Virology ; 522: 260-270, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30055516

RESUMO

The foot-and-mouth disease virus capsid precursor, P1-2A, is cleaved by the 3C protease (3Cpro) to VP0, VP3, VP1 and 2A. The P1-2A precursor (wt or mutant) was expressed alone or with 3Cpro and processing of P1-2A was determined. The VP2 K217R and VP3 I2P substitutions (near the VP0/VP3 junction) strongly reduced the processing at this junction by 3Cpro while the substitution VP2 K217E blocked cleavage. At the VP3/VP1 junction, the substitutions VP3 Q2221P and VP1 T1P each severely inhibited processing at this site. Blocking cleavage at either junction did not prevent processing elsewhere in P1-2A. These modifications were also introduced into full-length FMDV RNA; only wt and the VP2 K217R mutant were viable. Uncleaved VP0-VP3 and the processed products were observed within cells infected with the mutant virus. The VP0-VP3 was not incorporated into empty capsids or virus particles. The three junctions within P1-2A are processed by 3Cpro independently.


Assuntos
Proteínas do Capsídeo/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/fisiologia , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Proteólise
12.
PLoS Pathog ; 14(6): e1007135, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29958302

RESUMO

The RNA helicase LGP2 (Laboratory of Genetics and Physiology 2) is a non-signaling member of the retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), whose pivotal role on innate immune responses against RNA viruses is being increasingly uncovered. LGP2 is known to work in synergy with melanoma differentiation-associated gene 5 (MDA5) to promote the antiviral response induced by picornavirus infection. Here, we describe the activity of the foot-and-mouth disease virus (FMDV) Leader protease (Lpro) targeting LGP2 for cleavage. When LGP2 and Lpro were co-expressed, cleavage products were observed in an Lpro dose-dependent manner while co-expression with a catalytically inactive Lpro mutant had no effect on LGP2 levels or pattern. We further show that Lpro localizes and immunoprecipitates with LGP2 in transfected cells supporting their interaction within the cytoplasm. Evidence of LGP2 proteolysis was also detected during FMDV infection. Moreover, the inhibitory effect of LGP2 overexpression on FMDV growth observed was reverted when Lpro was co-expressed, concomitant with lower levels of IFN-ß mRNA and antiviral activity in those cells. The Lpro target site in LGP2 was identified as an RGRAR sequence in a conserved helicase motif whose replacement to EGEAE abrogated LGP2 cleavage by Lpro. Taken together, these data suggest that LGP2 cleavage by the Leader protease of aphthoviruses may represent a novel antagonistic mechanism for immune evasion.


Assuntos
Endopeptidases/metabolismo , Vírus da Febre Aftosa/imunologia , Febre Aftosa/virologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , RNA Helicases/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Endopeptidases/genética , Febre Aftosa/imunologia , Febre Aftosa/patologia , Vírus da Febre Aftosa/enzimologia , Células HEK293 , Humanos , RNA Helicases/genética , RNA Helicases/imunologia , Células Vero
13.
Virology ; 509: 222-231, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28662438

RESUMO

The interferon-induced double-strand RNA activated protein kinase (PKR) plays important roles in host defense against viral infection. Here we demonstrate the significant antiviral role of PKR against foot-and-mouth disease virus (FMDV) and report that FMDV infection inhibits PKR expression and activation in porcine kidney (PK-15) cells. The viral nonstructural protein 3C proteinase (3Cpro) is identified to be responsible for this inhibition. However, it is independent of the well-known proteinase activity of 3Cpro or 3Cpro-induced shutoff of host protein synthesis. We show that 3Cpro induces PKR degradation by lysosomal pathway and no interaction is determined between 3Cpro and PKR. Together, our results indicate that PKR acts an important antiviral factor during FMDV infection, and FMDV has evolved a strategy to overcome PKR-mediated antiviral role by downregulation of PKR protein.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/patogenicidade , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Proteólise , Proteínas Virais/metabolismo , Replicação Viral , eIF-2 Quinase/antagonistas & inibidores , Proteases Virais 3C , Animais , Linhagem Celular , Vírus da Febre Aftosa/enzimologia , Suínos
14.
Genome Biol Evol ; 9(5): 1212-1228, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28460010

RESUMO

The selective pressures acting on viruses that replicate under enhanced mutation rates are largely unknown. Here, we describe resistance of foot-and-mouth disease virus to the mutagen 5-fluorouracil (FU) through a single polymerase substitution that prevents an excess of A to G and U to C transitions evoked by FU on the wild-type foot-and-mouth disease virus, while maintaining the same level of mutant spectrum complexity. The polymerase substitution inflicts upon the virus a fitness loss during replication in absence of FU but confers a fitness gain in presence of FU. The compensation of mutational bias was documented by in vitro nucleotide incorporation assays, and it was associated with structural modifications at the N-terminal region and motif B of the viral polymerase. Predictions of the effect of mutations that increase the frequency of G and C in the viral genome and encoded polymerase suggest multiple points in the virus life cycle where the mutational bias in favor of G and C may be detrimental. Application of predictive algorithms suggests adverse effects of the FU-directed mutational bias on protein stability. The results reinforce modulation of nucleotide incorporation as a lethal mutagenesis-escape mechanism (that permits eluding virus extinction despite replication in the presence of a mutagenic agent) and suggest that mutational bias can be a target of selection during virus replication.


Assuntos
Substituição de Aminoácidos , Vírus da Febre Aftosa/genética , Mutação , Linhagem Celular , Fluoruracila/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/fisiologia , Aptidão Genética , Cinética , Modelos Moleculares , Dobramento de Proteína , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral
15.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515297

RESUMO

Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3Dpol) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3Dpol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237FHF) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237ILF) and W237LLF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates.IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3Dpol mutations that affect polymerase fidelity. Recombinant FMDVs containing substitutions at 3Dpol tryptophan residue 237 were genetically stable and displayed plaque phenotypes and growth kinetics similar to those of the wild-type virus in cell culture. We further demonstrate that viruses harboring either a W237FHF substitution or W237ILF and W237LLF mutations were highly attenuated in animals. Our study shows that obtaining 3Dpol fidelity variants by protein engineering based on polymerase structure and function could be exploited for the development of attenuated FMDV vaccine candidates that are safer and more stable than strains obtained by selective pressure via mutagenic nucleotides or adaptation approaches.


Assuntos
Antígenos Virais/genética , Antígenos Virais/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/patogenicidade , Engenharia de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Substituição de Aminoácidos , Animais , Antivirais , Células Cultivadas , Cricetinae , Análise Mutacional de DNA , Modelos Animais de Doenças , Farmacorresistência Viral , Fluoruracila/farmacologia , Febre Aftosa/patologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Camundongos , Mutagênese Sítio-Dirigida , Mutação Puntual , Ribavirina/farmacologia , Suínos , Triptofano/genética , Triptofano/metabolismo , Ensaio de Placa Viral
16.
J Gen Virol ; 98(4): 671-680, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28452293

RESUMO

Foot-and-mouth disease virus is a picornavirus and its RNA genome encodes a large polyprotein. The N-terminal part of this polyprotein is the leader protein, a cysteine protease, termed Lpro. The virus causes the rapid inhibition of host cell cap-dependent protein synthesis within infected cells. This results from the Lpro-dependent cleavage of the cellular translation initiation factor eIF4G. Lpro also releases itself from the virus capsid precursor by cleaving the L/P1 junction. Using site-directed mutagenesis of the Lpro coding sequence, we have investigated the role of 51 separate amino acid residues in the functions of this protein. These selected residues either are highly conserved or are charged and exposed on the protein surface. Using transient expression assays, within BHK-21 cells, it was found that residues around the active site (W52, L53 and A149) of Lpro and others located elsewhere (K38, K39, R44, H138 and W159) are involved in the induction of eIF4G cleavage but not in the processing of the L/P1 junction. Modified viruses, encoding such amino acid substitutions within Lpro, can replicate in BHK-21 cells but did not grow well in primary bovine thyroid cells. This study characterizes mutant viruses that are deficient in blocking host cell responses to infection (e.g. interferon induction) and can assist in the rational design of antiviral agents targeting this process and in the production of attenuated viruses.


Assuntos
Endopeptidases/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/fisiologia , Proteínas Mutantes/metabolismo , Proteólise , Animais , Bovinos , Células Cultivadas , Cricetinae , Análise Mutacional de DNA , Endopeptidases/genética , Vírus da Febre Aftosa/genética , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética
17.
Virus Res ; 222: 80-93, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262620

RESUMO

The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics.


Assuntos
Sítio Alostérico , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/química , Modelos Moleculares , Conformação Proteica , Proteínas Virais/química , Simulação por Computador , RNA Polimerases Dirigidas por DNA/metabolismo , Vírus da Febre Aftosa/enzimologia , Hepacivirus/enzimologia , Relação Estrutura-Atividade , Proteínas Virais/metabolismo , Vírus do Nilo Ocidental/enzimologia
18.
J Virol ; 90(15): 6864-6883, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27194768

RESUMO

UNLABELLED: The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE: Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen.


Assuntos
Antígenos Virais/metabolismo , Vírus da Febre Aftosa/enzimologia , Vírus da Febre Aftosa/genética , Febre Aftosa/virologia , RNA Viral/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética , Animais , Antígenos Virais/química , Células Cultivadas , Genoma Viral , Humanos , Modelos Moleculares , Conformação Proteica , Transcrição Gênica , Proteínas não Estruturais Virais/química
19.
J Biol Chem ; 290(46): 27618-32, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26363073

RESUMO

TRAF family member-associated NF-κB activator (TANK) is a negative regulator of canonical NF-κB signaling in the Toll-like receptor- and B-cell receptor-mediated signaling pathways. However, functions of TANK in viral infection-mediated NF-κB activation remain unclear. Here, we reported that TANK was cleaved by encephalomyocarditis virus 3C at the 197 and 291 glutamine residues, which depends on its cysteine protease activity. In addition, encephalomyocarditis virus 3C impaired the ability of TANK to inhibit TRAF6-mediated NF-κB signaling. Interestingly, we found that several viral proteases encoded by the foot and mouth disease virus, porcine reproductive and respiratory syndrome virus, and equine arteritis virus also cleaved TANK. Our results suggest that TANK is a novel target of some viral proteases, indicating that some positive RNA viruses have evolved to utilize their major proteases to regulate NF-κB activation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cisteína Endopeptidases/metabolismo , Vírus da Encefalomiocardite/enzimologia , NF-kappa B/metabolismo , Proteólise , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Virais/metabolismo , Proteases Virais 3C , Sequência de Aminoácidos , Cisteína Endopeptidases/genética , Equartevirus/enzimologia , Vírus da Febre Aftosa/enzimologia , Células HEK293 , Humanos , Dados de Sequência Molecular , Vírus da Síndrome Respiratória e Reprodutiva Suína/enzimologia , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Proteínas Virais/genética
20.
Eur J Med Chem ; 102: 387-97, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26301555

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious vesicular disease of livestock caused by a highly variable RNA virus, foot-and-mouth disease virus (FMDV). One of the targets to suppress expansion of and to control FMD is 3D polymerase (FMDV 3Dpol). In this study, 2-amino-4-arylthiazole derivatives were synthesized and evaluated for their inhibitory activity against FMDV 3Dpol. Among them, compound 20i exhibited the most potent functional inhibition (IC50 = 0.39 µM) of FMDV 3D polymerase and compound 24a (EC50 = 13.09 µM) showed more potent antiviral activity than ribavirin (EC50 = 1367 µM) and T1105 (EC50 = 347 µM) with IBRS-2 cells infected by the FMDV O/SKR/2010 strain.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Febre Aftosa/efeitos dos fármacos , Febre Aftosa/tratamento farmacológico , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antígenos Virais/metabolismo , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Febre Aftosa/metabolismo , Vírus da Febre Aftosa/enzimologia , Estrutura Molecular , Relação Estrutura-Atividade , Suínos , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA