RESUMO
Since 2013, a total of 167 human infections with swine-origin (variant) influenza A viruses of A(H1N1)v, A(H1N2)v, and A(H3N2)v subtypes have been reported in the United States. Analysis of 147 genome sequences revealed that nearly all had S31N substitution, an M2 channel blocker-resistance marker, whereas neuraminidase inhibitor-resistance markers were not found. Two viruses had a polymerase acidic substitution (I38M or E199G) associated with decreased susceptibility to baloxavir, an inhibitor of viral cap-dependent endonuclease (CEN). Using phenotypic assays, we established subtype-specific susceptibility baselines for neuraminidase and CEN inhibitors. When compared with either baseline or CEN-sequence-matched controls, only the I38M substitution decreased baloxavir susceptibility, by 27-fold. Human monoclonal antibodies FI6v3 and CR9114 targeting the hemagglutinin's stem showed variable (0.03 to >10 µg/mL) neutralizing activity toward variant viruses, even within the same clade. Methodology and interpretation of laboratory data described in this study provide information for risk assessment and decision-making on therapeutic control measures.
Assuntos
Antivirais , Farmacorresistência Viral , Influenza Humana , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Influenza Humana/virologia , Influenza Humana/epidemiologia , Influenza Humana/tratamento farmacológico , Farmacorresistência Viral/genética , Estados Unidos/epidemiologia , Animais , Suínos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Dibenzotiepinas , Morfolinas/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Piridonas/farmacologia , Triazinas/farmacologia , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacosRESUMO
During May 20-October 13, 2018,* low levels of influenza activity were reported in the United States, with a mix of influenza A and B viruses circulating. Seasonal influenza activity in the Southern Hemisphere was low overall, with influenza A(H1N1)pdm09 predominating in many regions. Antigenic testing of available influenza A and B viruses indicated that no significant antigenic drift in circulating viruses had emerged. In late September, the components for the 2019 Southern Hemisphere influenza vaccine were selected and included an incremental update to the A(H3N2) vaccine virus used in egg-based vaccine manufacturing; no change was recommended for the A(H3N2) component of cell-manufactured or recombinant influenza vaccines. Annual influenza vaccination is the best method for preventing influenza illness and its complications, and all persons aged ≥6 months who do not have contraindications should receive influenza vaccine, preferably before the onset of influenza circulation in their community, which often begins in October and peaks during December-February. Health care providers should offer vaccination by the end of October and should continue to recommend and administer influenza vaccine to previously unvaccinated patients throughout the 2018-19 influenza season (1). In addition, during May 20-October 13, a small number of nonhuman influenza "variant" virus infections were reported in the United States; most were associated with exposure to swine. Although limited human-to-human transmission might have occurred in one instance, no ongoing community transmission was identified. Vulnerable populations, especially young children and other persons at high risk for serious influenza complications, should avoid swine barns at agricultural fairs, or close contact with swine.§.
Assuntos
Surtos de Doenças , Saúde Global/estatística & dados numéricos , Influenza Humana/epidemiologia , Vigilância da População , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Vacinas contra Influenza/química , Influenza Humana/virologia , Estações do Ano , Estados Unidos/epidemiologiaRESUMO
Influenza activity in the United States was low during October 2017, but has been increasing since the beginning of November. Influenza A viruses have been most commonly identified, with influenza A(H3N2) viruses predominating. Several influenza activity indicators were higher than is typically seen for this time of year. The majority of influenza viruses characterized during this period were genetically or antigenically similar to the 2017-18 Northern Hemisphere cell-grown vaccine reference viruses. These data indicate that currently circulating viruses have not undergone significant antigenic drift; however, circulating A(H3N2) viruses are antigenically less similar to egg-grown A(H3N2) viruses used for producing the majority of influenza vaccines in the United States. It is difficult to predict which influenza viruses will predominate in the 2017-18 influenza season; however, in recent past seasons in which A(H3N2) viruses predominated, hospitalizations and deaths were more common, and the effectiveness of the vaccine was lower. Annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. Multiple influenza vaccines are approved and recommended for use during the 2017-18 season, and vaccination should continue to be offered as long as influenza viruses are circulating and unexpired vaccine is available. This report summarizes U.S. influenza activity* during October 1-November 25, 2017 (surveillance weeks 40-47)..
Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Criança , Mortalidade da Criança , Pré-Escolar , Farmacorresistência Viral , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Influenza Humana/mortalidade , Influenza Humana/virologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Pneumonia/epidemiologia , Pneumonia/mortalidade , Estados Unidos/epidemiologia , Adulto JovemRESUMO
During the 2016-17 influenza season (October 2, 2016-May 20, 2017) in the United States, influenza activity* was moderate. Activity remained low through November, increased during December, and peaked in February nationally, although there were regional differences in the timing of influenza activity. Influenza A(H3N2) viruses predominated through mid-March and were predominant overall for the season, but influenza B viruses were most commonly reported from late March through May. This report summarizes influenza activity in the United States during October 2, 2016-May 20, 2017 and updates the previous summary (1).
Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H7N2/isolamento & purificação , Vírus da Influenza B/isolamento & purificação , Influenza Humana/epidemiologia , Vigilância da População , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Coinfecção , Farmacorresistência Viral , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Mortalidade Infantil , Recém-Nascido , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H7N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H7N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Vacinas contra Influenza/química , Influenza Humana/mortalidade , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Pessoa de Meia-Idade , Pacientes Ambulatoriais/estatística & dados numéricos , Pneumonia/mortalidade , Estações do Ano , Estados Unidos/epidemiologia , Adulto JovemRESUMO
We have recently demonstrated the effectiveness of an influenza A virus (IAV) subunit vaccine based on biodegradable polyanhydride nanoparticles delivery in mice. In the present study, we evaluated the efficacy of â¼200nm polyanhydride nanoparticles encapsulating inactivated swine influenza A virus (SwIAV) as a vaccine to induce protective immunity against a heterologous IAV challenge in pigs. Nursery pigs were vaccinated intranasally twice with inactivated SwIAV H1N2 (KAg) or polyanhydride nanoparticle-encapsulated KAg (KAg nanovaccine), and efficacy was evaluated against a heterologous zoonotic virulent SwIAV H1N1 challenge. Pigs were monitored for fever daily. Local and systemic antibody responses, antigen-specific proliferation of peripheral blood mononuclear cells, gross and microscopic lung lesions, and virus load in the respiratory tract were compared among the groups of animals. Our pre-challenge results indicated that KAg nanovaccine induced virus-specific lymphocyte proliferation and increased the frequency of CD4+CD8αα+ T helper and CD8+ cytotoxic T cells in peripheral blood mononuclear cells. KAg nanovaccine-immunized pigs were protected from fever following SwIAV challenge. In addition, pigs immunized with the KAg nanovaccine presented with lower viral antigens in lung sections and had 6 to 8-fold reduction in nasal shedding of SwIAV four days post-challenge compared to control animals. Immunologically, increased IFN-γ secreting T lymphocyte populations against both the vaccine and challenge viruses were detected in KAg nanovaccine-immunized pigs compared to the animals immunized with KAg alone. However, in the KAg nanovaccine-immunized pigs, hemagglutination inhibition, IgG and IgA antibody responses, and virus neutralization titers were comparable to that in the animals immunized with KAg alone. Overall, our data indicated that intranasal delivery of polyanhydride-based SwIAV nanovaccine augmented antigen-specific cellular immune response in pigs, with promise to induce cross-protective immunity.
Assuntos
Anticorpos Antivirais/biossíntese , Vacinas contra Influenza/administração & dosagem , Nanopartículas/administração & dosagem , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/prevenção & controle , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Administração Intranasal , Animais , Proliferação de Células/efeitos dos fármacos , Testes de Inibição da Hemaglutinação , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/imunologia , Vacinas contra Influenza/química , Interferon gama/biossíntese , Interferon gama/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Nanopartículas/química , Nanopartículas/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Polianidridos/química , Polianidridos/metabolismo , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/virologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Vacinas de Produtos Inativados , Carga Viral/efeitos dos fármacosRESUMO
OBJECTIVE AND DESIGN: Our aim was to study whether an extracellular, oxidative antimicrobial mechanism inherent to tracheal epithelial cells is capable of inactivating influenza H1N2 virus. MATERIAL OR SUBJECTS: Epithelial cells were isolated from tracheas of male Sprague-Dawley rats. Both primary human and rat tracheobronchial epithelial cells were differentiated in air-liquid interface cultures. TREATMENT: A/swine/Illinois/02860/09 (swH1N2) influenza A virions were added to the apical side of airway cells for 1 h in the presence or absence of lactoperoxidase or thiocyanate. METHODS: Characterization of rat epithelial cells (morphology, Duox expression) occurred via western blotting, PCR, hydrogen peroxide production measurement and histology. The number of viable virions was determined by plaque assays. Statistical difference of the results was analyzed by ANOVA and Tukey's test. RESULTS: Our data show that rat tracheobronchial epithelial cells develop a differentiated, polarized monolayer with high transepithelial electrical resistance, mucin production and expression of dual oxidases. Influenza A virions are inactivated by human and rat epithelial cells via a dual oxidase-, lactoperoxidase- and thiocyanate-dependent mechanism. CONCLUSIONS: Differentiated air-liquid interface cultures of rat tracheal epithelial cells provide a novel model to study airway epithelium-influenza interactions. The dual oxidase/lactoperoxidase/thiocyanate extracellular oxidative system producing hypothiocyanite is a fast and potent anti-influenza mechanism inactivating H1N2 viruses prior to infection of the epithelium.
Assuntos
Células Epiteliais/metabolismo , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Tiocianatos/metabolismo , Animais , Cães , Humanos , Peróxido de Hidrogênio/metabolismo , Lactoperoxidase/metabolismo , Células Madin Darby de Rim Canino , Masculino , Mucinas/biossíntese , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/citologiaRESUMO
Antiviral drug susceptibility is one of the evaluation criteria of pandemic potential posed by an influenza virus. Influenza A viruses of swine (IAV-S) can play an important role in generating novel variants, yet limited information is available on the drug resistance profiles of IAV-S circulating in the U.S. Phenotypic analysis of the IAV-S isolated in the U.S. (2009-2011) (n=105) revealed normal inhibition by the neuraminidase (NA) inhibitors (NAIs) oseltamivir, zanamivir, and peramivir. Screening NA sequences from IAV-S collected in the U.S. (1930-2014) showed 0.03% (1/3396) sequences with clinically relevant H274Y-NA substitution. Phenotypic analysis of IAV-S isolated in the U.S. (2009-2011) confirmed amantadine resistance caused by the S31N-M2 and revealed an intermediate level of resistance caused by the I27T-M2. The majority (96.7%, 589/609) of IAV-S with the I27T-M2 in the influenza database were isolated from pigs in the U.S. The frequency of amantadine-resistant markers among IAV-S in the U.S. was high (71%), and their distribution was M-lineage dependent. All IAV-S of the Eurasian avian M lineage were amantadine-resistant and possessed either a single S31N-M2 substitution (78%, 585/747) or its combination with the V27A-M2 (22%, 162/747). The I27T-M2 substitution accounted for 43% (429/993) of amantadine resistance in classic swine M lineage. Phylogenetic analysis showed that both S31N-M2 and I27T-M2 emerged stochastically but appeared to be fixed in the U.S. IAV-S population. This study defines a drug-susceptibility profile, identifies the frequency of drug-resistant markers, and establishes a phylogenetic approach for continued antiviral-susceptibility monitoring of IAV-S in the U.S.
Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/veterinária , Oseltamivir/farmacologia , Doenças dos Suínos/virologia , Ácidos Carbocíclicos , Substituição de Aminoácidos , Animais , Sequência de Bases , Ciclopentanos/farmacologia , Cães , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Genótipo , Guanidinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Fenótipo , Filogenia , Suínos , Fatores de Tempo , Estados Unidos , Proteínas Virais/genética , Zanamivir/farmacologiaRESUMO
OBJECTIVE: To investigate the preventive effects of Qiangzhi Decoction (, QZD) on influenza A pneumonia through inhibition of inflammatory cytokine storm in vivo and in vitro. METHODS: One hundred ICR mice were randomly divided into the virus control, the Tamiflu control and the QZD high-, medium-, and low-dose groups. Mice were infected intranasally with influenza virus (H1N1) at 10 median lethal dose (LD50). QZD and Tamiflu were administered intragastrically twice daily from day 0 to day 7 after infection. The virus control group was treated with distilled water alone under the same condition. The number of surviving mice was recorded daily for 14 days after viral infection. The histological damage and viral replication and the expression of inflammatory cytokines were monitored. Additionally, the suppression capacity on the secretion of regulated on activation normal T cells expressed and secreted (RANTES) and tumor necrosis factor-α (TNF-α) in epithelial and macrophage cell-lines were evaluated. RESULTS: Compared with the virus control group, the survival rate of the QZD groups significantly improved in a dose-dependent manner (P<0.05), the viral titers in lung tissue was inhibited (P<0.05), and the production of inflammatory cytokines interferon-γ (IFN-γ), interleukin-6 (IL-6), TNF-α, and intercellular adhesion molecule-1 (ICAM-1) were suppressed (P<0.05). Meanwhile, the secretion of RANTETS and TNF-α by epithelial and macrophage cell-lines was inhibited with the treatment of QZD respectively in vitro (p<0.05) CONCLUSIONS: The preventive effects of QZD on influenza virus infection might be due to its unique cytokine inhibition mechanism. QZD may have significant therapeutic potential in combination with antiviral drugs.
Assuntos
Citocinas/metabolismo , Medicamentos de Ervas Chinesas/uso terapêutico , Inflamação/patologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Infecções por Orthomyxoviridae/prevenção & controle , Pneumonia/prevenção & controle , Substâncias Protetoras/uso terapêutico , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CCL5/metabolismo , Quimiocinas/metabolismo , Cães , Medicamentos de Ervas Chinesas/farmacologia , Ensaio de Imunoadsorção Enzimática , Hemaglutinação por Vírus/efeitos dos fármacos , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Células Madin Darby de Rim Canino , Camundongos Endogâmicos ICR , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/patologia , Pneumonia/complicações , Pneumonia/patologia , Substâncias Protetoras/farmacologia , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
The wizard of OS (resistance): the binding difference of neuraminidase inhibitors (zanamivir versus oseltamivir (OS)) was used to establish an assay to identify the influenza subtypes that are resistant to OS but still sensitive to zanamivir. This assay used a zanamivir-biotin conjugate to determine the OS susceptibility of a wide range of influenza viruses and over 200 clinical isolates.
Assuntos
Antivirais/química , Antivirais/farmacologia , Oseltamivir/química , Oseltamivir/farmacologia , Ligação Competitiva , Farmacorresistência Viral , Humanos , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacosRESUMO
European swine influenza A viruses donated the matrix protein 2 as well as the neuraminidase (NA) gene to pandemic influenza A (H1N1) viruses that emerged in 2009. As a result, the latter became amantadine resistant and neuraminidase inhibitor (NAI) susceptible. These recent developments reflecting the close connection between influenza A virus infection chains in humans and pigs urge an antiviral surveillance within swine influenza A viruses. Here, NAI susceptibility of 204 serologically typed swine influenza A viruses of subtypes H1N1, H1N2, and H3N2 circulating in Germany between 1981 and 2008 was analyzed in chemiluminescence-based NA inhibition assays. Mean 50% inhibitory concentrations of oseltamivir and zanamivir indicate a good drug susceptibility of tested viruses. As found for human isolates, the oseltamivir and zanamivir susceptibility was subtype-specific. So, swine influenza A (H1N1) viruses were just as susceptible to oseltamivir as to zanamivir. In contrast, swine H1N2 and H3N2 influenza A viruses were more sensitive to oseltamivir than to zanamivir. Furthermore, reduction in plaque size and virus spread by both drugs was tested with selected H1N1 and H1N2 isolates in MDCK cells expressing similar amounts of α2.3- and α2.6-linked sialic acid receptors. Data obtained in cell culture-based assays for H1N1 isolates correlated with that from enzyme inhibition assays. But, H1N2 isolates that are additionally glycosylated at Asn158 and Asn163 near the receptor-binding site of hemagglutinin (HA) were resistant to both NAI in MDCK cells. Possibly, these additional HA glycosylations cause a misbalance between HA and NA function that hampers or abolishes NAI activity in cells.