Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 191: 105086, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992710

RESUMO

Decades after the eradication of smallpox and the discontinuation of routine smallpox vaccination, over half of the world's population is immunologically naïve to variola virus and other orthopoxviruses (OPXVs). Even in those previously vaccinated against smallpox, protective immunity wanes over time. As such, there is a concomitant increase in the incidence of human OPXV infections worldwide. To identify novel antiviral compounds with potent anti-OPXV potential, we characterized the inhibitory activity of PAV-866 and other methylene blue derivatives against the prototypic poxvirus, vaccinia virus (VACV). These compounds inactivated virions prior to infection and consequently inhibited viral binding, fusion and entry. The compounds exhibited strong virucidal activity at non-cytotoxic concentrations, and inhibited VACV infection when added before, during or after viral adsorption. The compounds were effective against other OPXVs including monkeypox virus, cowpox virus and the newly identified Akhmeta virus. Altogether, these findings reveal a novel mode of inhibition that has not previously been demonstrated for small molecule compounds against VACV. Additional studies are in progress to determine the in vivo efficacy of these compounds against OPXVs and further characterize the anti-viral effects of these derivatives.


Assuntos
Antivirais/farmacologia , Azul de Metileno/química , Azul de Metileno/farmacologia , Orthopoxvirus/efeitos dos fármacos , Antivirais/química , Linhagem Celular , Vírus da Varíola Bovina/efeitos dos fármacos , Células HeLa , Humanos , Monkeypox virus/efeitos dos fármacos , Orthopoxvirus/classificação , Vaccinia virus/efeitos dos fármacos , Ligação Viral/efeitos dos fármacos
2.
J Antimicrob Chemother ; 70(5): 1367-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25630650

RESUMO

OBJECTIVES: ST-246 is one of the key antivirals being developed to fight orthopoxvirus (OPV) infections. Its exact mode of action is not completely understood, but it has been reported to interfere with the wrapping of infectious virions, for which F13L (peripheral membrane protein) and B5R (type I glycoprotein) are required. Here we monitored the appearance of ST-246 resistance to identify its molecular target. METHODS: Vaccinia virus (VACV), cowpox virus (CPXV) and camelpox virus (CMLV) with reduced susceptibility to ST-246 were selected in cell culture and further characterized by antiviral assays and immunofluorescence. A panel of recombinant OPVs was engineered and a putative 3D model of F13L coupled with molecular docking was used to visualize drug-target interaction. The F13L gene of 65 CPXVs was sequenced to investigate F13L amino acid heterogeneity. RESULTS: Amino acid substitutions or insertions were found in the F13L gene of six drug-resistant OPVs and production of four F13L-recombinant viruses confirmed their role(s) in the occurrence of ST-246 resistance. F13L, but not B5R, knockout OPVs showed resistance to ST-246. ST-246 treatment of WT OPVs delocalized F13L- and B5R-encoded proteins and blocked virus wrapping. Putative modelling of F13L and ST-246 revealed a probable pocket into which ST-246 penetrates. None of the identified amino acid changes occurred naturally among newly sequenced or NCBI-derived OPV F13L sequences. CONCLUSIONS: Besides demonstrating that F13L is a direct target of ST-246, we also identified novel F13L residues involved in the interaction with ST-246. These findings are important for ST-246 use in the clinic and crucial for future drug-resistance surveillance programmes.


Assuntos
Antivirais/metabolismo , Benzamidas/metabolismo , Vírus da Varíola Bovina/fisiologia , Isoindóis/metabolismo , Orthopoxvirus/fisiologia , Fosfolipases/antagonistas & inibidores , Vaccinia virus/fisiologia , Montagem de Vírus/efeitos dos fármacos , Animais , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/enzimologia , Vírus da Varíola Bovina/genética , Farmacorresistência Viral , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Orthopoxvirus/efeitos dos fármacos , Orthopoxvirus/enzimologia , Orthopoxvirus/genética , Fosfolipases/química , Fosfolipases/genética , Ligação Proteica , Conformação Proteica , Inoculações Seriadas , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/enzimologia , Vaccinia virus/genética , Ensaio de Placa Viral , Cultura de Vírus
3.
Antimicrob Agents Chemother ; 58(1): 27-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24126587

RESUMO

The availability of adequate treatments for poxvirus infections would be valuable not only for human use but also for veterinary use. In the search for novel antiviral agents, a 1'-methyl-substituted 4'-thiothymidine nucleoside, designated KAY-2-41, emerged as an efficient inhibitor of poxviruses. In vitro, KAY-2-41 was active in the micromolar range against orthopoxviruses (OPVs) and against the parapoxvirus orf. The compound preserved its antiviral potency against OPVs resistant to the reference molecule cidofovir. KAY-2-41 had no noticeable toxicity on confluent monolayers, but a cytostatic effect was seen on growing cells. Genotyping of vaccinia virus (VACV), cowpox virus, and camelpox virus selected for resistance to KAY-2-41 revealed a nucleotide deletion(s) close to the ATP binding site or a nucleotide substitution close to the substrate binding site in the viral thymidine kinase (TK; J2R) gene. These mutations resulted in low levels of resistance to KAY-2-41 ranging from 2.7- to 6.0-fold and cross-resistance to 5-bromo-2'-deoxyuridine (5-BrdU) but not to cidofovir. The antiviral effect of KAY-2-41 relied, at least in part, on activation (phosphorylation) by the viral TK, as shown through enzymatic assays. The compound protected animals from disease and mortality after a lethal challenge with VACV, reduced viral loads in the serum, and abolished virus replication in tissues. In conclusion, KAY-2-41 is a promising nucleoside analogue for the treatment of poxvirus-induced diseases. Our findings warrant the evaluation of additional 1'-carbon-substituted 4'-thiothymidine derivatives as broad-spectrum antiviral agents, since this molecule also showed antiviral potency against herpes simplex virus 1 in earlier studies.


Assuntos
Antivirais/farmacologia , Orthopoxvirus/efeitos dos fármacos , Tiofenos/farmacologia , Timidina/análogos & derivados , Antivirais/química , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/genética , Genótipo , Estrutura Molecular , Orthopoxvirus/genética , Tiofenos/química , Timidina/química , Timidina/farmacologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética
4.
PLoS One ; 8(2): e55808, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457480

RESUMO

The last years, cowpox infections are being increasingly reported through Eurasia. Cowpox viruses (CPXVs) have been reported to have different genotypes and may be subdivided in at least five genetically distinct monophyletic clusters. However, little is known about their in vitro and in vivo features. In this report, five genetically diverse CPXVs, including one reference strain (CPXV strain Brighton) and four clinical isolates from human and animal cases, were compared with regard to growth in cells, pathogenicity in mice and inhibition by antivirals. While all CPXVs replicated similarly in vitro and showed comparable antiviral susceptibility, marked discrepancies were seen in vivo, including differences in virulence with recorded mortality rates of 0%, 20% and 100%. The four CPXV clinical isolates appeared less pathogenic than two reference strains, CPXV Brighton and vaccinia virus Western-Reserve. Disease severity seemed to correlate with high viral DNA loads in several organs, virus titers in lung tissues and levels of IL-6 cytokine in the sera. Our study highlighted that the species CPXV consists of viruses that not only differ considerably in their genotypes but also in their in vivo phenotypes, indicating that CPXVs should not be longer classified as a single species. Lung virus titers and IL-6 cytokine level in mice may be used as biomarkers for predicting disease severity. We further demonstrated the potential benefit of cidofovir, CMX001 and ST-246 use as antiviral therapy.


Assuntos
Antivirais/uso terapêutico , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/fisiologia , Varíola Bovina/tratamento farmacológico , Varíola Bovina/virologia , Pulmão/virologia , Animais , Linhagem Celular , Varíola Bovina/sangue , Varíola Bovina/patologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/patogenicidade , Feminino , Humanos , Interleucina-6/sangue , Pulmão/patologia , Camundongos , Filogenia , Fator de Necrose Tumoral alfa/sangue
5.
Antiviral Res ; 96(2): 187-95, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22884885

RESUMO

Genetic and biochemical data have identified at least four viral proteins essential for vaccinia virus (VACV) DNA synthesis: the DNA polymerase E9, its processivity factor (the heterodimer A20/D4) and the primase/helicase D5. These proteins are part of the VACV replication complex in which A20 is a central subunit interacting with E9, D4 and D5. We hypothesised that molecules able to modulate protein-protein interactions within the replication complex may represent a new class of compounds with anti-orthopoxvirus activities. In this study, we adapted a forward duplex yeast two-hybrid assay to screen more than 27,000 molecules in order to identify inhibitors of A20/D4 and/or A20/D5 interactions. We identified two molecules that specifically inhibited both interactions in yeast. Interestingly, we observed that these compounds displayed a similar antiviral activity to cidofovir (CDV) against VACV in cell culture. We further showed that these molecules were able to inhibit the replication of another orthopoxvirus (i.e. cowpox virus), but not the herpes simplex virus type 1 (HSV-1), an unrelated DNA virus. We also demonstrated that the antiviral activity of both compounds correlated with an inhibition of VACV DNA synthesis. Hence, these molecules may represent a starting point for the development of new anti-orthopoxvirus drugs.


Assuntos
Antivirais/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Vaccinia virus/efeitos dos fármacos , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular , Vírus da Varíola Bovina/efeitos dos fármacos , Humanos , Ligação Proteica/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Leveduras/genética
6.
Bioorg Med Chem ; 20(8): 2669-74, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22417649

RESUMO

Synthesis of 6-deoxycyclopropavir (10), a prodrug of cyclopropavir (1) and its in vitro and in vivo antiviral activity is described. 2-Amino-6-chloropurine methylenecyclopropane 13 was transformed to its 6-iodo derivative 14 which was reduced to prodrug 10. It is converted to cyclopropavir (1) by the action of xanthine oxidase and this reaction can also occur in vivo. Compound 10 lacked significant in vitro activity against human cytomegalovirus (HCMV), human herpes virus 1 and 2 (HSV-1 and HSV-2), human immunodeficiency virus type 1 (HIV-1), human hepatitis B virus (HBV), Epstein-Barr virus (EBV), vaccinia virus and cowpox virus. In contrast, prodrug 10 given orally was as active as cyclopropavir (1) reported previously [Kern, E. R.; Bidanset, D. J.; Hartline, C. B.; Yan, Z.; Zemlicka, J.; Quenelle, D. C. et al. Antimicrob. Agents Chemother. 2004, 48, 4745] against murine cytomegalovirus (MCMV) infection in mice and against HCMV in severe combined immunodeficient (SCID) mice.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Ciclopropanos/síntese química , Ciclopropanos/farmacologia , Guanina/análogos & derivados , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Vírus da Varíola Bovina/efeitos dos fármacos , Ciclopropanos/química , Citomegalovirus/efeitos dos fármacos , Guanina/síntese química , Guanina/química , Guanina/farmacologia , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 4/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pró-Fármacos/administração & dosagem , Vaccinia virus/efeitos dos fármacos
7.
Virol J ; 9: 6, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22225618

RESUMO

BACKGROUND: The EB peptide is a 20-mer that was previously shown to have broad spectrum in vitro activity against several unrelated viruses, including highly pathogenic avian influenza, herpes simplex virus type I, and vaccinia, the prototypic orthopoxvirus. To expand on this work, we evaluated EB for in vitro activity against the zoonotic orthopoxviruses cowpox and monkeypox and for in vivo activity in mice against vaccinia and cowpox. FINDINGS: In yield reduction assays, EB had an EC50 of 26.7 µM against cowpox and 4.4 µM against monkeypox. The EC50 for plaque reduction was 26.3 µM against cowpox and 48.6 µM against monkeypox. A scrambled peptide had no inhibitory activity against either virus. EB inhibited cowpox in vitro by disrupting virus entry, as evidenced by a reduction of the release of virus cores into the cytoplasm. Monkeypox was also inhibited in vitro by EB, but at the attachment stage of infection. EB showed protective activity in mice infected intranasally with vaccinia when co-administered with the virus, but had no effect when administered prophylactically one day prior to infection or therapeutically one day post-infection. EB had no in vivo activity against cowpox in mice. CONCLUSIONS: While EB did demonstrate some in vivo efficacy against vaccinia in mice, the limited conditions under which it was effective against vaccinia and lack of activity against cowpox suggest EB may be more useful for studying orthopoxvirus entry and attachment in vitro than as a therapeutic against orthopoxviruses in vivo.


Assuntos
Antivirais/farmacologia , Vírus da Varíola Bovina/efeitos dos fármacos , Varíola Bovina/tratamento farmacológico , Vírus da Ectromelia/efeitos dos fármacos , Fator 4 de Crescimento de Fibroblastos/farmacologia , Oligopeptídeos/farmacologia , Vacínia/tratamento farmacológico , Animais , Antivirais/administração & dosagem , Modelos Animais de Doenças , Fator 4 de Crescimento de Fibroblastos/administração & dosagem , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Oligopeptídeos/administração & dosagem , Análise de Sobrevida , Resultado do Tratamento , Carga Viral , Ensaio de Placa Viral , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
8.
Antiviral Res ; 93(2): 305-308, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22182595

RESUMO

Mitoxantrone, an FDA-approved therapeutic for the treatment of cancer and multiple sclerosis, was previously reported to exhibit antiviral activity against vaccinia virus. To determine whether this activity extends to other orthopoxviruses, mitoxantrone was tested against cowpox and monkeypox. Mitoxantrone demonstrated an EC(50) of 0.25 µM against cowpox and 0.8 µM against monkeypox. Intraperitoneal treatment of cowpox virus-challenged C57Bl/6 mice with 0.5 mg/kg mitoxantrone resulted in 25% survival and a significant increase in survival time. In an effort to improve its efficacy, mitoxantrone was tested for synergistic activity with cidofovir. In vitro tests demonstrated significant synergy between the two drugs against cowpox; however, no synergistic effect on animal survival or median time-to-death was seen in intranasally-infected BALB/c mice. Significantly fewer animals survived when treated with a combination of 0.5 mg/kg mitoxantrone and 100 mg/kg cidofovir than with 100 mg/kg cidofovir alone. This is, to our knowledge, the first report of limited anti-orthopoxvirus activity by mitoxantrone in an animal model.


Assuntos
Antivirais/farmacologia , Vírus da Varíola Bovina/efeitos dos fármacos , Varíola Bovina/virologia , Mitoxantrona/farmacologia , Monkeypox virus/efeitos dos fármacos , Mpox/virologia , Animais , Varíola Bovina/tratamento farmacológico , Vírus da Varíola Bovina/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mpox/tratamento farmacológico , Monkeypox virus/fisiologia
9.
PLoS One ; 6(12): e28992, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194969

RESUMO

The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-ß and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-ß or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-ß but not Mx2, while TBEV induced both IFN-ß and Mx2. In conclusion, VEFs together with protocols developed for detection of bank vole innate immune activation provide valuable tools for future studies of how PUUV and other zoonotic viruses affect cells derived from bank voles compared to human cells. Notably, wild-type PUUV which has been difficult to cultivate in vitro readily infected VEFs, suggesting that embryonic fibroblasts from natural hosts might be valuable for isolation of wild-type hantaviruses.


Assuntos
Arvicolinae/virologia , Reservatórios de Doenças/virologia , Modelos Biológicos , Fenômenos Fisiológicos Virais , Animais , Arvicolinae/genética , Linhagem Celular , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/imunologia , Embrião de Mamíferos/citologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Fibroblastos/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Interferon beta/farmacologia , Parechovirus/efeitos dos fármacos , Parechovirus/imunologia , Virus Puumala/efeitos dos fármacos , Virus Puumala/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Vírus/efeitos dos fármacos
10.
J Med Chem ; 54(16): 5680-93, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21812420

RESUMO

Eight novel single amino acid (6-11) and dipeptide (12, 13) tyrosine P-O esters of cyclic cidofovir ((S)-cHPMPC, 4) and its cyclic adenine analogue ((S)-cHPMPA, 3) were synthesized and evaluated as prodrugs. In vitro IC(50) values for the prodrugs (<0.1-50 µM) vs vaccinia, cowpox, human cytomegalovirus, and herpes simplex type 1 virus were compared to those for the parent drugs ((S)-HPMPC, 2; (S)-HPMPA, 1; IC(50) 0.3-35 µM); there was no cytoxicity with KB or HFF cells at ≤100 µM. The prodrugs exhibited a wide range of half-lives in rat intestinal homogenate at pH 6.5 (<30-1732 min) with differences of 3-10× between phostonate diastereomers. The tyrosine alkylamide derivatives of 3 and 4 were the most stable. (l)-Tyr-NH-i-Bu cHPMPA (11) was converted in rat or mouse plasma solely to two active metabolites and had significantly enhanced oral bioavailability vs parent drug 1 in a mouse model (39% vs <5%).


Assuntos
Adenina/análogos & derivados , Citosina/análogos & derivados , Organofosfonatos/química , Pró-Fármacos/química , Tirosina/química , Adenina/química , Adenina/farmacocinética , Adenina/farmacologia , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/farmacologia , Área Sob a Curva , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cidofovir , Vírus da Varíola Bovina/efeitos dos fármacos , Citomegalovirus/efeitos dos fármacos , Citosina/química , Citosina/farmacocinética , Citosina/farmacologia , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Herpesvirus Humano 1/genética , Humanos , Concentração Inibidora 50 , Camundongos , Modelos Químicos , Estrutura Molecular , Organofosfonatos/farmacocinética , Organofosfonatos/farmacologia , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ratos , Vaccinia virus/efeitos dos fármacos
11.
Bioorg Med Chem ; 19(9): 2950-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21493074

RESUMO

Alkoxyalkyl esters of cidofovir (CDV) are orally active agents which inhibit the replication of a variety of double stranded DNA (dsDNA) viruses including variola, vaccinia, ectromelia, herpes simplex virus, cytomegalovirus, adenovirus and others. One of these compounds, hexadecyloxypropyl-CDV (HDP-CDV, CMX001) is in clinical development for prevention and treatment of poxvirus infection, vaccination complications, and for infections caused by cytomegalovirus, adenovirus, herpesviruses and other dsDNA viruses. This class of lipid analogs is potentially prone to undergo omega oxidation of the alkyl moiety which can lead to a short chain carboxylic acid lacking antiviral activity. To address this issue, we synthesized a series of alkoxyalkyl or alkyl glycerol esters of CDV and (S)-HPMPA having modifications in the structure of the alkyl residue. Antiviral activity was assessed in cells infected with vaccinia, cowpox or ectromelia viruses. Metabolic stability was determined in S9 membrane fractions from rat, guinea pig, monkey and human liver. All compounds had substantial antiviral activity in cells infected with vaccinia, cowpox or ectromelia. Metabolic stability was lowest in monkey liver S9 incubations where rapid disappearance of HDP-CDV and HDP-(S)-HPMPA was noted. Metabolic stability in monkey preparations increased substantially when a ω-1 methyl group (15-methyl-HDP-CDV) or a terminal cyclopropyl residue (14-cyclopropyl-tetradecyloxypropyl-CDV) was present in the alkyl chain. The most stable compound was 1-O-octadecyl-2-O-benzyl-sn-glycero-3-CDV (ODBG-CDV) which was not metabolized extensively by monkey liver S9. In rat, guinea pig or human liver S9 incubations, most of the modified antiviral compounds were considerably more stable.


Assuntos
Adenina/análogos & derivados , Antivirais/síntese química , Citosina/análogos & derivados , Organofosfonatos/química , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Animais , Antivirais/química , Antivirais/farmacologia , Cidofovir , Vírus da Varíola Bovina/efeitos dos fármacos , Citosina/síntese química , Citosina/química , Citosina/farmacologia , Vírus da Ectromelia/efeitos dos fármacos , Ésteres , Cobaias , Haplorrinos , Humanos , Fígado/metabolismo , Organofosfonatos/síntese química , Organofosfonatos/farmacologia , Ratos , Vaccinia virus/efeitos dos fármacos
12.
Immunobiology ; 216(6): 670-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21131094

RESUMO

Indian hemp is used since thousands of years as herbal drug. We found that a single dose of cannabis resin was equally active as Δ9-tetrahydrocannabinol (THC) enhancing severity and duration of symptoms in vaccinia virus infected mice. Cowpox virus did not cause symptomatic disease, but some reduction of specific antibody production was observed in drug treated animals. In vitro cannabis was superior to THC alone at inhibiting mitogen stimulated proliferation of human and mouse spleen cells and peripheral blood mononuclear cells. Also resin sub-fractions other than THC, cannabidiol and cannabinol, recovered also from cigarette smoke, were found inhibitory, suggesting additional involvement of constituents other than psychoactive THC. The immunoregulatory effects must be differentiated from apoptotic effects on spleen cells and lymphocytic mouse cell lines, which were observed with resin and THC but not with cannabidiol or cannabinol. A significant contribution of cytotoxic effects seems unlikely as drug treated lymphocytes were still capable of producing cytokines after T-cell receptor-specific stimulation. Considering a recent case of unusually severe cowpox virus infection in a young drug taker these data confirm a risk of "soft drugs" for acquiring poxvirus infection or enhancing side effects of the smallpox vaccine and perhaps also other live vaccines.


Assuntos
Canabinoides/farmacologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/patogenicidade , Animais , Formação de Anticorpos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/imunologia , Citocinas/biossíntese , Dronabinol/farmacologia , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Mitógenos/antagonistas & inibidores , Coelhos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Vacínia/imunologia , Vacínia/fisiopatologia , Virulência
13.
Antiviral Res ; 88(3): 287-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20888364

RESUMO

Terameprocol (TMP) is a methylated derivative of nordihydroguaiaretic acid, a phenolic antioxidant originally derived from creosote bush extracts. TMP has previously been shown to have antiviral and anti-inflammatory activities, and has been proven safe in phase I clinical trials conducted to evaluate TMP as both a topical and parenteral therapeutic. In the current study, we examined the ability of TMP to inhibit poxvirus growth in vitro, and found that TMP potently inhibited the growth of both cowpox virus and vaccinia virus in a variety of cell lines. TMP treatment was highly effective at reducing infectious virus yield in multi-step virus growth assays, but it did not substantially inhibit the synthesis of infectious progeny viruses in individual infected cells. These contrasting results showed that TMP inhibits poxvirus growth in vitro by preventing the efficient spread of virus particles from cell to cell. The canonical mechanism of poxvirus cell-to-cell spread requires morphogenesis of cell-associated, enveloped virions. The virions then trigger the formation of actin tails to project them from the cell surface. The number of actin tails present at the surface of poxvirus-infected cells was reduced dramatically by treatment with TMP. Whether TMP inhibits poxvirus morphogenesis, or subsequent events required for actin tail formation, remains to be determined. The results of this study, together with the clinical safety record of TMP, support further evaluation of TMP as a poxvirus therapeutic.


Assuntos
Antivirais , Vírus da Varíola Bovina/efeitos dos fármacos , Masoprocol/análogos & derivados , Infecções por Poxviridae/tratamento farmacológico , Vaccinia virus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Actinas/química , Actinas/metabolismo , Antivirais/farmacologia , Bioterrorismo/prevenção & controle , Linhagem Celular , Ensaios Clínicos Fase I como Assunto , Vírus da Varíola Bovina/fisiologia , Humanos , Masoprocol/farmacologia , Infecções por Poxviridae/virologia , Vaccinia virus/fisiologia , Ligação Viral/efeitos dos fármacos
14.
J Virol ; 83(13): 6883-99, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19386722

RESUMO

Viral manipulation of the transduction pathways associated with key cellular functions such as actin remodeling, microtubule stabilization, and survival may favor a productive viral infection. Here we show that consistent with the vaccinia virus (VACV) and cowpox virus (CPXV) requirement for cytoskeleton alterations early during the infection cycle, PBK/Akt was phosphorylated at S473 [Akt(S473-P)], a modification associated with the mammalian target of rapamycin complex 2 (mTORC2), which was paralleled by phosphorylation at T308 [Akt(T308-P)] by PI3K/PDK1, which is required for host survival. Notably, while VACV stimulated Akt(S473-P/T308-P) at early (1 h postinfection [p.i.]) and late (24 h p.i.) times during the infective cycle, CPXV stimulated Akt at early times only. Pharmacological and genetic inhibition of PI3K (LY294002) or Akt (Akt-X and a dominant-negative form of Akt-K179M) resulted in a significant decline in virus yield (from 80% to >/=90%). This decline was secondary to the inhibition of late viral gene expression, which in turn led to an arrest of virion morphogenesis at the immature-virion stage of the viral growth cycle. Furthermore, the cleavage of both caspase-3 and poly(ADP-ribose) polymerase and terminal deoxynucleotidyl transferase-mediated deoxyuridine nick end labeling assays confirmed that permissive, spontaneously immortalized cells such as A31 cells and mouse embryonic fibroblasts (MEFs) underwent apoptosis upon orthopoxvirus infection plus LY294002 treatment. Thus, in A31 cells and MEFs, early viral receptor-mediated signals transmitted via the PI3K/Akt pathway are required and precede the expression of viral antiapoptotic genes. Additionally, the inhibition of these signals resulted in the apoptosis of the infected cells and a significant decline in viral titers.


Assuntos
Vírus da Varíola Bovina/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Vaccinia virus/fisiologia , Replicação Viral , Animais , Apoptose , Caspase 3/metabolismo , Linhagem Celular , Cromonas/farmacologia , Varíola Bovina/metabolismo , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/genética , Regulação Viral da Expressão Gênica , Camundongos , Morfolinas/farmacologia , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Vacínia/metabolismo , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética
16.
Antivir Ther ; 13(8): 977-90, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19195323

RESUMO

BACKGROUND: ST-246 is a potent anti-orthopoxviral molecule targeting the F13L protein of vaccinia virus, which is involved in the wrapping of viruses. The discrepancy in sensitivities of several orthopoxviruses to ST-246 has raised questions about potential differences in their replicative cycles and/or the presence of another drug target. METHODS: Density gradients were used to evaluate the differences between the viral cycles of vaccinia, cowpox and camelpox viruses. Also, to investigate if ST-246 inhibits a single target, we compared its activity to that of small interfering RNAs designed to silence the F13L gene (siF13Ls). RESULTS: We showed that the spread of vaccinia virus involved both intracellular and extracellular enveloped viruses, whereas both cowpox and camelpox viruses seemed to propagate via non-enveloped intracellular forms and cell-associated viral particles. Although ST-246 exerted a clear antiviral activity by interfering with the egress of the virus from infected cells, we observed that cowpox and camelpox viruses, in contrast to vaccinia virus, could be directed towards a lytic cycle under ST-246 treatment. We specifically knocked down the F13L transcripts of vaccinia and camelpox viruses by > 85%, reduced virus progeny by 90% and showed that siF13Ls affect camelpox and vaccinia virus propagation differently. Flow cytometry data validated that ST-246 interfered with the activity of the F13L protein, whereas siF13Ls silenced the F13L gene. CONCLUSIONS: Our observations support that vaccinia, cowpox and camelpox viruses exhibit different levels of sensitivity to ST-246 because of dissimilarities between their ways of propagation, and provide a better understanding of the mode of action of ST-246.


Assuntos
Benzamidas/farmacologia , Vírus da Varíola Bovina/efeitos dos fármacos , Isoindóis/farmacologia , Proteínas de Membrana/metabolismo , Orthopoxvirus/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Antivirais/farmacologia , Linhagem Celular , Inativação Gênica , Humanos , RNA Interferente Pequeno , Especificidade da Espécie , Replicação Viral/efeitos dos fármacos
17.
Antimicrob Agents Chemother ; 51(11): 4118-24, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17724153

RESUMO

The combination of ST-246 and hexadecyloxypropyl-cidofovir or CMX001 was evaluated for synergistic activity in vitro against vaccinia virus and cowpox virus (CV) and in vivo against CV. In cell culture the combination was highly synergistic against both viruses, and the results suggested that combined treatment with these agents might offer superior efficacy in vivo. For animal models, ST-246 was administered orally with or without CMX001 to mice lethally infected with CV. Treatments began 1, 3, or 6 days postinfection using lower dosages than previously used for single-drug treatment. ST-246 was given at 10, 3, or 1 mg/kg of body weight with or without CMX001 at 3, 1, or 0.3 mg/kg to evaluate potential synergistic interactions. Treatment beginning 6 days post-viral inoculation with ST-246 alone only increased the mean day to death at 10 or 3 mg/kg but had no effect on survival. CMX001 alone also had no effect on survival. When the combination of the two drugs was begun 6 days after viral infection using various dosages of the two, a synergistic reduction in mortality was observed. No evidence of increased toxicity was noted with the combination either in vitro or in vivo. These results indicate that combinations of ST-246 and CMX001 are synergistic both in vitro and in vivo and suggest that combination therapy using ST-246 and CMX001 for treatment of orthopoxvirus disease in humans or animals may provide an additional benefit over the use of the two drugs by themselves.


Assuntos
Benzamidas/farmacologia , Citosina/análogos & derivados , Isoindóis/farmacologia , Organofosfonatos/farmacologia , Orthopoxvirus/efeitos dos fármacos , Administração Oral , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Benzamidas/administração & dosagem , Benzamidas/uso terapêutico , Células Cultivadas , Chlorocebus aethiops , Vírus da Varíola Bovina/efeitos dos fármacos , Citosina/farmacologia , Citosina/uso terapêutico , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Isoindóis/administração & dosagem , Isoindóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Organofosfonatos/uso terapêutico , Infecções por Poxviridae/tratamento farmacológico , Infecções por Poxviridae/virologia , Resultado do Tratamento , Vaccinia virus/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
18.
Virus Res ; 128(1-2): 88-98, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17524511

RESUMO

Variola virus and other members of the genus Orthopoxviruses constitute a prominent bioterrorism and public health threat. Treatment with the anti-viral drug cidofovir inhibits replication of orthopoxviruses in vitro and in vivo. In this study, we visualized the effect of cidofovir on viral kinetics in orthopoxvirus infected mice by using whole-body fluorescence imaging (FI). We engineered a cowpox virus (CPV) expressing the enhanced green fluorescent protein (GFP). Single-step growth curves and calculated 50% lethal doses (LD(50)) of wild-type CPX (Wt-CPV) and GFP-expressing CPX (GFP-CPV) were comparable. Whole-body FI first detected GFP fluorescence in the mesenteric tissue of untreated animals on post-infection day (PID) 1. On PID 3 GFP signal was detected throughout the mesentery, in all abdominal organs by PID 5 and in most major organs, except for the heart and brain by PID 6. Infected animals treated with 25mg/kg of cidofovir also began showing signs of viral replication on PID 1, however, the fluorescent signal was limited only to discrete foci throughout the course of the infection. This work describes the first use of an established Orthopox model of infection to evaluate drug efficacy and track virus progression on a macroscopic level.


Assuntos
Antivirais/uso terapêutico , Vírus da Varíola Bovina/efeitos dos fármacos , Varíola Bovina/tratamento farmacológico , Citosina/análogos & derivados , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/metabolismo , Organofosfonatos/uso terapêutico , Animais , Antivirais/administração & dosagem , Antivirais/farmacologia , Bioterrorismo , Chlorocebus aethiops , Cidofovir , Varíola Bovina/patologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/genética , Vírus da Varíola Bovina/patogenicidade , Vírus da Varíola Bovina/fisiologia , Citosina/administração & dosagem , Citosina/farmacologia , Citosina/uso terapêutico , Replicação do DNA , Avaliação Pré-Clínica de Medicamentos , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Organofosfonatos/administração & dosagem , Organofosfonatos/farmacologia , Recombinação Genética , Varíola/tratamento farmacológico , Varíola/patologia , Varíola/virologia , Resultado do Tratamento , Células Vero , Replicação Viral
19.
Antiviral Res ; 73(1): 69-77, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16712967

RESUMO

A novel carbocyclic thymidine analog, N-methanocarbathymidine [(N)-MCT], was evaluated for inhibition of orthopoxvirus infections. Efficacy in vitro was assessed by plaque reduction assays against wild-type and cidofovir-resistant strains of cowpox and vaccinia viruses in nine different cell lines. Minimal differences were seen in antiviral activity against wild-type and cidofovir-resistant viruses. (N)-MCT's efficacy was affected by the cell line used for assay, with 50% poxvirus-inhibitory concentrations in cells as follows: mouse=0.6-2.2 microM, rabbit=52-90 microM, monkey=87 to >1000 microM, and human=39-220 microM. Limited studies performed with carbocyclic thymidine indicated a similar cell line dependency for antiviral activity. (N)-MCT did not inhibit actively dividing uninfected cells at 1000 microM. The potency of (N)-MCT against an S-variant thymidine kinase-deficient vaccinia virus was similar to that seen against S-variant and wild-type viruses in mouse, monkey, and human cells, implicating a cellular enzyme in the phosphorylation of the compound. Mice were intranasally infected with cowpox and vaccinia viruses followed 24h later by intraperitoneal treatment with (N)-MCT (twice a day for 7 days) or cidofovir (once a day for 2 days). (N)-MCT treatment at 100 and 30 mg/kg/day resulted in 90 and 20% survival from cowpox virus infection, respectively, compared to 0% survival in the placebo group. Statistically significant reductions in lung virus titers on day 5 occurred in 10, 30, and 100mg/kg/day treated mice. These same doses were also active against a lethal vaccinia virus (WR strain) challenge, and protection was seen down to 10mg/kg/day against a lethal vaccinia virus (IHD strain) infection. Cidofovir (100mg/kg/day) protected animals from death in all three infections.


Assuntos
Antivirais/uso terapêutico , Varíola Bovina/tratamento farmacológico , Infecções Respiratórias/tratamento farmacológico , Timidina/análogos & derivados , Vacínia/tratamento farmacológico , Animais , Antivirais/farmacologia , Linhagem Celular , Varíola Bovina/virologia , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/crescimento & desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Infecções Respiratórias/virologia , Timidina/farmacologia , Timidina/uso terapêutico , Vacínia/virologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/crescimento & desenvolvimento
20.
Bioorg Chem ; 35(2): 121-36, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16996561

RESUMO

5-Formyl-2'-deoxyuridine-3',5'-diacetate was converted to a small library of 5-substituted pyrimidine nucleoside N-acylamino acid amides by means of a Ugi multicomponent reaction. The reaction allowed introduction of various substituents at the acyl moiety, at the amino acid alpha-amide group, and at the amino acid carboxyl function. Evaluation of these novel 5-substituted nucleosides against vaccinia virus and cowpox virus provided one compound with discernable activity against cowpox virus but five- to eightfold less active than the Cidofovir standard. More promising activity was seen for the inhibition of Leishmania donovani promastigotes. Several synthetic products showed antileishmanial activity in the 10(-5)M range. When compared to earlier studies demonstrating anti-orthopoxviral and antileishmanial activity of 5-substituted pyrimidine nucleosides, these results imply that the 5-(N-acylamino acid amide)-derivatized pyrimidine nucleosides may possess more steric bulk, greater hydrophobicity, and more flexibility than is compatible with these particular biological activities.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Antivirais/síntese química , Antivirais/farmacologia , Desoxiuridina/análogos & derivados , Leishmania/efeitos dos fármacos , Nucleosídeos/síntese química , Nucleosídeos/farmacologia , Animais , Vírus da Varíola Bovina/efeitos dos fármacos , Desoxiuridina/síntese química , Desoxiuridina/farmacologia , Indicadores e Reagentes , Espectrometria de Massas , Relação Estrutura-Atividade , Vaccinia virus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA