Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 3226, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34050170

RESUMO

Inositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 is ~100-fold more potent at promoting RSV mature capsid protein (CA) assembly than observed for HIV-1 and removal of IP6 in cells reduces infectivity by 100-fold. Here, visualized by cryo-electron tomography and subtomogram averaging, mature capsid-like particles show an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 have opposing effects on CA in vitro assembly, inducing formation of T = 1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles reveal that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/ultraestrutura , Ácido Fítico/metabolismo , Vírus do Sarcoma de Rous/ultraestrutura , Montagem de Vírus , Capsídeo/metabolismo , Proteínas do Capsídeo/isolamento & purificação , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Multimerização Proteica , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Vírus do Sarcoma de Rous/patogenicidade , Vírus do Sarcoma de Rous/fisiologia , Imagem Individual de Molécula , Transfecção , Liberação de Vírus
2.
Viruses ; 10(4)2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670049

RESUMO

The Czech scientist Jan Svoboda was a pioneer of Rous sarcoma virus (RSV). In the 1960s, before the discovery of reverse transcriptase, he demonstrated the long-term persistence of the viral genome in non-productive mammalian cells, and he supported the DNA provirus hypothesis of Howard Temin. He showed how the virus can be rescued in the infectious form and elucidated the replication-competent nature of the Prague strain of RSV later used for the identification of the src oncogene. His studies straddled molecular oncology and virology, and he remained an active contributor to the field until his death last year. Throughout the 50 years that I was privileged to know Svoboda as my mentor and friend, I admired his depth of scientific inquiry and his steadfast integrity in the face of political oppression.


Assuntos
Interações Hospedeiro-Patógeno , Vírus do Sarcoma de Rous/fisiologia , Vírus do Sarcoma de Rous/patogenicidade , Sarcoma Aviário/virologia , Replicação Viral , Animais , História do Século XX , História do Século XXI , Humanos
3.
Folia Biol (Praha) ; 61(5): 161-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26667572

RESUMO

In my article I tried to present the results of early experiments suggesting a significant role for cell association in Rous sarcoma virus transformation of non-permissive cells and revealing that infectious virus can be efficiently rescued from such cells by their fusion with permissive chicken fibroblasts.


Assuntos
Galinhas/virologia , Vírus do Sarcoma de Rous/patogenicidade , Sarcoma Aviário/virologia , Animais , Transformação Celular Viral , Provírus/patogenicidade , Provírus/fisiologia , Ratos , Vírus do Sarcoma de Rous/fisiologia , Replicação Viral
4.
Nat Med ; 20(5): 493-502, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24784232

RESUMO

Interferon-α (IFN-α) is essential for antiviral immunity, but in the absence of matrix metalloproteinase-12 (MMP-12) or IκBα (encoded by NFKBIA) we show that IFN-α is retained in the cytosol of virus-infected cells and is not secreted. Our findings suggest that activated IκBα mediates the export of IFN-α from virus-infected cells and that the inability of cells in Mmp12(-/-) but not wild-type mice to express IκBα and thus export IFN-α makes coxsackievirus type B3 infection lethal and renders respiratory syncytial virus more pathogenic. We show here that after macrophage secretion, MMP-12 is transported into virus-infected cells. In HeLa cells MMP-12 is also translocated to the nucleus, where it binds to the NFKBIA promoter, driving transcription. We also identified dual-regulated substrates that are repressed both by MMP-12 binding to the substrate's gene exons and by MMP-12-mediated cleavage of the substrate protein itself. Whereas intracellular MMP-12 mediates NFKBIA transcription, leading to IFN-α secretion and host protection, extracellular MMP-12 cleaves off the IFN-α receptor 2 binding site of systemic IFN-α, preventing an unchecked immune response. Consistent with an unexpected role for MMP-12 in clearing systemic IFN-α, treatment of coxsackievirus type B3-infected wild-type mice with a membrane-impermeable MMP-12 inhibitor elevates systemic IFN-α levels and reduces viral replication in pancreas while sparing intracellular MMP-12. These findings suggest that inhibiting extracellular MMP-12 could be a new avenue for the development of antiviral treatments.


Assuntos
Núcleo Celular/genética , Imunidade/genética , Interferon-alfa/genética , Metaloproteinase 12 da Matriz/genética , Animais , Sítios de Ligação , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Citosol/metabolismo , Citosol/virologia , Células HeLa , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Interferon-alfa/imunologia , Interferon-alfa/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Inibidor de NF-kappaB alfa , Pâncreas/imunologia , Pâncreas/virologia , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/patogenicidade , Replicação Viral/efeitos dos fármacos
5.
J Virol ; 81(24): 13694-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17913830

RESUMO

The mammalian APOBEC3 family of cytidine deaminases includes members that can act as potent inhibitors of retroviral infectivity and retrotransposon mobility. Here, we have examined whether the alpharetrovirus Rous sarcoma virus (RSV) is susceptible to inhibition by a range of human APOBEC3 proteins. We report that RSV is highly susceptible to inhibition by human APOBEC3G, APOBEC3F, and APOBEC3B and moderately susceptible to inhibition by human APOBEC3C and APOBEC3A. For all five proteins, inhibition of RSV infectivity was associated with selective virion incorporation and with C-to-T editing of the proviral DNA minus strand. In the case of APOBEC3G, editing appeared to be critical for effective inhibition. These data represent the first report of inhibition of retroviral infectivity and induction of proviral DNA editing by human APOBEC3A and reveal that alpharetroviruses, which do not normally encounter APOBEC3 proteins in their avian hosts, are susceptible to inhibition by all human APOBEC3 proteins tested. These data further suggest that the resistance of mammalian retroviruses to inhibition by the APOBEC3 proteins expressed in their normal host species is likely to have evolved subsequent to the appearance of this family of mammalian antiretroviral proteins some 35 million years ago; i.e., the base state of a naïve retrovirus is susceptibility to inhibition.


Assuntos
Citosina Desaminase/farmacologia , Vírus do Sarcoma de Rous/efeitos dos fármacos , Vírus do Sarcoma de Rous/patogenicidade , Replicação Viral/efeitos dos fármacos , Desaminases APOBEC , Desaminase APOBEC-3G , Animais , Linhagem Celular , Citidina Desaminase/genética , Citidina Desaminase/farmacologia , Citosina Desaminase/classificação , Citosina Desaminase/genética , Humanos , Antígenos de Histocompatibilidade Menor , Provírus/genética , Provírus/metabolismo , Codorniz , Edição de RNA , Vírus do Sarcoma de Rous/genética , Vírus do Sarcoma de Rous/fisiologia , Transfecção , Vírion/metabolismo , Montagem de Vírus
6.
Virology ; 364(1): 10-20, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17448514

RESUMO

Transformation of chicken fibroblasts in vitro by Rous Sarcoma Virus represents a model of cancer in which a single oncogene, viral src, uniformly and rapidly transforms primary cells in culture. We experimentally surveyed the transcriptional program affected by Rous Sarcoma Virus (RSV) in primary culture of chicken embryo fibroblasts. As a control, we used cells infected with non-transforming RSV mutant td106, in which the src gene was deleted. Using Affymetrix GeneChip Chicken Genome Arrays, we report 811 genes that were modulated more than 2.5 fold in the virus transformed cells. Among these, 409 genes were induced and 402 genes were repressed by viral src. From the repertoire of modulated genes, we selected 20 genes that were robustly changed. We then validated and quantified the transcriptional changes of most of the 20 selected genes by real-time PCR. The set of strongly induced genes contains vasoactive intestinal polypeptide, MAP kinase phosphatase 2 and follistatin, among others. The set of strongly repressed genes contains TGF beta 3, TGF beta-induced gene, and deiodinase. The function of several robustly modulated genes sheds new light on the molecular mechanism of oncogenic transformation.


Assuntos
Genes src , Vírus do Sarcoma de Rous/genética , Animais , Sequência de Bases , Transformação Celular Viral/genética , Células Cultivadas , Embrião de Galinha , Primers do DNA/genética , DNA Viral/genética , Perfilação da Expressão Gênica , Genes Virais , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Vírus do Sarcoma de Rous/patogenicidade , Vírus do Sarcoma de Rous/fisiologia , Transdução de Sinais , Transcrição Gênica
7.
J Mol Biol ; 365(2): 453-67, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17070546

RESUMO

The 5'-untranslated region (5'-UTR) of retroviral genomes contains elements required for genome packaging during virus assembly. For many retroviruses, the packaging elements reside in non-contiguous segments that span most or all of the 5'-UTR. The Rous sarcoma virus (RSV) is an exception, in that its genome can be packaged efficiently by a relatively short, 82 nt segment of the 5'-UTR called muPsi. The RSV 5'-UTR also contains three translational start codons (AUG-1, AUG-2 and AUG-3) that have been controvertibly implicated in translation initiation and genome packaging, one of which (AUG-3) resides within the muPsi sequence. We demonstrated recently that muPsi is capable of binding to the cognate RSV nucleocapsid protein (NC) with high affinity (dissociation constant K(d) approximately 2 nM), and that residues of AUG-3 are essential for tight binding. We now report the solution structure of the NC:muPsi complex, determined using NMR data obtained for samples containing ((13)C,(15)N)-labeled NC and (2)H-enriched, nucleotide-specifically protonated RNAs. Upon NC binding, muPsi adopts a stable secondary structure that consists of three stem loops (SL-A, SL-B and SL-C) and an 8 bp stem (O3). Binding is mediated by the two zinc knuckle domains of NC. The N-terminal knuckle interacts with a conserved U(217)GCG tetraloop (a member of the UNCG family; N=A,U,G or C), and the C-terminal zinc knuckle binds to residues that flank SL-A, including residues of AUG-3. Mutations of critical nucleotides in these sequences compromise or abolish viral infectivity. Our studies reveal novel structural features important for NC:RNA binding, and support the hypothesis that AUG-3 is conserved for genome packaging rather than translational control.


Assuntos
Genoma Viral , Proteínas do Nucleocapsídeo/química , RNA Viral/química , Vírus do Sarcoma de Rous/química , Montagem de Vírus , Animais , Pareamento de Bases , Sítios de Ligação , Linhagem Celular , Galinhas , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Nucleocapsídeo/genética , Ligação Proteica , Estrutura Secundária de Proteína , RNA Viral/genética , Vírus do Sarcoma de Rous/patogenicidade , Soluções/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA