Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Vaccine Immunol ; 24(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29046308

RESUMO

A vaccine against congenital human cytomegalovirus (CMV) infection is a major public health priority. Congenital CMV causes substantial long-term morbidity, particularly sensorineural hearing loss (SNHL), in newborns, and the public health impact of this infection on maternal and child health is underrecognized. Although progress toward development of a vaccine has been limited by an incomplete understanding of the correlates of protective immunity for the fetus, knowledge about some of the key components of the maternal immune response necessary for preventing transplacental transmission is accumulating. Moreover, although there have been concerns raised about observations indicating that maternal seropositivity does not fully prevent recurrent maternal CMV infections during pregnancy, it is becoming increasing clear that preconception immunity does confer some measure of protection against both CMV transmission and CMV disease (if transmission occurs) in the newborn infant. Although the immunity to CMV conferred by both infection and vaccination is imperfect, there are encouraging data emerging from clinical trials demonstrating the immunogenicity and potential efficacy of candidate CMV vaccines. In the face of the knowledge that between 20,000 and 30,000 infants are born with congenital CMV in the United States every year, there is an urgent and compelling need to accelerate the pace of vaccine trials. In this minireview, we summarize the status of CMV vaccines in clinical trials and provide a perspective on what would be required for a CMV immunization program to become incorporated into clinical practice.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Ensaios Clínicos como Assunto , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/isolamento & purificação , Feminino , Humanos , Gravidez , Resultado do Tratamento , Estados Unidos
2.
Curr Opin Virol ; 23: 23-29, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285152

RESUMO

Human cytomegalovirus causes disabling congenital disease in neonates and severe complications in immunocompromised individuals, making it a high priority for vaccine development. A prophylactic vaccine needs to outperform natural immunity and a therapeutic vaccine needs to elicit rapid protective antiviral responses. This review highlights the three major approaches undertaken by vaccine developers-virus-derived, protein subunit, and gene-based approaches. Each approach offers a unique promise for a successful vaccine by eliciting either a broad immune response or inducing neutralizing antibody responses order(s) of magnitudes greater than natural immunity. A vaccine-elicited immunity is anticipated to have the robustness and duration sufficient to overcome cytomegalovirus infection.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Infecções por Citomegalovirus/terapia , Vacinas contra Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/isolamento & purificação , Descoberta de Drogas/tendências , Humanos
3.
Viruses ; 6(4): 1483-501, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24681748

RESUMO

The natural history of human cytomegalovirus (HCMV) is inextricably associated with mucosal surfaces. The vast preponderance of primary infections occur following mucosal exposure to infectious virions, and the high seroprevalence of HCMV throughout the world is due to long-term excretion of HCMV in bodily fluids from multiple mucosal sites. Accumulating evidence presents a model where the earliest virus-host interactions following infection dictate the long-term pattern of infection, alter innate immune responses that skew adaptive responses to enable persistence within an immune host, and are essential for reinfection of a host with prior immunity. HCMV has evolved a complex repertoire of viral functions fine-tuned to manipulate the immune environment both locally at the sites of infection and systemically within an infected host. Collectively, viral immune modulation represents a significant impediment for an HCMV vaccine. As HCMV can disseminate beyond mucosal surfaces to reinfect immune hosts, it may not matter whether prior immunity results from prior infection or immunization. A better understanding of the earliest virus-hosts interactions at mucosal surfaces may identify elements of the viral proteome that are especially susceptible to vaccine-mediated disruption and prevent challenge virus from disseminating to distal sites, particularly the maternal-fetal interface.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/isolamento & purificação , Modelos Animais de Doenças , Descoberta de Drogas/métodos , Interações Hospedeiro-Patógeno , Animais , Infecções por Citomegalovirus/imunologia , Humanos , Primatas
4.
J Virol ; 87(20): 11107-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23926341

RESUMO

Human cytomegalovirus (HCMV), a betaherpesvirus, can cause severe disease in immunosuppressed patients and following congenital infection. A vaccine that induces both humoral and cellular immunity may be required to prevent congenital infection. Dense bodies (DBs) are complex, noninfectious particles produced by HCMV-infected cells and may represent a vaccine option. As knowledge of the antigenicity and immunogenicity of DB is incomplete, we explored characterization methods and defined DB production methods, followed by systematic evaluation of neutralization and cell-mediated immune responses to the DB material in BALB/c mice. DBs purified from Towne-infected cultures treated with the viral terminase inhibitor 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB) were characterized by nanoparticle tracking analysis (NTA), two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), immunoblotting, quantitative enzyme-linked immunosorbent assay, and other methods. The humoral and cellular immune responses to DBs were compared to the immunogenicity of glycoprotein B (gB) administered with the adjuvant AddaVax (gB/AddaVax). DBs induced neutralizing antibodies that prevented viral infection of cultured fibroblasts and epithelial cells and robust cell-mediated immune responses to multiple viral proteins, including pp65, gB, and UL48. In contrast, gB/AddaVax failed to induce neutralizing antibodies that prevented infection of epithelial cells, highlighting a critical difference in the humoral responses induced by these vaccine candidates. Our data advance the potential for the DB vaccine approach, demonstrate important immunogenicity properties, and strongly support the further evaluation of DBs as a CMV vaccine candidate.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Citomegalovirus/imunologia , Citomegalovirus/imunologia , Células Epiteliais/virologia , Fibroblastos/virologia , Imunidade Celular , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra Citomegalovirus/administração & dosagem , Vacinas contra Citomegalovirus/isolamento & purificação , Células Epiteliais/imunologia , Feminino , Fibroblastos/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA