Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Front Immunol ; 12: 789454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868077

RESUMO

Herpes simplex virus type-1 (HSV-1) ocular infection is one of the leading causes of infectious blindness in developed countries. The resultant herpetic keratitis (HK) is caused by an exacerbated reaction of the adaptive immune response that persists beyond virus clearance causing substantial damage to the cornea. Intramuscular immunization of mice with the HSV-1(VC2) live-attenuated vaccine strain has been shown to protect mice against lethal ocular challenge. Herein, we show that following ocular challenge, VC2 vaccinated animals control ocular immunopathogenesis in the absence of neutralizing antibodies on ocular surfaces. Ocular protection is associated with enhanced intracorneal infiltration of γδ T cells compared to mock-vaccinated animals. The observed γδ T cellular infiltration was inversely proportional to the infiltration of neutrophils, the latter associated with exacerbated tissue damage. Inhibition of T cell migration into ocular tissues by the S1P receptors agonist FTY720 produced significant ocular disease in vaccinated mice and marked increase in neutrophil infiltration. These results indicate that ocular challenge of mice immunized with the VC2 vaccine induce a unique ocular mucosal response that leads into the infiltration of γδ T cells resulting in the amelioration of infection-associated immunopathogenesis.


Assuntos
Quimiotaxia de Leucócito , Córnea/imunologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 1/imunologia , Linfócitos Intraepiteliais/imunologia , Ceratite Herpética/prevenção & controle , Vacinação , Animais , Córnea/patologia , Córnea/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/patogenicidade , Interações Hospedeiro-Patógeno , Injeções Intramusculares , Linfócitos Intraepiteliais/virologia , Ceratite Herpética/imunologia , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Linfangiogênese , Camundongos Endogâmicos BALB C , Neovascularização Patológica , Infiltração de Neutrófilos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
2.
mSphere ; 6(2)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33910988

RESUMO

Potent systemic immunity is important for recalled mucosal immune responses, but in the defense against mucosal viral infections, it usually remains low at mucosal sites. Based on our previous findings that enhanced immune responses can be achieved by immunization with an immunogen in combination with a molecular adjuvant, here we designed chemokine-antigen (Ag) fusion constructs (CCL19- or CCL28-herpes simplex virus 2 glycoprotein D [HSV-2 gD]). After intramuscular (i.m.) immunization with different DNA vaccines in a prime and boost strategy, BALB/c mice were challenged with a lethal dose of HSV-2 through the genital tract. Ag-specific immune responses and chemokine receptor-specific lymphocytes were analyzed to determine the effects of CCL19 and CCL28 in strengthening humoral and cellular immunity. Both CCL19 and CCL28 were efficient in inducing long-lasting HSV-2 gD-specific systemic immunity. Compared to CCL19, less CCL28 was required to elicit HSV-2 gD-specific serum IgA responses, Th1- and Th2-like responses of immunoglobulin (Ig) subclasses and cytokines, and CCR3+ T cell enrichment (>8.5-fold) in spleens. These findings together demonstrate that CCL28 tends to assist an immunogen to induce more potently protective immunity than CCL19. This work provides information for the application potential of a promising vaccination strategy against mucosal infections caused by HSV-2 and other sexually transmitted viruses.IMPORTANCE An effective HSV-2 vaccine should induce antigen (Ag)-specific immune responses against viral mucosal infection. This study reveals that chemokine CCL19 or CCL28 enhanced HSV-2 glycoprotein D ectodomain (gD-306aa)-induced immune responses against vaginal virus challenge. In addition to eliciting robust humoral immune responses, the chemokine-Ag fusion construct also induced Th1- and Th2-like immune responses characterized by the secretion of multiple Ig subclasses and cytokines that were able to be recalled after HSV-2 challenge, while CCL28 appeared to be more effective than CCL19 in promoting gD-elicited immune responses as well as the migration of T cells to secondary lymph tissues. Of importance, both CCL19 and CCL28 significantly facilitated gD to induce protective mucosal immune responses in the genital tract. The above-described findings together highlight the potential of CCL19 or CCL28 in combination with gD as a vaccination strategy to control HSV-2 infection.


Assuntos
Anticorpos Antivirais/sangue , Quimiocina CCL19/imunologia , Quimiocinas CC/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Quimiocina CCL19/genética , Quimiocinas CC/genética , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/classificação , Imunidade nas Mucosas , Memória Imunológica , Camundongos , Camundongos Endogâmicos BALB C , Vacinação/métodos , Vagina/imunologia , Vagina/virologia
3.
J Infect Dis ; 224(9): 1509-1519, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33718970

RESUMO

Previous herpes simplex virus type 2 (HSV-2) vaccines have not prevented genital herpes. Concerns have been raised about the choice of antigen, the type of antibody induced by the vaccine, and whether antibody is present in the genital tract where infection occurs. We reported results of a trial of an HSV-2 replication-defective vaccine, HSV529, that induced serum neutralizing antibody responses in 78% of HSV-1-/HSV-2- vaccine recipients. Here we show that HSV-1-/HSV-2- vaccine recipients developed antibodies to epitopes of several viral proteins; however, fewer antibody epitopes were detected in vaccine recipients compared with naturally infected persons. HSV529 induced antibodies that mediated HSV-2-specific natural killer (NK) cell activation. Depletion of glycoprotein D (gD)-binding antibody from sera reduced neutralizing titers by 62% and NK cell activation by 81%. HSV-2 gD antibody was detected in cervicovaginal fluid at about one-third the level of that in serum. A vaccine that induces potent serum antibodies transported to the genital tract might reduce HSV genital infection.


Assuntos
Anticorpos Antivirais/sangue , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Epitopos , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Humanos , Imunização
4.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33028712

RESUMO

Estradiol (E2) is a sex hormone which has been shown to be protective against sexually transmitted infections such as herpes simplex virus 2 (HSV-2). However, few studies have examined the underlying mechanisms by which this occurs. Here, we investigated the effect of E2 on the establishment of memory T cells post-intranasal immunization with HSV-2. CD4+ T cell responses first appeared in the upper respiratory tract (URT) within 3 days postimmunization before being detected in the female reproductive tract (FRT) at 7 days. E2 treatment resulted in greater and earlier Th17 responses, which preceded augmented Th1 responses at these sites. The CD4+ T cells persisted in the URT for up to 28 days, and E2 treatment resulted in higher frequencies of memory T cells. Intranasal immunization also led to the establishment of CD4+ tissue-resident memory T cells (TRM cells) in the FRT, and E2 treatment resulted in increased Th1 and Th17 TRM cells. When the migration of circulating T cells into the FRT was blocked by FTY720, immunized E2-treated mice remained completely protected against subsequent genital HSV-2 challenge compared to non-E2 controls, confirming that TRM cells alone are adequate for protection in these mice. Finally, the enhanced vaginal Th1 TRM cells present in E2-treated mice were found to be modulated through an interleukin 17 (IL-17)-mediated pathway, as E2-treated IL-17A-deficient mice had impaired establishment of Th1 TRM cells. This study describes a novel role for E2 in enhancing CD4+ memory T cells and provides insight on potential strategies for generating optimal immunity during vaccination.IMPORTANCE Herpes simplex virus 2 (HSV-2) is a highly prevalent sexually transmitted infection for which there is currently no vaccine available. Interestingly, the female sex hormone estradiol has been shown to be protective against HSV-2. However, the underlying mechanisms by which this occurs remains relatively unknown. Our study demonstrates that under the influence of estradiol treatment, intranasal immunization with an attenuated strain of HSV-2 leads to enhanced establishment of antiviral memory T cell responses in the upper respiratory tract and female reproductive tract. In these sites, estradiol treatment leads to greater Th17 memory cells, which precede enhanced Th1 memory responses. Consequently, the T cell responses mounted by tissue-resident memory cells in the female reproductive tract of estradiol-treated mice are sufficient to protect mice against vaginal HSV-2 challenge. This study offers important insights regarding the regulation of mucosal immunity by hormones and on potential strategies for generating optimal immunity during vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Estradiol/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Memória Imunológica , Interleucina-17/imunologia , Vacinação/métodos , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/imunologia , Estradiol/administração & dosagem , Feminino , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Imunidade nas Mucosas , Camundongos , Sistema Respiratório/imunologia , Células Th1/imunologia , Células Th17/imunologia , Vagina/imunologia
5.
Immunohorizons ; 4(10): 608-626, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037098

RESUMO

The protective efficacy of a live-attenuated HSV type 1 (HSV-1) vaccine, HSV-1 0∆ nuclear location signal (NLS), was evaluated in mice prophylactically in response to ocular HSV-1 challenge. Mice vaccinated with the HSV-1 0∆NLS were found to be more resistant to subsequent ocular virus challenge in terms of viral shedding, spread, the inflammatory response, and ocular pathology in a dose-dependent fashion. Specifically, a strong neutralizing Ab profile associated with low virus titers recovered from the cornea and trigeminal ganglia was observed in vaccinated mice in a dose-dependent fashion with doses ranging from 1 × 103 to 1 × 105 PFU HSV-1 0∆NLS. This correlation also existed in terms of viral latency in the trigeminal ganglia, corneal neovascularization, and leukocyte infiltration and expression of inflammatory cytokines and chemokines in infected tissue with the higher doses (1 × 104-1 × 105 PFU) of the HSV-1 0∆NLS-vaccinated mice, displaying reduced viral latency, ocular pathology, or inflammation in comparison with the lowest dose (1 × 103 PFU) or vehicle vaccine employed. Fifteen HSV-1-encoded proteins were uniquely recognized by antisera from high-dose (1 × 105 PFU)-vaccinated mice in comparison with low-dose (1 × 103 PFU)- or vehicle-vaccinated animals. Passive immunization using high-dose-vaccinated, but not low-dose-vaccinated, mouse sera showed significant efficacy against ocular pathology in HSV-1-challenged animals. In summary, we have identified the minimal protective dose of HSV-1 0∆NLS vaccine in mice to prevent HSV-mediated disease and identified candidate proteins that may be useful in the development of a noninfectious prophylactic vaccine against the insidious HSV-1 pathogen.


Assuntos
Córnea/patologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Ceratite Herpética/imunologia , Ceratite Herpética/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Córnea/imunologia , Córnea/virologia , Feminino , Herpesvirus Humano 1/patogenicidade , Imunidade Humoral , Imunização Passiva , Ceratite Herpética/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia , Eliminação de Partículas Virais
6.
PLoS Pathog ; 16(8): e1008703, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776994

RESUMO

Herpes simplex virus type 1 (HSV1) is a complicated structural agent with a sophisticated transcription process and a high infection rate. A vaccine against HSV1 is urgently needed. As multiple viral-encoded proteins, including structural and nonstructural proteins, contribute to immune response stimulation, an attenuated or deficient HSV1 vaccine may be relatively reliable. Advances in genomic modification technologies provide reliable means of constructing various HSV vaccine candidates. Based on our previous work, an M6 mutant with mutations in the UL7, UL41, LAT, Us3, Us11 and Us12 genes was established. The mutant exhibited low proliferation in cells and an attenuated phenotype in an animal model. Furthermore, in mice and rhesus monkeys, the mutant can induce remarkable serum neutralizing antibody titers and T cell activation and protect against HSV1 challenge by impeding viral replication, dissemination and pathogenesis.


Assuntos
Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Animais , Feminino , Herpes Simples/prevenção & controle , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas Virais/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia
7.
Vaccine ; 38(1): 79-89, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31611098

RESUMO

Infection with Herpes Simplex Viruses (HSVs) represents a significant health burden worldwide with HSV-1 and HSV-2 causing genital disease and HSV-2 contributing to human immunodeficiency virus acquisition. Despite great need, there is currently no licensed vaccine against HSV. In this report, we evaluated the protective efficacy of a vaccine containing highly purified, inactivated HSV-2 particles (with and without additional recombinant glycoprotein D) formulated with a monophosphoryl lipid A/Alhydrogel adjuvant in a guinea pig HSV genital model. The key results from 3 independent studies were: (1) vaccination consistently provided significant 3-3.5 Log10 reductions in vaginal HSV-2 titers on day 2 postchallenge; (2) following homologous or heterologous challenge with two U.S. isolates, all vaccine groups showed complete protection against lesion formation, significant 3 Log10 reductions in day 2 virus shedding, enhanced virus clearance, significant reductions in HSV-2 DNA within ganglia, and no detectable shedding (<2 PFU) or latent viral DNA in some immunized animals; (3) following challenge with a third heterologous strain, vaccination provided complete protection against primary and recurrent lesions, significant reductions in primary virus shedding, a 50% reduction in recurrent shedding days, and undetectable latent virus in the ganglia and spinal cords of most animals; and (4) adding glycoprotein D provided no enhanced protection relative to that elicited by the inactivated HSV-2 particles alone. Together, these data provide strong support for further development of this exceedingly protective and highly feasible vaccine candidate for human trials.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 2/efeitos dos fármacos , Vírion , Administração Intravaginal , Animais , Chlorocebus aethiops , Feminino , Cobaias , Herpes Genital/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Células Vero , Vírion/imunologia , Eliminação de Partículas Virais/efeitos dos fármacos , Eliminação de Partículas Virais/imunologia
8.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597775

RESUMO

Demyelinating central nervous system (CNS) disorders like multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) have been difficult to study and treat due to the lack of understanding of their etiology. Numerous cases point to the link between herpes simplex virus (HSV) infection and multifocal CNS demyelination in humans; however, convincing evidence from animal models has been missing. In this work, we found that HSV-1 infection of the cotton rat Sigmodon hispidus via a common route (lip abrasion) can cause multifocal CNS demyelination and inflammation. Remyelination occurred shortly after demyelination in HSV-1-infected cotton rats but could be incomplete, resulting in "scars," further supporting an association between HSV-1 infection and multifocal demyelinating disorders. Virus was detected sequentially in the lip, trigeminal ganglia, and brain of infected animals. Brain pathology developed primarily on the ipsilateral side of the brain stem, in the cerebellum, and contralateral side of the forebrain/midbrain, suggesting that the changes may ascend along the trigeminal lemniscus pathway. Neurologic defects occasionally detected in infected animals (e.g., defective whisker touch and blink responses and compromised balance) could be representative of the brain stem/cerebellum dysfunction. Immunization of cotton rats with a split HSV-1 vaccine protected animals against viral replication and brain pathology, suggesting that vaccination against HSV-1 may protect against demyelinating disorders.IMPORTANCE Our work demonstrates for the first time a direct association between infection with herpes simplex virus 1, a ubiquitous human pathogen generally associated with facial cold sores, and multifocal brain demyelination in an otherwise normal host, the cotton rat Sigmodon hispidus For a long time, demyelinating diseases were considered to be autoimmune in nature and were studied by indirect methods, such as immunizing animals with myelin components or feeding them toxic substances that induce demyelination. Treatment against demyelinating diseases has been elusive, partially because of their unknown etiology. This work provides the first experimental evidence for the role of HSV-1 as the etiologic agent of multifocal brain demyelination in a normal host and suggests that vaccination against HSV-1 can help to combat demyelinating disorders.


Assuntos
Doenças Desmielinizantes/prevenção & controle , Encefalite/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Animais , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Tronco Encefálico/virologia , Cerebelo/efeitos dos fármacos , Cerebelo/imunologia , Cerebelo/patologia , Cerebelo/virologia , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/patologia , Encefalite/virologia , Feminino , Herpes Simples/imunologia , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Humanos , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/imunologia , Prosencéfalo/patologia , Prosencéfalo/virologia , Sigmodontinae , Gânglio Trigeminal/efeitos dos fármacos , Gânglio Trigeminal/imunologia , Gânglio Trigeminal/patologia , Gânglio Trigeminal/virologia , Vacinação , Carga Viral/efeitos dos fármacos
9.
Vaccine ; 37(43): 6470-6477, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31515143

RESUMO

Genital herpes is a sexually transmitted disease representing a major global health concern. Currently, there is no approved vaccine and existing antiviral therapies exhibit limited efficacy. Herein, we describe an intranasal (IN) vaccine comprised of HSV-2 surface glycoproteins gD2 and gB2 formulated in a nanoemulsion adjuvant (NE01-gD2/gB2). Using the HSV-2 genital herpes guinea pig model, we demonstrate that IN NE01-gD2/gB2 induces higher levels of neutralizing antibody compared to a monovalent IN NE01-gD2 vaccine, but less than an intramuscular (IM) Alum/MPL-gD2 vaccine. Following intravaginal (IVag) challenge with HSV-2, the group immunized with IN NE01-gD2/gB2 exhibited significantly reduced acute and recurrent disease scores compared to placebo recipients. Significantly, latent virus was only detected in the dorsal root ganglia of 1 of 12 IN NE01-gD2/gB2-vaccinated animals compared to 11 of 12 placebo recipient. In the therapeutic model, IN NE01-gD2/gB2 immunized guinea pigs exhibited a significant reduction in the recurrent lesions scores (64%, p < 0.01), number of animal days with disease (64%, p < 0.01), number of animals with viral shedding (50%, p < 0.04) and reduction in virus positive vaginal swabs (56%, p < 0.04), These data suggests that the treatment may be effective in treating chronic disease and minimizing virus transmission. These results warrant advancing the development of IN NE01-gD2/gB2 as both a prophylactic and therapeutic vaccine against HSV-2.


Assuntos
Anticorpos Antivirais/sangue , Herpes Genital/prevenção & controle , Herpes Genital/terapia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Emulsões/administração & dosagem , Emulsões/química , Feminino , Cobaias , Herpes Genital/imunologia , Herpesvirus Humano 2 , Nanopartículas/administração & dosagem , Nanopartículas/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/uso terapêutico , Eliminação de Partículas Virais
10.
PLoS One ; 14(3): e0213401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917165

RESUMO

BACKGROUND: Although herpes simplex viruses (HSV) are a major target for vaccine development no vaccine is currently licensed. METHODS: A live attenuated HSV virus vaccine, VC2 was compared to a subunit HSV vaccine, glycoprotein D (gD2) administered with the adjuvant, MPL/Alum using the guinea pig model of genital herpes. Three doses of intramuscular (IM) vaccine were provided followed by intravaginal challenge with HSV-2 at either 3 weeks or six months after the last vaccination. RESULTS: Both VC2 and gD2 vaccines reduced acute genital disease. VC2 was somewhat more effective in reducing acute vaginal replication, the amount of virus in neural tissue, subsequent recurrent disease and recurrent virus shedding following challenge at 3 weeks post vaccination. Both vaccines continued to provide protection at 6 months after vaccination but the differences between the vaccines became more pronounced in favor of the live attenuated vaccine, VC2. Significant differences in acute disease, acute vaginal virus replication, recurrent disease and recurrent virus shedding (P<0.05 for each) was observed comparing the vaccines. Re-examination of protection for this study using criteria similar to those used in recent clinical trials (inclusion of recurrent disease) showed that efficacy may not be as high in this model as previously thought prompting a need to assess the best predictive outcomes for protection in humans. CONCLUSION: While both the live attenuated vaccine, VC2, and the gD2 subunit vaccine provided protection, the duration of protection appeared to be greater for VC2. Using the same evaluation criteria as used in human trials provided unique insights into the utility of the guinea pig model.


Assuntos
Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/farmacologia , Herpesvirus Humano 2/imunologia , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Feminino , Cobaias , Herpes Genital/imunologia , Herpes Genital/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Esquemas de Imunização , Fatores de Tempo , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/farmacologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/farmacologia , Vagina/imunologia , Vagina/virologia , Proteínas do Envelope Viral/imunologia
11.
Vaccine ; 37(50): 7396-7407, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29625767

RESUMO

Development of a vaccine against herpes simplex virus type 2 (HSV-2), a life-long sexually-transmitted infection (STI), would be a major step forward in improving global sexual and reproductive health. In this review, we identified published literature of dynamic mathematical models assessing the impact of either prophylactic or therapeutic HSV-2 vaccination at the population level. We compared each study's model structure and assumptions as well as predicted vaccination impact. We examined possible causes of heterogeneity across model predictions, key gaps, and the implications of these findings for future modelling efforts. Only eight modelling studies have assessed the potential public health impact of HSV-2 vaccination, with the majority focusing on impact of prophylactic vaccines. The studies showed that even an imperfect prophylactic HSV-2 vaccine could have an important public health impact on HSV-2 incidence, and could also impact HIV indirectly in high HIV prevalence settings. Therapeutic vaccines also may provide public health benefits, though they have been explored less extensively. However, there was substantial variation in predicted population-level impact for both types of vaccine, reflecting differences in assumptions between model scenarios. Importantly, many models did not account for heterogeneity in infection rates such as by age, sex and sexual activity. Future modelling work to inform decisions on HSV vaccine development and implementation should consider cost-effectiveness, account for additional HSV-2 sequelae such as neonatal transmission, and model greater heterogeneity in infection rates between individuals, more realistic vaccine deployment, and more thorough sensitivity and uncertainty analyses.


Assuntos
Infecções por HIV/prevenção & controle , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 2/efeitos dos fármacos , Modelos Estatísticos , Vacinação/métodos , Fatores Etários , Coinfecção , Feminino , HIV/imunologia , HIV/patogenicidade , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Herpes Genital/epidemiologia , Herpes Genital/imunologia , Herpes Genital/virologia , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/patogenicidade , Humanos , Incidência , Masculino , Profilaxia Pós-Exposição/métodos , Profilaxia Pré-Exposição/métodos , Saúde Pública/estatística & dados numéricos , Fatores Sexuais , Comportamento Sexual/fisiologia , Comportamento Sexual/estatística & dados numéricos
12.
J Virol ; 92(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29899087

RESUMO

Herpes simplex virus 1 (HSV-1) is a prevalent human pathogen that infects the cornea, causing potentially blinding herpetic disease. A clinical herpes vaccine is still lacking. In the present study, a novel prime/pull vaccine was tested in a human leukocyte antigen (HLA) transgenic rabbit model of ocular herpes (HLA Tg rabbits). Three peptide epitopes were selected, from the HSV-1 membrane glycoprotein C (UL44400-408), the DNA replication binding helicase (UL9196-204), and the tegument protein (UL25572-580), all preferentially recognized by CD8+ T cells from "naturally protected" HSV-1-seropositive healthy asymptomatic (ASYMP) individuals (who never had recurrent corneal herpetic disease). HLA Tg rabbits were immunized with a mixture of these three ASYMP CD8+ T cell peptide epitopes (UL44400-408, UL9196-204, and UL25572-580), which were delivered subcutaneously with CpG2007 adjuvant (prime). Fifteen days later, half of the rabbits received a topical ocular treatment with a recombinant neurotropic adeno-associated virus type 8 (AAV8) vector expressing the T cell-attracting CXCL10 chemokine (pull). The frequency and function of HSV-specific CD8+ T cells induced by the prime/pull vaccine were assessed in the peripheral blood, cornea, and trigeminal ganglion (TG). Compared to the cells generated in response to peptide immunization alone, the peptide/CXCL10 prime/pull vaccine generated frequent polyfunctional gamma interferon-positive (IFN-γ+) CD107+ CD8+ T cells that infiltrated both the cornea and TG. CD8+ T cell mobilization into the cornea and TG of prime/pull-vaccinated rabbits was associated with a significant reduction in corneal herpesvirus infection and disease following an ocular HSV-1 (strain McKrae) challenge. These findings draw attention to the novel prime/pull vaccine strategy for mobilizing antiviral CD8+ T cells into tissues to protect against herpesvirus infection and disease.IMPORTANCE There is an urgent need for a vaccine against widespread herpes simplex virus infections. The present study demonstrates that immunization of HLA transgenic rabbits with a peptide/CXCL10 prime/pull vaccine triggered mobilization of HSV-specific CD8+ T cells locally into the cornea and TG, the sites of acute and latent herpesvirus infections, respectively. Mobilization of antiviral CD8+ T cells into the cornea and TG of rabbits that received the prime/pull vaccine was associated with protection against ocular herpesvirus infection and disease following an ocular HSV-1 challenge. These results highlight the importance of the prime/pull vaccine strategy to bolster the number and function of protective CD8+ T cells within infected tissues.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Córnea/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Ceratite Herpética/prevenção & controle , Subpopulações de Linfócitos T/imunologia , Gânglio Trigeminal/imunologia , Animais , Animais Geneticamente Modificados , Quimiocina CXCL10/administração & dosagem , Modelos Animais de Doenças , Epitopos/imunologia , Antígenos HLA/genética , Antígenos HLA/metabolismo , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Interferon gama/análise , Ceratite Herpética/patologia , Ceratite Herpética/virologia , Proteína 1 de Membrana Associada ao Lisossomo/análise , Coelhos , Simplexvirus/imunologia , Simplexvirus/isolamento & purificação , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Carga Viral
13.
Acta Virol ; 62(2): 164-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29895157

RESUMO

HSV-1 is a mucosal and nerve pathogen, whose morbidity shows an increasing tendency. Although several antiviral drugs exist, there is no cure for viral latency for virtually all carriers. There is an urgent need for an HSV-1 vaccine to control infection and limit its spread and recurrence. The UL18 gene, encoding a vital component of capsids, is one of the essential genes of HSV-1. Deletion of UL18 from HSV-1 may be exploited as a new approach to develop an attenuated vaccine. The purpose of this study was to construct a DNA vaccine with a full-length UL18 gene deletion of the HSV-1 genome that can induce an effective immune response. A UL18-knockdown plasmid (BAC-HSV-1ΔUL18) was constructed using the bacterial markerless gene knockout system, consisting of the functional pREDI plasmid and BAC-HSV-1 plasmid. Mice were immunized weekly for 3 weeks, and at 1 week post immunization, blood and splenocyte samples of vaccinated and control groups of mice were prepared for immunogenicity assessment. The level of immune response was evaluated using a DTH assay, cytokine determination, and splenocyte proliferation assay. Combination of the pREDI plasmid and BAC-HSV-1 plasmid provides an effective bacterial markerless gene knockout system. Using two-step homologous recombination with the UL18 homologous recombination fragment constructed by multistep PCR amplification, BAC-HSV-1ΔUL18 plasmid vaccine was successfully constructed and was found to significantly enhance cellular immune responses.


Assuntos
Proteínas do Capsídeo/genética , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Animais , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/administração & dosagem , Proteínas do Capsídeo/imunologia , Deleção de Genes , Herpes Simples/prevenção & controle , Herpes Simples/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/genética , Herpesvirus Humano 1/genética , Humanos , Imunização , Masculino , Camundongos , Deleção de Sequência , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
14.
Curr Opin Ophthalmol ; 29(4): 340-346, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29846207

RESUMO

PURPOSE OF REVIEW: Ophthalmic herpes simplex virus (HSV) of the anterior segment is responsible for a range of corneal complications such as scarring, thinning, neovascularization, and severe loss of vision. This review provides current guidelines for treating anterior segment disease related to HSV. RECENT FINDINGS: We first review findings from the Herpetic Eye Disease Study (HEDS) clinical trials, and then review new topical and antiviral therapies developed since the HEDS studies. The development of vaccines to prevent recurrent episodes of herpetic infection is briefly reviewed. New corneal surgical procedures, developed since HEDS, may put patients at risk for ocular HSV disease: cross-linking and excimer refractive surgery. SUMMARY: HEDS established the standard of HSV ocular therapy and is still valid today. However, newer antivirals may provide easier compliance with improved bioavailability, efficacy, dosage, and tolerability. Further research is needed to prevent latency of HSV, decrease recurrences, and more effectively treat necrotizing keratitis associated with HSV.


Assuntos
Antivirais/uso terapêutico , Infecções Oculares Virais/tratamento farmacológico , Ceratite Herpética/tratamento farmacológico , Infecções Oculares Virais/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Ceratite Herpética/prevenção & controle , Recidiva , Simplexvirus/patogenicidade
15.
Expert Rev Vaccines ; 17(3): 239-248, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29313728

RESUMO

INTRODUCTION: Despite overwhelming experimental work, there are no licensed vaccines against the most frequent Alphaherpesviruses, namely herpes simplex virus 1 and 2 (HSV1 and 2) nor against the Epstein-Barr virus (EBV), a member of the subfamily Gammaherpesvirus. AREAS COVERED: Since the DNAs of both HSVs reside in the regional sensory ganglia in a latent state (i.e. as circularized episomal molecules), a corresponding vaccine might be useful for immunotherapy rather than for prevention of primary infection. Here we describe the design of a purified subunit vaccine as well as the preparation and efficacy of a recombinant fusion protein consisting of the gD ectodomain from our domestic attenuated HSV1 strain HSZP. The EBV vaccines considered so far, were destined for prevention of infectious mononucleosis (IM) or to prevent formation of EBV related tumors. To design the EBV peptide vaccine, at least 15 carefully selected immunogenic epitopes coming from 12 virus coded proteins were bound to synthetic micro-particle carriers along with a non-specific pathogen recognizing receptor (PRR) stimulating both the T as well as B lymphocytes. EXPERT COMMENTARY: The efficacy of a novel EBV peptide in the rabbit model was based on criteria such as antibody formation (EA-D detected by ELISA, early and capsid proteins tested by immunoblot), presence of LMP1 antigen and of viral DNA in peripheral white blood cells. Out of 19 peptide combinations used for vaccination, at least 6 showed a satisfactory protective effect.


Assuntos
Infecções por Vírus Epstein-Barr/prevenção & controle , Herpes Simples/prevenção & controle , Vacinas contra Herpesvirus/administração & dosagem , Animais , Infecções por Vírus Epstein-Barr/imunologia , Herpes Simples/imunologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 4/imunologia , Vacinas contra Herpesvirus/imunologia , Humanos , Coelhos
16.
J Virol ; 91(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122977

RESUMO

Viral fitness dictates virulence and capacity to evade host immune defenses. Understanding the biological underpinnings of such features is essential for rational vaccine development. We have previously shown that the live-attenuated herpes simplex virus 1 (HSV-1) mutant lacking the nuclear localization signal (NLS) on the ICP0 gene (0ΔNLS) is sensitive to inhibition by interferon beta (IFN-ß) in vitro and functions as a highly efficacious experimental vaccine. Here, we characterize the host immune response and in vivo pathogenesis of HSV-1 0ΔNLS relative to its fully virulent parental strain in C57BL/6 mice. Additionally, we explore the role of type 1 interferon (IFN-α/ß) signaling on virulence and immunogenicity of HSV-1 0ΔNLS and uncover a probable sex bias in the induction of IFN-α/ß in the cornea during HSV-1 infection. Our data show that HSV-1 0ΔNLS lacks neurovirulence even in highly immunocompromised mice lacking the IFN-α/ß receptor. These studies support the translational viability of the HSV-1 0ΔNLS vaccine strain by demonstrating that, while it is comparable to a virulent parental strain in terms of immunogenicity, HSV-1 0ΔNLS does not induce significant tissue pathology.IMPORTANCE HSV-1 is a common human pathogen associated with a variety of clinical presentations ranging in severity from periodic "cold sores" to lethal encephalitis. Despite the consistent failures of HSV subunit vaccines in clinical trials spanning the past 28 years, opposition to live-attenuated HSV vaccines predicated on unfounded safety concerns currently limits their widespread acceptance. Here, we demonstrate that a live-attenuated HSV-1 vaccine has great translational potential.


Assuntos
Córnea/metabolismo , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/imunologia , Interferon Tipo I/fisiologia , Imunidade Adaptativa , Animais , Córnea/imunologia , Córnea/virologia , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação , Vacinas Atenuadas/imunologia
17.
Vaccine ; 35(4): 536-543, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28017425

RESUMO

We have shown that the live-attenuated HSV-1 VC2 vaccine strain with mutations in glycoprotein K (gK) and the membrane protein UL20 is unable to establish latency in vaccinated animals and produces a robust immune response capable of completely protecting mice against lethal vaginal HSV-1 or HSV-2 infections. To better understand the immune response generated by vaccination with VC2, we tested its ability to elicit immune responses in rhesus macaques. Vaccinated animals showed no signs of disease and developed increasing HSV-1 and HSV-2 reactive IgG1 after two booster vaccinations, while IgG subtypes IgG2 and IgG3 remained at low to undetectable levels. All vaccinated animals produced high levels of cross protective neutralizing antibodies. Flow cytometry analysis of cells isolated from draining lymph nodes showed that VC2 vaccination stimulated significant increases in plasmablast (CD27highCD38high) and mature memory (CD21-IgM-) B cells. T cell analysis on cells isolated from draining lymph node biopsies demonstrated a statistically significant increase in proliferating (Ki67+) follicular T helper cells and regulatory CXCR5+ CD8+ cytotoxic T cells. Analysis of plasma isolated two weeks post vaccination showed significant increases in circulating CXCL13 indicating increased germinal center activity. Cells isolated from vaginal biopsy samples collected over the course of the study exhibited vaccination-dependent increases in proliferating (Ki67+) CD4+ and CD8+ T cell populations. These results suggest that intramuscular vaccination with the live-attenuated HSV-1 VC2 vaccine strain can stimulate robust IgG1 antibody responses that persist for >250days post vaccination. In addition, vaccination lead to the maturation of B cells into plasmablast and mature memory B cells, the expansion of follicular T helper cells, and affects in the mucosal immune responses. These data suggest that the HSV VC2 vaccine induces potent immune responses that could help define correlates of protection towards developing an efficacious HSV-1/HSV-2 vaccine in humans.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Centro Germinativo/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Linfócitos Intraepiteliais/imunologia , Animais , Diferenciação Celular , Proteção Cruzada , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Imunoglobulina G/sangue , Memória Imunológica , Injeções Intramusculares , Subpopulações de Linfócitos/imunologia , Macaca mulatta , Camundongos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
18.
Hum Vaccin Immunother ; 12(12): 3029-3035, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27635861

RESUMO

Recurrent herpes simplex labialis caused predominantly with herpes simplexvirus 1(HSV-1) is a major problem, for which various treatments have minimal impact. Given the important role of the immune system in controlling virus infection, an activation of virus-specific immune responses, in particular,using dendritic cell (DCs) vaccines, seems to be a promising approach for the treatment of patients with frequent recurrences of herpes labialis. The current paper presents the results of a pilot study of the safety and efficacy of DC vaccines in 14 patients with recurrent HSV-1 infections. DCs were generated in presence of GM-CSF and IFN-alpha and were loaded with HSV-1 recombinant viral glycoprotein D (HSV1gD). DCs cells were injected subcutaneously as 2 courses of vaccination during 9 months. Immunotherapy with DCs did not induce any serious side effects and resulted in more than 2-fold reduction in the recurrence rate and significant enhancement of the inter-recurrent time during the 9 months of treatment and subsequent 6-month follow-up period. An obvious clinical improvement was accompanied with an induction of an antigen-specific response to HCV1gD and a normalization of reduced mitogenic responsiveness of mono-nuclear cells. According to long-term survey data (on average 48 months after the beginning of therapy), 87% of respondents reported the decreased incidence of recurrent infection. At this time, most patients (85.7%) responded to HCV1gD stimulation. The data obtained suggests that dendritic cell vaccines may be a promising new approach for the treatment of recurrent labial herpes.


Assuntos
Células Dendríticas/imunologia , Herpes Labial/terapia , Vacinas contra o Vírus do Herpes Simples/imunologia , Adolescente , Adulto , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prevenção Secundária , Resultado do Tratamento , Adulto Jovem
19.
Vaccine ; 34(44): 5314-5320, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27642130

RESUMO

PURPOSE: GEN-003 is a candidate therapeutic HSV-2 vaccine containing a fragment of infected cell protein 4 (ICP4.2), a deletion mutant of glycoprotein D2 (gD2ΔTMR), and Matrix-M2 adjuvant. In a dose-ranging phase 1/2a clinical trial, immunization with GEN-003 reduced viral shedding and the percentage of reported herpetic lesion days. Here we examine the immune responses in the same trial, to characterize vaccine-related changes in antibody and cell-mediated immunity. METHODS: Participants with genital HSV-2 infection were randomized to 1 of 3 doses of GEN-003, antigens without adjuvant, or placebo. Subjects received 3 intramuscular doses, three weeks apart, and were monitored for viral shedding, lesions and immunogenicity. Antibody titers were measured by ELISA and neutralization assay in serum samples collected at baseline and 3weeks post each dose. T cell responses were assessed pre-immunization and 1week post each dose by IFN-γ ELISpot and intracellular cytokine staining. Blood was also collected at 6 and 12months to monitor durability of immune responses. RESULTS: Antibody and T cell responses increased with vaccination and were potentiated by adjuvant. Among the doses tested, the rank order of reduction in viral shedding follows the ranking of fold change from baseline in T cell responses. Some immune responses persisted up to 12months. CONCLUSION: All measures of immunity are increased by vaccination with GEN-003; however, a correlate of protection is yet to be defined.


Assuntos
Herpes Genital/imunologia , Herpes Genital/terapia , Vacinas contra o Vírus do Herpes Simples/imunologia , Vacinas contra o Vírus do Herpes Simples/uso terapêutico , Herpesvirus Humano 2/imunologia , Adjuvantes Imunológicos , Adolescente , Adulto , Anticorpos Antivirais/sangue , Relação Dose-Resposta Imunológica , ELISPOT , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Imunidade Celular , Imunoterapia , Interferon gama/biossíntese , Masculino , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Linfócitos T/imunologia , Proteínas da Matriz Viral/administração & dosagem , Proteínas da Matriz Viral/imunologia , Eliminação de Partículas Virais , Adulto Jovem
20.
Hum Vaccin Immunother ; 12(12): 3079-3088, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27580249

RESUMO

This paper describes a single site, open-label Phase I clinical trial evaluating the safety, tolerability and immunogenicity in healthy volunteers of a herpes simplex polynucleotide vaccine that has previously been shown to enhance immunogenicity and protect against lethal herpes simplex virus type 2 (HSV-2) challenge in mice. Five escalating doses of the vaccine, COR-1, were given by intradermal injection to HSV-1 and 2 seronegative healthy individuals. COR-1 was found to be safe and well-tolerated; the only vaccine-related adverse events were mild. While vaccine-induced antibody responses were not detectable, cell-mediated immune responses to HSV-specific peptide groups were identified in 19 of the 20 subjects who completed the study, and local inflammation at the immunisation site was observed. This study indicates COR-1 has potential to be used as a therapeutic vaccine for HSV-2 infection.


Assuntos
Vacinas contra o Vírus do Herpes Simples/efeitos adversos , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/imunologia , Vacinas de DNA/efeitos adversos , Vacinas de DNA/imunologia , Adulto , Anticorpos Antivirais/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Humanos , Injeções Intradérmicas , Leucócitos Mononucleares/imunologia , Masculino , Vacinas de DNA/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA