Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38772685

RESUMO

RATIONALE: Androgen deprivation therapy (ADT) is the primary treatment for recurrent and metastatic prostate cancer. In addition to direct antitumor effects, ADT has immunomodulatory effects such as promoting T-cell infiltration and enhancing antigen processing/presentation. Previous studies in our laboratory have demonstrated that ADT also leads to increased expression of the androgen receptor (AR) and increased recognition of prostate tumor cells by AR-specific CD8+T cells. We have also demonstrated that ADT combined with a DNA vaccine encoding the AR significantly slowed tumor growth and improved the survival of prostate tumor-bearing mice. The current study aimed to investigate the impact of the timing and sequencing of ADT with vaccination on the tumor immune microenvironment in murine prostate cancer models to further increase the antitumor efficacy of vaccines. METHODS: Male FVB mice implanted with Myc-CaP tumor cells, or male C57BL/6 mice implanted with TRAMP-C1 prostate tumor cells, were treated with a DNA vaccine encoding AR (pTVG-AR) and ADT. The sequence of administration was evaluated for its effect on tumor growth, and tumor-infiltrating immune populations were characterized. RESULTS: Vaccination prior to ADT (pTVG-AR → ADT) significantly enhanced antitumor responses and survival. This was associated with increased tumor infiltration by CD4+ and CD8+ T cells, including AR-specific CD8+T cells. Depletion of CD8+T cells prior to ADT significantly worsened overall survival. Following ADT treatment, however, Gr1+ myeloid-derived suppressor cells (MDSCs) increased, and this was associated with fewer infiltrating T cells and reduced tumor growth. Inhibiting Gr1+MDSCs recruitment, either by using a CXCR2 antagonist or by cycling androgen deprivation with testosterone replacement, improved antitumor responses and overall survival. CONCLUSION: Vaccination prior to ADT significantly improved antitumor responses, mediated in part by increased infiltration of CD8+T cells following ADT. Targeting MDSC recruitment following ADT further enhanced antitumor responses. These findings suggest logical directions for future clinical trials to improve the efficacy of prostate cancer vaccines.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Receptores Androgênicos , Masculino , Animais , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/farmacologia , Vacinas Anticâncer/imunologia , Vacinas de DNA/uso terapêutico , Vacinas de DNA/farmacologia , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Vacinação , Humanos , Microambiente Tumoral , Modelos Animais de Doenças , Linfócitos T CD8-Positivos/imunologia
2.
Adv Biol (Weinh) ; 8(2): e2300402, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37840398

RESUMO

The most crucial disadvantage of DNA-based vaccines is their low immunogenicity; therefore, finding an effectual adjuvant is essential for their development. Herein, immunostimulatory effects of IFNγ cytokine and a CD40 ligand (CD40L) costimulatory molecule are evaluated as combined with an antigen, and also linked to an antigen in mice. For this purpose, after preparation of the HIV-1 Nef, IFNγ, and CD40L DNA constructs, and also their recombinant protein in an Escherichia coli expression system, nine groups of female BALB/c mice are immunized with different regimens of DNA constructs. About 3 weeks and also 3 months after the last injection, humoral and cellular immune responses are assessed in mice sera and splenocytes. Additionally, mice splenocytes are exposed to single-cycle replicable (SCR) HIV-1 virions for evaluating their potency in the secretion of cytokines in vitro. The data indicate that the linkage of IFNγ and CD40L to Nef antigen can significantly induce the Th-1 pathway and activate cytotoxic T lymphocytes compared to other regimens. Moreover, groups receiving the IFNγ-Nef and CD40L-Nef fusion DNA constructs show higher secretion of IFNγ and TNF-α from virion-infected lymphocytes than other groups. Therefore, the IFNγ-Nef and CD40L-Nef fusion DNA constructs are suggested to be a potential option for development of an efficient HIV-1 vaccine.


Assuntos
HIV-1 , Vacinas de DNA , Feminino , Animais , Camundongos , Citocinas , Ligante de CD40 , HIV-1/genética , Vacinas de DNA/farmacologia , Vacinas de DNA/genética , DNA
3.
Vopr Virusol ; 68(4): 315-326, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-38156588

RESUMO

INTRODUCTION: Hepatitis C is a liver disease with high chronicity, the cause of cirrhosis and hepatocarcinoma. The main obstacle to controlling hepatitis C is the lack of vaccines. The aim of the work was to compare the immunogenic activity of nonstructural recombinant proteins NS3, NS4 and NS5B of hepatitis C virus (HCV) as components of a subunit candidate vaccine and to analyze the adjuvant properties of two available commercial drugs, polymuramil and pyrogenalum. MATERIALS AND METHODS: BALB/c, DBA/2J and C57BL/6 mice were immunized with nonstructural proteins without adjuvants or with polymuramyl (NOD1 and NOD2 agonist) and pyrogenalum (TLR-4 agonist). The activity of antibodies was determined in ELISA, the cellular response - by antigen-specific lymphocyte proliferation and by production of IFN-γ in vitro. RESULTS: Recombinant proteins showed different immunogenicity. NS4 induced antibodies more efficiently than NS3 and NS5B. Significant differences were found in the immune response of three inbred lines mice: the level of IFN-γ in BALB/c and DBA/2J mice induced by NS5B protein was 30 times higher than in C57Bl/6 mice. In contrast, the induction of antibodies in BALB/c mice was lower than in C57Bl/6 and DBA/2J. Polymuramil did not increase the humoral response to NS5B and enhanced the cellular response only in C57BL/6 mice. The combined use of polymuramil with pyrogenalum significantly increased both the humoral and cellular response of mice to all recombinant HCV proteins. CONCLUSION: Different immunogenic properties and different functions of recombinant non-structural HCV proteins indicate the feasibility of their combined inclusion in subunit vaccines. It was established for the first time that immunization with HCV proteins with a complex adjuvant (polymuramyl + pyrogenalum) has a synergistic effect, significantly exceeding the effect of each of them separately.


Assuntos
Hepatite C , Receptor 4 Toll-Like , Vacinas de DNA , Vacinas contra Hepatite Viral , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Hepacivirus , Imunidade Celular , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Proteínas Recombinantes , Receptor 4 Toll-Like/agonistas , Vacinas de DNA/farmacologia , Vacinas contra Hepatite Viral/farmacologia , Proteínas não Estruturais Virais
4.
J Transl Med ; 21(1): 702, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814317

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterised by limited responses to chemoimmunotherapy attributed to highly desmoplastic tumor microenvironment. Disrupting the tumor-stromal cell crosstalk is considered as an improved PDAC treatment strategy, whereas little progress has been made due to poor understanding of its underlying mechanism. Here, we examined the cellular role of melanoma associated antigen A isoforms (MAGEA) in regulating tumor-stromal crosstalk mediated chemoresistance. METHODS: We used clinical samples to explore the correlation between MAGEA expression and patient prognosis in multiple cancers. We utilized cancer cell lines, patient derived organoids and orthotopic PDAC model to examine the function of MAGEA in chemoresistance. We performed biochemical, proteome profiler array and transcriptional analysis to uncover a mechanism that governs tumor-stromal crosstalk. We developed a multi-MAGEA antigen targeted DNA vaccine and tested its effect on PDAC tumor growth. RESULTS: We establish MAGEA as a regulator of the tumor-stromal crosstalk in PDAC. We provide strong clinical evidence indicating that high MAGEA expression, including MAGEA2, MAGEA3 and MAGEA10, correlates with worse chemotherapeutic response and poor prognosis in multiple cancers, while their expression is up-regulated in chemoresistant PDAC patient derived organoids and cancer cell lines. Mechanistically, MAGEA2 prohibits gemcitabine-induced JNK-c-Jun-p53 mediated cancer cell apoptosis, while gemcitabine stimulated pancreatic stellate cells secretes GDF15 to further enhance the gemcitabine resistance of MAGEA2 expressing cells by activating GFRAL-RET mediated Akt and ERK1/2 dependent survival pathway. Strikingly, immunization with a DNA vaccine that targeting multiple MAGEA antigens, including MAGEA2, MAGEA3 and MAGEA10, elicits robust immune responses against the growth of gemcitabine resistant tumors. CONCLUSIONS: These findings suggest that targeting MAGEA-mediated paracrine regulation of chemoresistance by immunotherapy can be an improved pancreatic cancer treatment strategy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Vacinas de DNA , Humanos , Vacinas de DNA/metabolismo , Vacinas de DNA/farmacologia , Vacinas de DNA/uso terapêutico , Desoxicitidina/farmacologia , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Gencitabina , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunização , Células Estromais/patologia , Resistencia a Medicamentos Antineoplásicos , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Vopr Virusol ; 67(6): 516-526, 2023 02 07.
Artigo em Russo | MEDLINE | ID: mdl-37264841

RESUMO

INTRODUCTION: A vaccine against hepatitis C has not yet been developed. Recombinant proteins and plasmids encoding hepatitis C virus (HCV) proteins, the components of candidate vaccines, induce a weak immune response and require the use of adjuvants. The aim of the work was to study the adjuvant action of an aqueous solution of fullerene C60 during immunization of mice with HCV recombinant protein NS5B (rNS5B) that is an RNA-dependent RNA polymerase, or with NS5B-encoding pcNS5B plasmid. MATERIALS AND METHODS: An aqueous solution of dispersed fullerene (dnC60) was obtained by ultrafiltration. C57BL/6 mice were immunized with rNS5B subcutaneously, pcNS5B intramuscularly mixed with different doses of dnC60 three times, then the humoral and cellular response to HCV was evaluated. RESULTS: Mice immunization with rNS5B in a mixture with dnC60 at doses of 250 g/mouse significantly induced humoral response: a dose-dependent increase in IgG1 antibody titers was 720 times higher than in the absence of fullerene. There was no increase in the cellular response to rNS5B when administered with dnC60. The humoral response to DNA immunization was weak in mice of all groups receiving pcNS5B. The cellular response was suppressed when the plasmid was injected in a mixture with dnC60. CONCLUSIONS: Dispersed fullerene dnC60 is a promising adjuvant for increasing the immunostimulating activity of weakly immunogenic proteins including surface and other HCV proteins, important for a protective response. Further research is needed to enhance the ability of dnC60 to boost the cellular immune response to the components of the candidate vaccine.


Assuntos
Fulerenos , Hepatite C , Vacinas de DNA , Vacinas contra Hepatite Viral , Camundongos , Animais , Hepacivirus , Fulerenos/farmacologia , Fulerenos/metabolismo , Sequência de Bases , Aminoácidos/genética , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/genética , Imunidade Celular , Proteínas Recombinantes/genética , Camundongos Endogâmicos BALB C , Vacinas de DNA/genética , Vacinas de DNA/farmacologia , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/farmacologia
6.
Theriogenology ; 201: 68-75, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842263

RESUMO

RF-amide related peptides (RFRP) have been proposed as critical regulators of gonadotropin secretion in mammals. This study was designed to construct a DNA vaccine and investigate the effect of vaccine encoding RFRP-3 on reproduction physiology in ewe. A recombinant vaccine was constructed using two copies of the RFRP-3 gene and HBsAg-S that generate a fusion protein to induce an immunology response. Results showed this recombinant vaccine could produce a significant antibody titer in the treated animals (P < 0.05). The specific RFRP-3 antibody response induced by the vaccine was detected at week 2 with a peak at week 6 after the initial immunization. Furthermore, we found that ewes inoculated with pVAX-tPA-HBsAg-S-2RFRP-asd vaccine significantly raised the concentration of GnRH, LH and E2 in serum compared to the control group. LH and E2 concentration in the treated ewes (Group T) was significantly higher than that in control ewes (Group C) at weeks 10, 12 and 14 after the initial immunization, respectively (P < 0.05). Therefore, RFRP-3 can be used as a target for DNA immunization to promote reproductive hormone secretion in ewes and RFRP-3 gene immunization might be a candidate tool to regulate mammal reproduction.


Assuntos
Neuropeptídeos , Vacinas de DNA , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/farmacologia , Mamíferos , Neuropeptídeos/genética , Reprodução/fisiologia , Ovinos , Vacinas de DNA/farmacologia
7.
J Microbiol ; 60(10): 1032-1038, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35913595

RESUMO

Glycoprotein (G protein)-based DNA vaccines are effective in protecting aquaculture fish from rhabdoviruses but the degree of immune response they elicit depends on plasmid concentration and antigen cassette. Here, we developed a DNA vaccine using the viral hemorrhagic septicemia virus G (VG) gene and chemokine (C-C motif) ligand 19 (CCL19)a.2 regulated by the CMV promoter as the molecular adjuvant. After transfection of the prepared plasmid (pVG + CCL19) into epithelioma papulosum cyprini cells, mRNA expression was confirmed through quantitative real-time polymerase chain reaction. The vaccine was intramuscularly injected into zebrafish (Danio rerio), and 28 days after immunization, viral hemorrhagic septicemia virus (105 TCID50/10 µl/fish) was intraperitoneally injected. A survival rate of 68% was observed in the pVG + CCL19 group but this was not significantly different from the survival rate of fish treated with pVG alone, that is, without the adjuvant. However, the expression of interferon- and cytokine-related genes in the spleen and kidney tissues of zebrafish was significantly increased (p < 0.05) on days 1, 3, 7, and 14 after immunization. Thus, CCL19a.2 induced an initial immune response as a molecular adjuvant, which may provide initial protection against virus infection before vaccination-induced antibody formation. This study provides insights on the functions of CCL19a.2 adjuvant in DNA vaccines.


Assuntos
Doenças dos Peixes , Septicemia Hemorrágica Viral , Novirhabdovirus , Vacinas de DNA , Vacinas Virais , Adjuvantes Imunológicos , Animais , Citocinas , Doenças dos Peixes/prevenção & controle , Glicoproteínas/genética , Septicemia Hemorrágica Viral/prevenção & controle , Interferons , Ligantes , Novirhabdovirus/genética , RNA Mensageiro , Vacinas de DNA/genética , Vacinas de DNA/farmacologia , Vacinas Virais/genética , Peixe-Zebra/genética
8.
Front Immunol ; 13: 861710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529875

RESUMO

DNA vaccines elicit antibody, T helper cell responses and CD8+ T cell responses. Currently, little is known about the mechanism that DNA vaccines employ to induce adaptive immune responses. Prior studies have demonstrated that stimulator of interferon genes (STING) and conventional dendritic cells (cDCs) play critical roles in DNA vaccine induced antibody and T cell responses. STING activation by double stranded (dsDNA) sensing proteins initiate the production of type I interferon (IFN),but the DC-intrinsic effect of STING signaling is still unclear. Here, we investigated the role of STING within cDCs on DNA vaccine induction of antibody and T cell responses. STING knockout (STING-/- ) and conditional knockout mice that lack STING in cDCs (cDC STING cKO), were immunized intramuscularly with a DNA vaccine that expressed influenza A nucleoprotein (pNP). Both STING-/- and cDC STING cKO mice had significantly lower type I T helper (Th1) type antibody (anti-NP IgG2C) responses and lower frequencies of Th1 associated T cells (NP-specific IFN-γ+CD4+ T cells) post-immunization than wild type (WT) and cDC STING littermate control mice. In contrast, all mice had similar Th2-type NP-specific (IgG1) antibody titers. STING-/- mice developed significantly lower polyfunctional CD8+ T cells than WT, cDC STING cKO and cDC STING littermate control mice. These findings suggest that STING within cDCs mediates DNA vaccine induction of type I T helper responses including IFN-γ+CD4+ T cells, and Th1-type IgG2C antibody responses. The induction of CD8+ effector cell responses also require STING, but not within cDCs. These findings are the first to show that STING is required within cDCs to mediate DNA vaccine induced Th1 immune responses and provide new insight into the mechanism whereby DNA vaccines induce Th1 responses.


Assuntos
Vacinas de DNA , Animais , Formação de Anticorpos , Linfócitos T CD8-Positivos , Células Dendríticas , Imunoglobulina G/metabolismo , Camundongos , Linfócitos T Auxiliares-Indutores , Vacinas de DNA/farmacologia
9.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216301

RESUMO

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.


Assuntos
Vacinas contra COVID-19/química , Vacinas contra COVID-19/farmacologia , Imunidade Humoral/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Animais , Sítios de Ligação , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Dextranos/química , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermidina/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia , Células Vero
10.
Sci Adv ; 7(45): eabj0611, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34739313

RESUMO

This work reports a suction-based cutaneous delivery method for in vivo DNA transfection. Following intradermal Mantoux injection of plasmid DNA in a rat model, a moderate negative pressure is applied to the injection site, a technique similar to Chinese báguàn and Middle Eastern hijama cupping therapies. Strong GFP expression was demonstrated with pEGFP-N1 plasmids where fluorescence was observed as early as 1 hour after dosing. Modeling indicates a strong correlation between focal strain/stress and expression patterns. The absence of visible and/or histological tissue injury contrasts with current in vivo transfection systems such as electroporation. Specific utility was demonstrated with a synthetic SARS-CoV-2 DNA vaccine, which generated host humoral immune response in rats with notable antibody production. This method enables an easy-to-use, cost-effective, and highly scalable platform for both laboratorial transfection needs and clinical applications for nucleic acid­based therapeutics and vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , DNA , SARS-CoV-2 , Pele/imunologia , Transfecção , Vacinas de DNA , Administração Cutânea , Animais , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/farmacologia , DNA/genética , DNA/imunologia , DNA/farmacologia , Masculino , Ratos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Sucção , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia
11.
PLoS One ; 16(10): e0259114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34705865

RESUMO

INTRODUCTION: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies such as anti-Sm. Studies in patients with SLE and murine models of lupus reveal that the most critical anti-Sm autoantibodies are predominantly direct against D1(83-119), D2, and B´/B epitopes. OBJECTIVES: The present study aimed to analyze the induction of antigen-specific tolerance after prophylactic immunization with a DNA vaccine encoding the epitopes: D183-119, D2, B´/B, and B´/BCOOH in co-vaccination with IFN-γ or IL-10 in a murine model of lupus induced by pristane. MATERIAL AND METHODS: To obtain endotoxin-free DNA vaccines, direct cloning techniques using pcDNA were performed: D183-119, D2, B´/B, B´/BCOOH, IFN-γ, or IL-10. Lupus was induced by 0.5 mL of pristane via intraperitoneal in BALB/c female mice. Immunoprecipitation with K562 cells was metabolically labeled with 35S and ELISA to detect serum antibodies or mice IgG1, IgG2a isotypes. ELISA determined IL-10 and IFN-γ from splenocytes supernatants. Proteinuria was assessed monthly, and lupus nephritis was evaluated by immunofluorescence, and electron microscopy. RESULTS: The prophylactic co-vaccination with D2/IL-10 reduced the expression of kidney damage observed by electron microscopy, direct immunofluorescence, and H & E, along with reduced level of anti-nRNP/Sm antibodies (P = 0.048). CONCLUSION: The prophylactic co-vaccination of IL-10 with D2 in pristane-induced lupus ameliorates the renal damage maybe by acting as prophylactic DNA tolerizing therapy.


Assuntos
Interleucina-10 , Lúpus Eritematoso Sistêmico/prevenção & controle , Vacinas de DNA , Animais , Autoanticorpos/imunologia , Autoantígenos/imunologia , Feminino , Interleucina-10/administração & dosagem , Interleucina-10/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Terapias em Estudo , Vacinação , Vacinas de DNA/administração & dosagem , Vacinas de DNA/farmacologia
12.
J Mater Chem B ; 9(36): 7435-7446, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551058

RESUMO

Cancer vaccines based on DNA encoding oncogenes have shown great potential in preclinical studies. However, the efficacy of DNA vaccines is limited by their weak immunogenicity because of low cellular internalisation and insufficient activation of dendritic cells (DCs). Calcium phosphate (CP) nanoparticles (NPs) are biodegradable vehicles with low toxicity and high loading capacity of DNA but suffer from stability issues. Here we employed adenosine triphosphate (ATP) as a dual functional agent, i.e. stabiliser for CP and immunological adjuvant, and applied the ATP-modified CP (ACP) NPs to the DNA vaccine. ACP NP-enhanced cellular uptake and improved transfection efficiency of DNA vaccine, and further showed the ability to activate DCs that are critical for them to prime T cells in cancer immunotherapy. As a result, a higher level of antigen-specific antibody with stronger tumour growth inhibition was achieved in mice immunised with the ACP-DNA vaccine. Overall, this one-step synthesised ACP NPs are an efficient nano-delivery system and nano-adjuvant for cancer DNA vaccines.


Assuntos
Trifosfato de Adenosina/química , Adjuvantes Imunológicos/química , Fosfatos de Cálcio/química , Nanopartículas/química , Vacinas de DNA/química , Animais , Reações Antígeno-Anticorpo , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Transplante Homólogo , Vacinação , Vacinas de DNA/imunologia , Vacinas de DNA/farmacologia
13.
Front Immunol ; 12: 668492, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456902

RESUMO

All the time, echinococcosis is a global zoonotic disease which seriously endangers public health all over the world. In order to speed up the development process of anti-Echinococcus granulosus vaccine, at the same time, it can also save economic cost. In this study, immunoinformatics tools and molecular docking methods were used to predict and screen the antigen epitopes of Echinococcus granulosus, to design a multi-epitope vaccine containing B- and T-cell epitopes. The multi-epitope vaccine could activate B lymphocytes to produce specific antibodies theoretically, which could protect the human body against Echinococcus granulosus infection. It also could activate T lymphocytes and clear the infected parasites in the body. In this study, four CD8+ T-cell epitopes, three CD4+ T-cell epitopes and four B-cell epitopes of Protein EgTeg were identified by immunoinformatics methods. Meanwhile, three CD8+ T-cell epitopes, two CD4+ T-cell epitopes and four B-cell epitopes of Protein EgFABP1 were identified. We constructed the multi-epitope vaccine using linker proteins. The study based on the traditional methods of antigen epitope prediction, further optimized the prediction results combined with molecular docking technology and improved the precision and accuracy of the results. Finally, in vivo and in vitro experiments had verified that the vaccine designed in this study had good antigenicity and immunogenicity.


Assuntos
Antígenos de Helmintos/farmacologia , Desenho de Fármacos , Equinococose/prevenção & controle , Echinococcus granulosus/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Simulação de Acoplamento Molecular , Vacinas de DNA/farmacologia , Adolescente , Adulto , Animais , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos/imunologia , Linfócitos B/imunologia , Linfócitos B/parasitologia , Células Cultivadas , Desenho Assistido por Computador , Modelos Animais de Doenças , Equinococose/sangue , Equinococose/imunologia , Equinococose/parasitologia , Proteínas de Ligação a Ácido Graxo/imunologia , Proteínas de Ligação a Ácido Graxo/farmacologia , Humanos , Imunidade Humoral , Imunogenicidade da Vacina , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/parasitologia , Vacinas de DNA/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia , Adulto Jovem
14.
J Immunother Cancer ; 9(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341131

RESUMO

BACKGROUND: Usual vulvar intraepithelial neoplasia (uVIN) is a premalignancy caused by persistent infection with high-risk types of human papillomavirus (HPV), mainly type 16. Even though different treatment modalities are available (eg, surgical excision, laser evaporation or topical application of imiquimod), these treatments can be mutilating, patients often have recurrences and 2%-8% of patients develop vulvar carcinoma. Therefore, immunotherapeutic strategies targeting the pivotal oncogenic HPV proteins E6 and E7 are being explored to repress carcinogenesis. METHOD: In this phase I/II clinical trial, 14 patients with HPV16+ uVIN were treated with a genetically enhanced DNA vaccine targeting E6 and E7. Safety, clinical responses and immunogenicity were assessed. Patients received four intradermal HPV-16 E6/E7 DNA tattoo vaccinations, with a 2-week interval, alternating between both upper legs. Biopsies of the uVIN lesions were taken at screening and +3 months after last vaccination. Digital photography of the vulva was performed at every check-up until 12 months of follow-up for measurement of the lesions. HPV16-specific T-cell responses were measured in blood over time in ex vivo reactivity assays. RESULTS: Vaccinations were well tolerated, although one grade 3 suspected unexpected serious adverse reaction was observed. Clinical responses were observed in 6/14 (43%) patients, with 2 complete responses and 4 partial responses (PR). 5/14 patients showed HPV-specific T-cell responses in blood, measured in ex vivo reactivity assays. Notably, all five patients with HPV-specific T-cell responses had a clinical response. CONCLUSIONS: Our results indicate that HPV-16 E6/E7 DNA tattoo vaccination is a biologically active and safe treatment strategy in patients with uVIN, and suggest that T-cell reactivity against the HPV oncogenes is associated with clinical benefit. TRIAL REGISTRATION NUMBER: NTR4607.


Assuntos
Vacinas Anticâncer/uso terapêutico , Papillomavirus Humano 16/imunologia , Proteínas E7 de Papillomavirus/imunologia , Vacinas de DNA/uso terapêutico , Neoplasias Vulvares/imunologia , Neoplasias Vulvares/terapia , Adulto , Idoso , Vacinas Anticâncer/farmacologia , Feminino , Humanos , Pessoa de Meia-Idade , Vacinas de DNA/farmacologia
15.
Front Immunol ; 12: 669812, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220816

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a highly severe and virulent viral disease of zoonotic origin, caused by a tick-born CCHF virus (CCHFV). The virus is endemic in many countries and has a mortality rate between 10% and 40%. As there is no licensed vaccine or therapeutic options available to treat CCHF, the present study was designed to focus on application of modern computational approaches to propose a multi-epitope vaccine (MEV) expressing antigenic determinants prioritized from the CCHFV genome. Integrated computational analyses revealed the presence of 9 immunodominant epitopes from Nucleoprotein (N), RNA dependent RNA polymerase (RdRp), Glycoprotein N (Gn/G2), and Glycoprotein C (Gc/G1). Together these epitopes were observed to cover 99.74% of the world populations. The epitopes demonstrated excellent binding affinity for the B- and T-cell reference set of alleles, the high antigenic potential, non-allergenic nature, excellent solubility, zero percent toxicity and interferon-gamma induction potential. The epitopes were engineered into an MEV through suitable linkers and adjuvating with an appropriate adjuvant molecule. The recombinant vaccine sequence revealed all favorable physicochemical properties allowing the ease of experimental analysis in vivo and in vitro. The vaccine 3D structure was established ab initio. Furthermore, the vaccine displayed excellent binding affinity for critical innate immune receptors: TLR2 (-14.33 kcal/mol) and TLR3 (-6.95 kcal/mol). Vaccine binding with these receptors was dynamically analyzed in terms of complex stability and interaction energetics. Finally, we speculate the vaccine sequence reported here has excellent potential to evoke protective and specific immune responses subject to evaluation of downstream experimental analysis.


Assuntos
Antígenos Virais/farmacologia , Biologia Computacional , Desenho Assistido por Computador , Desenvolvimento de Medicamentos , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Epitopos Imunodominantes , Carrapatos/virologia , Vacinologia , Vacinas Virais/farmacologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/virologia , Imunogenicidade da Vacina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptor 2 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Vacinas de DNA/metabolismo , Vacinas de DNA/farmacologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Vacinas Virais/metabolismo
16.
Nanomedicine ; 37: 102443, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303839

RESUMO

Neoantigen-based personalized vaccination has emerged as a viable method for tumor immunotherapy. Here we set up a DNA-based neoantigen vaccine platform with comprehensive identification of individual somatic mutations using whole-exome sequencing (WES) and RNA-seq, bioinformatic prediction of neo-epitopes, dendritic cell (DC)-based efficacy prevalidation of vaccine candidates, optimization of the DNA vaccine and its nanocarrier and adjuvant, and preparation of a liposome-encapsulated multiepitope DNA vaccine. The DNA vaccine was efficiently uptaken by DCs and induced effective immune response against mouse melanoma cells, leading to significant inhibition of melanoma tumor growth and reduction of lung metastasis in a mouse model. Numerous intratumoral infiltrated CD8+ T-cells with specific in vitro killing ability towards melanoma cells were identified. Our study offers evidence that a multiepitope neoantigen DNA vaccine in a nanocarrier can be exploited for personalized tumor immunotherapy and as a reliable prevalidation approach for rapid enrichment of effective neoantigens.


Assuntos
Vacinas Anticâncer/farmacologia , Imunoterapia , Melanoma/terapia , Medicina de Precisão , Vacinas de DNA/farmacologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Epitopos/genética , Epitopos/imunologia , Humanos , Lipossomos/química , Lipossomos/farmacologia , Melanoma/imunologia , Melanoma/patologia , Camundongos , Mutação/genética , Nanopartículas/química , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Sequenciamento do Exoma
17.
Cancer Lett ; 509: 105-114, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33848518

RESUMO

We recently identified Galectin-1 (Gal-1), a ß-galactoside-binding lectin, as a novel immune regulator in neuroblastoma (NB). Here, we characterized the tolerogenic function of Gal-1 within the CD8+ T cell compartment and further evaluated its relevance as an antigen for effective DNA vaccination against NB in a mouse model. NB cells with Gal-1 knockdown (NXS-2L) exhibited significantly reduced tumor growth compared to NXS-2 NB cells. Administration of anti-CD8 antibodies prevented this antitumor effect, with primary tumor growth comparable to that from Gal-1 (G1)-sufficient NB cells. Peptide epitope screening with online databases and in silico docking experiments predicted the sequences "FDQADLTI" (#1), "GDFKIKCV" (#2), and "AHGDANTI" (#3) to have superior H2-KK binding affinities and "KFPNRLNM" (#4), "DGDFKIKCV" (#5), and "LGKDSNNL" (#6) to have superior H2-DD binding affinities. Minigenes encoding G1-KK (#1-#2-#3), G1-DD (#4-#5-#6) and the triplet with the highest affinity, G1-H (#1-#2-#4), were generated and cloned into a ubiquitin-containing plasmid (pU). Mice receiving pU-G1-KK or pU-G-1H presented a reduction in the s.c. tumor volume and weight of up to 80% compared to control mice; this reduction was associated with increased cytotoxicity of isolated splenocytes from vaccinated animals. Vaccination with pUG1-DD showed a lower capability to suppress primary tumor progression. In conclusion, Gal-1 expression by NB negatively regulates CD8+ T cells. Vaccination with DNA plasmids encoding Gal-1 epitopes overcomes immune escape, enhances CD8+ T cell-dependent immunity and displays effective antitumor activity against NB.


Assuntos
Vacinas Anticâncer/farmacologia , Galectina 1/imunologia , Epitopos Imunodominantes , Neuroblastoma/tratamento farmacológico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/efeitos dos fármacos , Mapeamento de Epitopos , Feminino , Galectina 1/genética , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Neuroblastoma/genética , Neuroblastoma/imunologia , Carga Tumoral/efeitos dos fármacos , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral , Vacinação , Vacinas de DNA/farmacologia
18.
Hum Gene Ther ; 32(11-12): 541-562, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33858231

RESUMO

Severe acute respiratory syndrome (SARS) is a newly emerging infectious disease (COVID-19) caused by the novel coronavirus SARS-coronavirus 2 (CoV-2). To combat the devastating spread of SARS-CoV-2, extraordinary efforts from numerous laboratories have focused on the development of effective and safe vaccines. Traditional live-attenuated or inactivated viral vaccines are not recommended for immunocompromised patients as the attenuated virus can still cause disease via phenotypic or genotypic reversion. Subunit vaccines require repeated dosing and adjuvant use to be effective, and DNA vaccines exhibit lower immune responses. mRNA vaccines can be highly unstable under physiological conditions. On the contrary, naturally antigenic viral vectors with well-characterized structure and safety profile serve as among the most effective gene carriers to provoke immune response via heterologous gene transfer. Viral vector-based vaccines induce both an effective cellular immune response and a humoral immune response owing to their natural adjuvant properties via transduction of immune cells. Consequently, viral vectored vaccines carrying the SARS-CoV-2 spike protein have recently been generated and successfully used to activate cytotoxic T cells and develop a neutralizing antibody response. Recent progress in SARS-CoV-2 vaccines, with an emphasis on gene therapy viral vector-based vaccine development, is discussed in this review.


Assuntos
Vacinas contra COVID-19/farmacologia , Vetores Genéticos , Vacinas Atenuadas/farmacologia , Vacinas Sintéticas/farmacologia , Proteínas Estruturais Virais/química , Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/genética , Humanos , Lentivirus/genética , SARS-CoV-2/genética , Vacinas de DNA/farmacologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Vacinas de mRNA
19.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795383

RESUMO

BACKGROUND: Strategies to increase nucleic acid vaccine immunogenicity are needed to move towards clinical applications in oncology. In this study, we designed a new generation of DNA vaccines, encoding an engineered vesicular stomatitis virus glycoprotein as a carrier of foreign T cell tumor epitopes (plasmid to deliver T cell epitopes, pTOP). We hypothesized that pTOP could activate a more potent response compared with the traditional DNA-based immunotherapies, due to both the innate immune properties of the viral protein and the specific induction of CD4 and CD8 T cells targeting tumor antigens. This could improve the outcome in different tumor models, especially when the DNA-based immunotherapy is combined with a rational therapeutic strategy. METHODS: The ability of pTOP DNA vaccine to activate a specific CD4 and CD8 response and the antitumor efficacy were tested in a B16F10-OVA melanoma (subcutaneous model) and GL261 glioblastoma (subcutaneous and orthotopic models). RESULTS: In B16F10-OVA melanoma, pTOP promoted immune recognition by adequate processing of both MHC-I and MHC-II epitopes and had a higher antigen-specific cytotoxic T cell (CTL) killing activity. In a GL261 orthotopic glioblastoma, pTOP immunization prior to tumor debulking resulted in 78% durable remission and long-term survival and induced a decrease of the number of immunosuppressive cells and an increase of immunologically active CTLs in the brain. The combination of pTOP with immune checkpoint blockade or with tumor resection improved the survival of mice bearing, a subcutaneous melanoma or an orthotopic glioblastoma, respectively. CONCLUSIONS: In this work, we showed that pTOP plasmids encoding an engineered vesicular stomatitis virus glycoprotein, and containing various foreign T cell tumor epitopes, successfully triggered innate immunity and effectively promoted immune recognition by adequate processing of both MHC-I and MHC-II epitopes. These results highlight the potential of DNA-based immunotherapies coding for viral proteins to induce potent and specific antitumor responses.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/farmacologia , Epitopos de Linfócito T/farmacologia , Glioblastoma/tratamento farmacológico , Imunogenicidade da Vacina , Imunoterapia , Glicoproteínas de Membrana/farmacologia , Neoplasias/tratamento farmacológico , Vacinas de DNA/farmacologia , Proteínas do Envelope Viral/farmacologia , Animais , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Terapia Combinada , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Vacinas de DNA/genética , Vacinas de DNA/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
20.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33563772

RESUMO

BACKGROUND: Tumor endothelial marker 1 (TEM1) is a protein expressed in the tumor-associated endothelium and/or stroma of various types of cancer. We previously demonstrated that immunization with a plasmid-DNA vaccine targeting TEM1 reduced tumor progression in three murine cancer models. Radiation therapy (RT) is an established cancer modality used in more than 50% of patients with solid tumors. RT can induce tumor-associated vasculature injury, triggering immunogenic cell death and inhibition of the irradiated tumor and distant non-irradiated tumor growth (abscopal effect). Combination treatment of RT with TEM1 immunotherapy may complement and augment established immune checkpoint blockade. METHODS: Mice bearing bilateral subcutaneous CT26 colorectal or TC1 lung tumors were treated with a novel heterologous TEM1-based vaccine, in combination with RT, and anti-programmed death-ligand 1 (PD-L1) antibody or combinations of these therapies, tumor growth of irradiated and abscopal tumors was subsequently assessed. Analysis of tumor blood perfusion was evaluated by CD31 staining and Doppler ultrasound imaging. Immunophenotyping of peripheral and tumor-infiltrating immune cells as well as functional analysis was analyzed by flow cytometry, ELISpot assay and adoptive cell transfer (ACT) experiments. RESULTS: We demonstrate that addition of RT to heterologous TEM1 vaccination reduces progression of CT26 and TC1 irradiated and abscopal distant tumors as compared with either single treatment. Mechanistically, RT increased major histocompatibility complex class I molecule (MHCI) expression on endothelial cells and improved immune recognition of the endothelium by anti-TEM1 T cells with subsequent severe vascular damage as measured by reduced microvascular density and tumor blood perfusion. Heterologous TEM1 vaccine and RT combination therapy boosted tumor-associated antigen (TAA) cross-priming (ie, anti-gp70) and augmented programmed cell death protein 1 (PD-1)/PD-L1 signaling within CT26 tumor. Blocking the PD-1/PD-L1 axis in combination with dual therapy further increased the antitumor effect and gp70-specific immune responses. ACT experiments show that anti-gp70 T cells are required for the antitumor effects of the combination therapy. CONCLUSION: Our findings describe novel cooperative mechanisms between heterologous TEM1 vaccination and RT, highlighting the pivotal role that TAA cross-priming plays for an effective antitumor strategy. Furthermore, we provide rationale for using heterologous TEM1 vaccination and RT as an add-on to immune checkpoint blockade as triple combination therapy into early-phase clinical trials.


Assuntos
Antígenos CD/metabolismo , Neoplasias Colorretais/terapia , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Pulmonares/terapia , Proteínas de Neoplasias/metabolismo , Vacinas de DNA/administração & dosagem , Adenoviridae/genética , Animais , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/diagnóstico por imagem , Terapia Combinada , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Hipofracionamento da Dose de Radiação , Resultado do Tratamento , Ultrassonografia Doppler , Vacinas de DNA/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA