Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nicotine Tob Res ; 23(3): 592-599, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33009807

RESUMO

INTRODUCTION: Simple silicone wristbands (WB) hold promise for exposure assessment in children. We previously reported strong correlations between nicotine in WB worn by children and urinary cotinine (UC). Here, we investigated differences in WB chemical concentrations among children exposed to secondhand smoke from conventional cigarettes (CC) or secondhand vapor from electronic cigarettes (EC), and children living with nonusers of either product (NS). METHODS: Children (n = 53) wore three WB and a passive nicotine air sampler for 7 days and one WB for 2 days, and gave a urine sample on day 7. Caregivers reported daily exposures during the 7-day period. We determined nicotine, cotinine, and tobacco-specific nitrosamines (TSNAs) concentrations in WB, nicotine in air samplers, and UC through isotope-dilution liquid chromatography with triple-quadrupole mass spectrometry. RESULTS: Nicotine and cotinine levels in WB in children differentiated between groups of children recruited into NS, EC exposed, and CC exposed groups in a similar manner to UC. WB levels were significantly higher in the CC group (WB nicotine median 233.8 ng/g silicone, UC median 3.6 ng/mL, n = 15) than the EC group (WB nicotine median: 28.9 ng/g, UC 0.5 ng/mL, n = 19), and both CC and EC group levels were higher than the NS group (WB nicotine median: 3.7 ng/g, UC 0.1 ng/mL, n = 19). TSNAs, including the known carcinogen NNK, were detected in 39% of WB. CONCLUSIONS: Silicone WB show promise for sensitive detection of exposure to tobacco-related contaminants from traditional and electronic cigarettes and have potential for tobacco control efforts. IMPLICATIONS: Silicone WB worn by children can absorb nicotine, cotinine, and tobacco-specific nitrosamines, and amounts of these compounds are closely related to the child's urinary cotinine. Levels of tobacco-specific compounds in the silicone WB can distinguish patterns of children's exposure to secondhand smoke and e-cigarette vapor. Silicone WB are simple to use and acceptable to children and, therefore, may be useful for tobacco control activities such as parental awareness and behavior change, and effects of smoke-free policy implementation.


Assuntos
Cotinina/urina , Vapor do Cigarro Eletrônico/análise , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Nicotina/urina , Nitrosaminas/urina , Silicones/análise , Poluição por Fumaça de Tabaco/análise , Adolescente , Carcinógenos/análise , Criança , Pré-Escolar , Feminino , Humanos , Masculino
2.
Toxicol In Vitro ; 69: 104997, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32896591

RESUMO

Electronic nicotine delivery systems (ENDS) are a rapidly growing global market advertised as a safer alternative to combustible cigarettes. However, comprehensive investigations of END aerosol physicochemical and toxicological properties have not been fully explored across brands to assess relative safety. In this study, we evaluated aerosols collected from three ENDS - Juul Fruit Medley (5% nicotine), Logic Power (2.4% nicotine), and Mistic (1.8% nicotine). ENDS aerosols were generated using standard machine puffing regimen and collected with a novel fluoropolymer condensation trap. Triple quadrupole-inductively coupled plasma-mass determined the presence of heavy metals in collected aerosols. The toxicological effects of ENDS aerosols on normal human bronchial epithelial cells (NHBE) were investigated using cellular viability, reactive oxygen species, oxidative stress assays, along with DNA damage assessments using the CometChip©. Results indicated the total metal concentrations within collected ENDS aerosols were higher for Mistic and Logic compared to Juul. Logic Power aerosols elicited higher reactive oxygen species levels than Mistic and Juul in NHBE after 24-h exposure. Similar dose-dependent reductions of cellular viability and total glutathione were found for each exposure. However, Logic and Juul aerosols caused greater single stranded DNA damage compared to Mistic. Our study indicates that regardless of brand, ENDS aerosols are toxic to upper airway epithelial cells and may pose a potential respiratory hazard to occasional and frequent users.


Assuntos
Brônquios/citologia , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Vapor do Cigarro Eletrônico/análise , Células Epiteliais/metabolismo , Humanos , Metais Pesados/análise , Metais Pesados/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
J Med Toxicol ; 16(3): 248-254, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32193828

RESUMO

INTRODUCTION: E-cigarette, or vaping, product use associated lung injury (EVALI) has become a recent concern among public health officials. Factors that contribute to the concern include an increasing number of cases over time, the severity of the illness, and an unknown understanding of the pathophysiology and etiology of the illness. CASE SERIES: We cared for three adolescent patients with acute respiratory failure secondary to EVALI. All three patients were treated with high-dose steroids in addition to antimicrobials, which resulted in clinical improvement and resolution of their respiratory failure. Pulmonary function testing was performed on these previously healthy patients both acutely and subacutely. Additionally, we report the results from the laboratory analysis of one vaping device fluid which revealed previously unpublished components within these products. DISCUSSION: EVALI is a recent public health concern without a known etiology which can cause life-threatening lung injury in patients without prior lung pathology. We hope these cases will highlight the importance of return precautions in adolescents with vague respiratory symptoms and provide a cautionary tale to providers while they counsel patients regarding the use of these products.


Assuntos
Vapor do Cigarro Eletrônico/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Lesão Pulmonar/etiologia , Pulmão/fisiopatologia , Insuficiência Respiratória/etiologia , Vaping/efeitos adversos , Doença Aguda , Adolescente , Fatores Etários , Vapor do Cigarro Eletrônico/análise , Humanos , Pulmão/diagnóstico por imagem , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/terapia , Masculino , Recuperação de Função Fisiológica , Insuficiência Respiratória/diagnóstico por imagem , Insuficiência Respiratória/fisiopatologia , Insuficiência Respiratória/terapia , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
4.
Arch Toxicol ; 94(6): 1985-1994, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32189038

RESUMO

The popularity and the high nicotine content of the American pod e-cigarette JUUL have raised many concerns. To comply with European law, the nicotine concentration in the liquids of the European version, which has been recently released on the market, is limited to below 20 mg/mL. This limit can possibly be circumvented by technological adjustments that increase vaporization and consequently, elevate nicotine delivery. In this study, we compare vapor generation and nicotine delivery of the initial European version, a modified European version, and the original American high-nicotine variant using a machine vaping set-up. Additionally, benzoic acid and carbonyl compounds are quantified in the aerosol. Further, concentrations of nicotine, benzoic acid, propylene glycol, and glycerol, along with the density and pH value of JUUL e-liquids have been assessed. Whereas the initial European version did not compensate for the low nicotine content in the liquid, we provide evidence for an increased vaporization by the modified European version. As a consequence, nicotine delivery per puff approximates the American original. Notably, this is not associated with an increased generation of carbonyl compounds. Our data suggest a similar addictiveness of the enhanced European version and the original American product.


Assuntos
Vapor do Cigarro Eletrônico/análise , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/análise , Agonistas Nicotínicos/análise , Vaping , Aerossóis , Qualidade de Produtos para o Consumidor , Vapor do Cigarro Eletrônico/efeitos adversos , Europa (Continente) , Humanos , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Medição de Risco , Vaping/efeitos adversos
5.
Chemosphere ; 249: 126153, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058129

RESUMO

In this study, we determined DNA damage and chromosome breakage (indicators of genotoxicity) and cell viability (an indicator of cytotoxicity) in human lymphoblastoid TK6 and Chinese hamster ovary (CHO) cells treated with 33 e-liquids using in vitro single cell gel (comet), micronucleus (MN), and trypan blue assays, respectively. We also measured the contents of nicotine, five phthalate esters, and DL-menthol in the e-liquids to examine their effects on DNA damage, chromosome breakage, and cell viability. Our chemical analyses showed that: (1) six e-liquids had nicotine ≥2-fold higher than the manufacture's label claim (2-3.5 mg); (2) both dimethyl- and dibutyl-phthalate levels were >0.1 µg/g, i.e., their threshold limits as additives in cosmetics; and (3) the DL-menthol contents ranged from 0.0003 to 85757.2 µg/g, with those of two e-liquids being >1 mg/g, the threshold limit for trigging sensory irritation. Though all the e-liquids induced DNA damage in TK6 cells, 20 resulted in cell viabilities ≤75%, indicating cytotoxicity, yet the inverse relationship between cell viability and DNA damage (r = -0.628, p = 0.003) might reflect their role as pro-apoptotic and DNA damage inducers. Fifteen e-liquids induced MN% in TK6 cells ≥3-fold that of untreated cells. Some of the increase in %MN might be false due to high cytotoxicity, yet six brands showed acceptable cell viabilities (59-71%), indicating chromosome damage. DNA damage and %MN increased when the TK6 cells were exposed to metabolic activation. The CHO cells were less sensitive to the genotoxic effects of the e-liquids than the TK6 cells. DL-menthol was found to be associated with decreased cell viability and increased DNA damage, even at low levels. We cannot dismiss the presence of other ingredients in e-liquids with cytotoxic/genotoxic properties since out of the 63 different flavors, 47 induced DNA damage (≥3-folds), and 26 reduced cell viability (≤75%) in TK6 cells.


Assuntos
Vapor do Cigarro Eletrônico/química , Ácidos Ftálicos/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA , Dibutilftalato/farmacologia , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Ésteres/química , Humanos , Mentol/química , Mentol/toxicidade , Testes para Micronúcleos/métodos , Nicotina/química , Nicotina/toxicidade
6.
Intern Emerg Med ; 14(6): 863-883, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30835057

RESUMO

In the context of tobacco harm-reduction strategy, the potential reduced impact of electronic cigarette (EC) exposure should be evaluated relative to the impact of cigarette smoke exposure. We conducted a series of in vitro studies to compare the biological impact of an acute exposure to aerosols of "test mix" (flavors, nicotine, and humectants), "base" (nicotine and humectants), and "carrier" (humectants) formulations using MarkTen® EC devices with the impact of exposure to smoke of 3R4F reference cigarettes, at a matching puff number, using human organotypic air-liquid interface buccal and small airway cultures. We measured the concentrations of nicotine and carbonyls deposited in the exposure chamber after each exposure experiment. The deposited carbonyl concentrations were used as representative measures to assess the reduced exposure to potentially toxic volatile substances. We followed a systems toxicology approach whereby functional biological endpoints, such as histopathology and ciliary beating frequency, were complemented by multiplex and omics assays to measure secreted inflammatory proteins and whole-genome transcriptomes, respectively. Among the endpoints analyzed, the only parameters that showed a significant response to EC exposure were secretion of proteins and whole-genome transcriptomes. Based on the multiplex and omics analyzes, the cellular responses to EC aerosol exposure were tissue type-specific; however, those alterations were much smaller than those following cigarette smoke exposure, even when the EC aerosol exposure under the testing conditions resulted in a deposited nicotine concentration approximately 200 times that in saliva of EC users.


Assuntos
Fumar Cigarros/metabolismo , Vapor do Cigarro Eletrônico/metabolismo , Exposição Ambiental/análise , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA