Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nat Rev Microbiol ; 19(7): 409-424, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34075212

RESUMO

Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.


Assuntos
COVID-19/virologia , Evasão da Resposta Imune , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/classificação , Aminoácidos/química , Aminoácidos/genética , Variação Antigênica/genética , Variação Antigênica/fisiologia , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/normas , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Humanos , Evasão da Resposta Imune/genética , Mutação , Conformação Proteica , SARS-CoV-2/classificação , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
2.
Infect Immun ; 87(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30988058

RESUMO

Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.


Assuntos
Variação Antigênica/fisiologia , Antígenos de Bactérias/imunologia , Borrelia burgdorferi/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Lipoproteínas/genética , Plasmídeos , Coelhos
3.
Am Nat ; 192(6): E189-E201, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444661

RESUMO

Antigenic diversity is commonly used by pathogens to enhance their transmission success. Within-host clonal antigenic variation helps to maintain long infectious periods, whereas high levels of allelic diversity at the population level significantly expand the pool of susceptible individuals. Diversity, however, is not necessarily a static property of a pathogen population but in many cases is generated by the very act of infection and transmission, and it is therefore expected to respond dynamically to changes in transmission and immune selection. We hypothesized that this coupling creates a positive feedback whereby infection and disease transmission promote the generation of diversity, which itself facilitates immune evasion and further infections. To investigate this link in more detail, we considered the human malaria parasite Plasmodium falciparum, one of the most important antigenically diverse pathogens. We developed an individual-based model in which antigenic diversity emerges as a dynamic property from the underlying transmission processes. Our results show that the balance between stochastic extinction and the generation of new antigenic variants is intrinsically linked to within-host and between-host immune selection. This in turn determines the level of diversity that can be maintained in a given population. Furthermore, the transmission-diversity feedback can lead to temporal lags in the response to natural or intervention-induced perturbations in transmission rates. Our results therefore have important implications for monitoring and assessing the effectiveness of disease control efforts.


Assuntos
Variação Antigênica/fisiologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Fatores Etários , Variação Antigênica/genética , Feminino , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Masculino , Modelos Teóricos , Mosquitos Vetores/parasitologia , Plasmodium falciparum/genética
4.
PLoS Pathog ; 14(11): e1007321, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30440029

RESUMO

Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypanosomes is one of the most elaborate immune evasion strategies found among pathogens. Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and telomeric repeats, can be achieved either by transcriptional or DNA recombination mechanisms. The major route of VSG switching is DNA recombination, which occurs in the bloodstream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I. Recombinogenic VSG switching is frequently catalyzed by homologous recombination (HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how such breaks arise-including whether there is a dedicated and ES-focused mechanism-is lacking. Here, we synthesize data emerging from recent studies that have proposed a range of mechanisms that could generate these breaks: action of a nuclease or nucleases; repetitive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription levels at the active ES; and DNA lesions arising from replication-transcription conflicts in the ES. We discuss the evidence that underpins these switch-initiation models and consider what features and mechanisms might be shared or might allow the models to be tested further. Evaluation of all these models highlights that we still have much to learn about the earliest acting step in VSG switching, which may have the greatest potential for therapeutic intervention in order to undermine the key reaction used by trypanosomes for their survival and propagation in the mammalian host.


Assuntos
Trypanosoma/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Variação Antigênica/genética , Variação Antigênica/fisiologia , DNA/metabolismo , Replicação do DNA/imunologia , Evasão da Resposta Imune/genética , Evasão da Resposta Imune/imunologia , Telômero/genética , Transcrição Gênica/genética , Trypanosoma/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/genética , Tripanossomíase Africana/imunologia
5.
Yale J Biol Med ; 90(2): 195-218, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28656008

RESUMO

Relapsing fever agents like Borrelia hermsii undergo multiphasic antigenic variation that is attributable to spontaneous DNA non-reciprocal transpositions at a particular locus in the genome. This genetic switch results in a new protein being expressed on the cell surface, allowing cells with that phenotype to escape prevailing immunity. But the switch occurs in only one of several genomes in these spirochetes, and a newly-switched gene is effectively "recessive" until homozygosity is achieved. The longer that descendants of the switched cell expressed both old and new proteins, the longer this lineage risks neutralization by antibody to the old protein. We investigated the implications for antigenic variation of the phenotypic lag that polyploidy would confer on cells. We first experimentally determined the average genome copy number in daughter cells after division during mouse infection with B. hermsii strain HS1. We then applied discrete deterministic and stochastic simulations to predict outcomes when genomes were equably segregated either linearly, i.e. according to their position in one-dimensional arrays, or randomly partitioned, as for a sphere. Linear segregation replication provided for a lag in achievement of homozygosity that was significantly shorter than could be achieved under the random segregation condition. For cells with 16 genomes, this would be a 4-generation lag. A model incorporating the immune response and evolved matrices of switch rates indicated a greater fitness for polyploid over monoploid bacteria in terms of duration of infection.


Assuntos
Variação Antigênica/fisiologia , Borrelia/fisiologia , Animais , Variação Antigênica/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Borrelia/citologia , Borrelia/genética , Borrelia/imunologia , Feminino , Genoma Bacteriano/genética , Camundongos , Camundongos SCID/microbiologia , Microscopia de Contraste de Fase , Reação em Cadeia da Polimerase , Poliploidia , Febre Recorrente/imunologia , Febre Recorrente/microbiologia
6.
Exp Parasitol ; 168: 39-44, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27374230

RESUMO

Fasciola hepatica is a digenean trematode which infects a wide variety of domestic animals and also humans. Previous studies have demonstrated that four monoclonal antibodies (Mabs) against the total extract of F. hepatica redia (named as 1E4, 6G11, 4E5 and 4G11) also recognized the excretion - secretion antigens (ES Ag) of adult parasites, which is a biologically-relevant mixture of molecules with functional roles during infection and immune evasion on definitive hosts. In the present report we describe the partial characterization of the epitopes recognized by these Mabs by heat treatment, mercaptoethanol reduction, pronase proteolysis and sodium peryodate oxidation, which suggested their predominant protein and conformational nature. Also, a comparative study using immunodetection assays on crude extracts and on histological sections of both rediae and adults of F. hepatica were performed to explore the expression pattern of the antigenic determinants in these developmental stages. From these experiments it was found that the Mabs reacted most likely with the same proteins of approximately 64 and 105 kDa present on both rediae and adult's extracts. However, the 1E4, 6G11 and 4E5 Mabs also recognized other molecules of the total extract of F. hepatica adults, a fact that constitutes an evidence of the antigenic variation between both stages and points at a certain biological relevance of the recognized antigenic determinants. Immunolocalization studies on histological sections revealed that all Mabs reacted with the tegument of F. hepatica in both rediae and adults stages, while the epitopes recognized by 1E4, 6G11 and 4E5 antibodies were also preferentially localized in the intestinal caeca and in different organs of the reproductive system of adult specimens. The immunogenicity of these antigenic determinants, their conserved status among different stages of the life cycle of F. hepatica and their presence in both tegument and ES Ag of adult parasites, are suitable features that suggest their potential use for developing an epitope-based vaccine for fasciolosis control.


Assuntos
Anticorpos Monoclonais/imunologia , Epitopos/imunologia , Fasciola hepatica/imunologia , Animais , Variação Antigênica/fisiologia , Epitopos/química , Epitopos/metabolismo , Fasciola hepatica/efeitos dos fármacos , Imuno-Histoquímica , Mercaptoetanol/farmacologia , Camundongos , Oxirredução , Ácido Periódico/farmacologia , Pronase/metabolismo , Temperatura
7.
PLoS Pathog ; 10(1): e1003854, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391504

RESUMO

Histone modifications are important regulators of gene expression in all eukaryotes. In Plasmodium falciparum, these epigenetic marks regulate expression of genes involved in several aspects of host-parasite interactions, including antigenic variation. While the identities and genomic positions of many histone modifications have now been cataloged, how they are targeted to defined genomic regions remains poorly understood. For example, how variant antigen encoding loci (var) are targeted for deposition of unique histone marks is a mystery that continues to perplex the field. Here we describe the recruitment of an ortholog of the histone modifier SET2 to var genes through direct interactions with the C-terminal domain (CTD) of RNA polymerase II. In higher eukaryotes, SET2 is a histone methyltransferase recruited by RNA pol II during mRNA transcription; however, the ortholog in P. falciparum (PfSET2) has an atypical architecture and its role in regulating transcription is unknown. Here we show that PfSET2 binds to the unphosphorylated form of the CTD, a property inconsistent with its recruitment during mRNA synthesis. Further, we show that H3K36me3, the epigenetic mark deposited by PfSET2, is enriched at both active and silent var gene loci, providing additional evidence that its recruitment is not associated with mRNA production. Over-expression of a dominant negative form of PfSET2 designed to disrupt binding to RNA pol II induced rapid var gene expression switching, confirming both the importance of PfSET2 in var gene regulation and a role for RNA pol II in its recruitment. RNA pol II is known to transcribe non-coding RNAs from both active and silent var genes, providing a possible mechanism by which it could recruit PfSET2 to var loci. This work unifies previous reports of histone modifications, the production of ncRNAs, and the promoter activity of var introns into a mechanism that contributes to antigenic variation by malaria parasites.


Assuntos
Variação Antigênica/fisiologia , Antígenos de Protozoários/imunologia , Histona-Lisina N-Metiltransferase/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , RNA Polimerase II/imunologia , Antígenos de Protozoários/genética , Epigênese Genética/imunologia , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA de Protozoário/genética , RNA de Protozoário/imunologia
8.
J Bacteriol ; 195(10): 2255-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475972

RESUMO

The strict human pathogen Neisseria gonorrhoeae utilizes homologous recombination to antigenically vary the pilus, thus evading the host immune response. High-frequency gene conversion reactions between many silent pilin loci and the expressed pilin locus (pilE) allow for numerous pilus variants per strain to be produced from a single strain. For pilin antigenic variation (Av) to occur, a guanine quartet (G4) structure must form upstream of pilE. The RecQ helicase is one of several recombination or repair enzymes required for efficient levels of pilin Av, and RecQ family members have been shown to bind to and unwind G4 structures. Additionally, the vast majority of RecQ helicase family members encode one "helicase and RNase D C-terminal" (HRDC) domain, whereas the N. gonorrhoeae RecQ helicase gene encodes three HRDC domains, which are critical for pilin Av. Here, we confirm that deletion of RecQ HRDC domains 2 and 3 causes a decrease in the frequency of pilin Av comparable to that obtained with a functional knockout. We demonstrate that the N. gonorrhoeae RecQ helicase can bind and unwind the pilE G4 structure. Deletion of the RecQ HRDC domains 2 and 3 resulted in a decrease in G4 structure binding and unwinding. These data suggest that the decrease in pilin Av observed in the RecQ HRDC domain 2 and 3 deletion mutant is a result of the enzyme's inability to efficiently bind and unwind the pilE G4 structure.


Assuntos
Variação Antigênica/fisiologia , Proteínas de Bactérias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/metabolismo , RecQ Helicases/química , RecQ Helicases/metabolismo , Variação Antigênica/genética , Proteínas de Bactérias/genética , Dicroísmo Circular , Proteínas de Fímbrias/genética , Polarização de Fluorescência , Neisseria gonorrhoeae/genética , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , RecQ Helicases/genética
9.
PLoS Pathog ; 8(11): e1003010, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133390

RESUMO

The African sleeping sickness parasite Trypanosoma brucei evades the host immune system through antigenic variation of its variant surface glycoprotein (VSG) coat. Although the T. brucei genome contains ∼1500 VSGs, only one VSG is expressed at a time from one of about 15 subtelomeric VSG expression sites (ESs). For antigenic variation to work, not only must the vast VSG repertoire be kept silent in a genome that is mainly constitutively transcribed, but the frequency of VSG switching must be strictly controlled. Recently it has become clear that chromatin plays a key role in silencing inactive ESs, thereby ensuring monoallelic expression of VSG. We investigated the role of the linker histone H1 in chromatin organization and ES regulation in T. brucei. T. brucei histone H1 proteins have a different domain structure to H1 proteins in higher eukaryotes. However, we show that they play a key role in the maintenance of higher order chromatin structure in bloodstream form T. brucei as visualised by electron microscopy. In addition, depletion of histone H1 results in chromatin becoming generally more accessible to endonucleases in bloodstream but not in insect form T. brucei. The effect on chromatin following H1 knock-down in bloodstream form T. brucei is particularly evident at transcriptionally silent ES promoters, leading to 6-8 fold derepression of these promoters. T. brucei histone H1 therefore appears to be important for the maintenance of repressed chromatin in bloodstream form T. brucei. In particular H1 plays a role in downregulating silent ESs, arguing that H1-mediated chromatin functions in antigenic variation in T. brucei.


Assuntos
Variação Antigênica/fisiologia , Regulação da Expressão Gênica/fisiologia , Heterocromatina/metabolismo , Proteínas de Protozoários/biossíntese , Trypanosoma cruzi/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Heterocromatina/genética , Heterocromatina/imunologia , Histonas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia
10.
PLoS One ; 6(2): e17145, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21386889

RESUMO

A scientist in our laboratory was accidentally infected while working with Z5463, a Neisseria meningitidis serogroup A strain. She developed severe symptoms (fever, meningism, purpuric lesions) that fortunately evolved with antibiotic treatment to complete recovery. Pulse-field gel electrophoresis confirmed that the isolate obtained from the blood culture (Z5463BC) was identical to Z5463, more precisely to a fourth subculture of this strain used the week before the contamination (Z5463PI). In order to get some insights into genomic modifications that can occur in vivo, we sequenced these three isolates. All the strains contained a mutated mutS allele and therefore displayed an hypermutator phenotype, consistent with the high number of mutations (SNP, Single Nucleotide Polymorphism) detected in the three strains. By comparing the number of SNP in all three isolates and knowing the number of passages between Z5463 and Z5463PI, we concluded that around 25 bacterial divisions occurred in the human body. As expected, the in vivo passage is responsible for several modifications of phase variable genes. This genomic study has been completed by transcriptomic and phenotypic studies, showing that the blood strain used a different haemoglobin-linked iron receptor (HpuA/B) than the parental strains (HmbR). Different pilin variants were found after the in vivo passage, which expressed different properties of adhesion. Furthermore the deletion of one gene involved in LOS biosynthesis (lgtB) results in Z5463BC expressing a different LOS than the L9 immunotype of Z2491. The in vivo passage, despite the small numbers of divisions, permits the selection of numerous genomic modifications that may account for the high capacity of the strain to disseminate.


Assuntos
Variação Antigênica , Infecção Hospitalar/microbiologia , Variação Genética , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/genética , Neisseria meningitidis/imunologia , Acidentes de Trabalho , Adulto , Variação Antigênica/genética , Variação Antigênica/fisiologia , Infecção Hospitalar/genética , Infecção Hospitalar/imunologia , Feminino , Genótipo , Humanos , Pessoal de Laboratório Médico , Infecções Meningocócicas/genética , Infecções Meningocócicas/imunologia , Infecções Meningocócicas/transmissão , Neisseria meningitidis/fisiologia , Fenótipo
11.
PLoS One ; 6(2): e16052, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21364750

RESUMO

The evolutionary implications of recombination in HIV remain not fully understood. A plausible effect could be an enhancement of immune escape from cytotoxic T lymphocytes (CTLs). In order to test this hypothesis, we constructed a population dynamic model of immune escape in HIV and examined the viral-immune dynamics with and without recombination. Our model shows that recombination (i) increases the genetic diversity of the viral population, (ii) accelerates the emergence of escape mutations with and without compensatory mutations, and (iii) accelerates the acquisition of immune escape mutations in the early stage of viral infection. We see a particularly strong impact of recombination in systems with broad, non-immunodominant CTL responses. Overall, our study argues for the importance of recombination in HIV in allowing the virus to adapt to changing selective pressures as imposed by the immune system and shows that the effect of recombination depends on the immunodominance pattern of effector T cell responses.


Assuntos
Imunidade Adaptativa/genética , Evolução Molecular , Infecções por HIV/imunologia , HIV/genética , HIV/imunologia , Recombinação Genética/fisiologia , Variação Antigênica/genética , Variação Antigênica/imunologia , Variação Antigênica/fisiologia , Simulação por Computador , Variação Genética/imunologia , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Evasão da Resposta Imune/genética , Modelos Biológicos , Modelos Teóricos , Mutação/fisiologia , Fatores de Tempo
12.
J Proteomics ; 74(4): 510-27, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21278006

RESUMO

We describe two geographically differentiated venom phenotypes across the wide distribution range of Bothrops atrox, from the Colombian Magdalena Medio Valley through Puerto Ayacucho and El Paují, in the Venezuelan States of Amazonas and Orinoquia, respectively, and São Bento in the Brazilian State of Maranhão. Colombian and Venezuelan venoms show an ontogenetic toxin profile phenotype whereas Brazilian venoms exhibit paedomorphic phenotypes. Venoms from each of the 16 localities sampled contain both population-specific toxins and proteins shared by neighboring B. atrox populations. Mapping the molecular similarity between conspecific populations onto a physical map of B. atrox range provides clues for tracing dispersal routes that account for the current biogeographic distribution of the species. The proteomic pattern is consistent with a model of southeast and southwest dispersal and allopatric fragmentation northern of the Amazon Basin, and trans-Amazonian expansion through the Andean Corridor and across the Amazon river between Monte Alegre and Santarém. An antivenomic approach applied to assess the efficacy towards B. atrox venoms of two antivenoms raised in Costa Rica and Brazil using Bothrops venoms different than B. atrox in the immunization mixtures showed that both antivenoms immunodepleted very efficiently the major toxins (PIII-SVMPs, serine proteinases, CRISP, LAO) of paedomorphic venoms from Puerto Ayacucho (Venezuelan Amazonia) through São Bento, but had impaired reactivity towards PLA(2) and P-I SVMP molecules abundantly present in ontogenetic venoms. The degree of immunodepletion achieved suggests that each of these antivenoms may be effective against envenomations by paedomorphic, and some ontogenetic, B. atrox venoms.


Assuntos
Variação Antigênica/fisiologia , Antivenenos/análise , Bothrops/metabolismo , Venenos de Crotalídeos/análise , Proteoma/análise , Mordeduras de Serpentes/terapia , Sequência de Aminoácidos , Animais , Antivenenos/metabolismo , Venenos de Crotalídeos/metabolismo , Demografia , Feminino , Geografia , Masculino , População , Proteoma/metabolismo , Proteômica , Rios , Serpentes/metabolismo , Serpentes/fisiologia , América do Sul
13.
J Immunol ; 185(11): 7026-36, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20974992

RESUMO

The migration of polymorphonuclear leukocytes (PMNs) across the intestinal epithelium is a histopathological hallmark of many mucosal inflammatory diseases including inflammatory bowel disease. The terminal transmigration step is the detachment of PMNs from the apical surface of the epithelium and their subsequent release into the intestinal lumen. The current study sought to identify epithelial proteins involved in the regulation of PMN migration across intestinal epithelium at the stage at which PMNs reach the apical epithelial surface. A panel of Abs reactive with IFN-γ-stimulated T84 intestinal epithelial cells was generated. Screening efforts identified one mAb, GM35, that prevented PMN detachment from the apical epithelial surface. Microsequencing studies identified the GM35 Ag as human CD44. Transfection studies confirmed this result by demonstrating the loss of the functional activity of the GM35 mAb following attenuation of epithelial CD44 protein expression. Immunoblotting and immunofluorescence revealed the GM35 Ag to be an apically expressed v6 variant exon-containing form of human CD44 (CD44v6). ELISA analysis demonstrated the release of soluble CD44v6 by T84 cells during PMN transepithelial migration. In addition, the observed release of CD44v6 was blocked by GM35 treatment, supporting a connection between CD44v6 release and PMN detachment. Increased expression of CD44v6 and the GM35 Ag was detected in inflamed ulcerative colitis tissue. This study demonstrates that epithelial-expressed CD44v6 plays a role in PMN clearance during inflammatory episodes through regulation of the terminal detachment of PMNs from the apical epithelial surface into the lumen of the intestine.


Assuntos
Movimento Celular/imunologia , Receptores de Hialuronatos/fisiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Variação Antigênica/fisiologia , Células CACO-2 , Adesão Celular/imunologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Endotélio Vascular/metabolismo , Células HT29 , Células HeLa , Humanos , Mediadores da Inflamação/fisiologia , Mucosa Intestinal/citologia , Neutrófilos/citologia , Isoformas de Proteínas/fisiologia , Propriedades de Superfície
15.
J Theor Biol ; 262(1): 48-57, 2010 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19766659

RESUMO

The accumulation of cross-immunity in the host population is an important factor driving the antigenic evolution of viruses such as influenza A. Mathematical models have shown that the strength of temporary non-specific cross-immunity and the basic reproductive number are both key determinants for evolutionary branching of the antigenic phenotype. Here we develop deterministic and stochastic versions of one such model. We examine how the time of emergence or introduction of a novel strain affects co-existence with existing strains and hence the initial establishment of a new evolutionary branch. We also clarify the roles of cross-immunity and the basic reproductive number in this process. We show that the basic reproductive number is important because it affects the frequency of infection, which influences the long term immune profile of the host population. The time at which a new strain appears relative to the epidemic peak of an existing strain is important because it determines the environment the emergent mutant experiences in terms of the short term immune profile of the host population. Strains are more likely to coexist, and hence to establish a new clade in the viral phylogeny, when there is a significant time overlap between their epidemics. It follows that the majority of antigenic drift in influenza is expected to occur in the earlier part of each transmission season and this is likely to be a key surveillance period for detecting emerging antigenic novelty.


Assuntos
Antígenos Virais/imunologia , Influenza Humana/imunologia , Viabilidade Microbiana/imunologia , Orthomyxoviridae/imunologia , Variação Antigênica/imunologia , Variação Antigênica/fisiologia , Reações Cruzadas/fisiologia , Evolução Molecular , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/virologia , Modelos Biológicos , Orthomyxoviridae/genética , Orthomyxoviridae/fisiologia , Filogenia , Interferência Viral/imunologia
16.
Nat Rev Microbiol ; 7(7): 493-503, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19503065

RESUMO

The complex relationships between infectious organisms and their hosts often reflect the continuing struggle of the pathogen to proliferate and spread to new hosts, and the need of the infected individual to control and potentially eradicate the infecting population. This has led, in the case of mammals and the pathogens that infect them, to an 'arms race', in which the highly adapted mammalian immune system has evolved to control the proliferation of infectious organisms and the pathogens have developed correspondingly complex genetic systems to evade this immune response. We review how bacterial, protozoan and fungal pathogens from distant evolutionary lineages have evolved surprisingly similar mechanisms of antigenic variation to avoid eradication by the host immune system and can therefore maintain persistent infections and ensure their transmission to new hosts.


Assuntos
Variação Antigênica/fisiologia , Bactérias/imunologia , Bactérias/patogenicidade , Eucariotos/imunologia , Eucariotos/patogenicidade , Fungos/imunologia , Fungos/patogenicidade , Animais , Variação Antigênica/genética , Bactérias/genética , Eucariotos/genética , Fungos/genética , Interações Hospedeiro-Parasita , Interações Hospedeiro-Patógeno , Humanos
17.
PLoS Pathog ; 5(2): e1000307, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19229319

RESUMO

Modifications of the Plasmodium falciparum-infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered.


Assuntos
Variação Antigênica/fisiologia , Antígenos de Protozoários/genética , Eritrócitos/parasitologia , Plasmodium falciparum/genética , Testes de Aglutinação , Animais , Antígenos de Protozoários/metabolismo , Células Cultivadas , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Reprodutibilidade dos Testes , Esquizontes , Trofozoítos
18.
Infect Immun ; 76(9): 4322-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18591227

RESUMO

Cryptococcus neoformans is an encapsulated opportunistic organism that can undergo phenotypic switching. In this process, the parent smooth colony (SM) switches to a more virulent mucoid colony (MC) variant. The host responses mounted against the SM and MC variants differ, and lower tissue interleukin 10 (IL-10) levels are consistently observed in lungs of MC-infected C57BL/6 and BALB/c mice. This suggested different roles of this cytokine in SM and MC infections. The objective of this study was to compare survival rates and characterize the host responses of SM- and MC-infected IL-10-depleted (IL-10(-/-)) mice, which exhibit a Th1-polarized immune response and are considered resistant hosts. As expected, SM-infected IL-10(-/-) mice survived longer than wild-type mice, whereas MC-infected IL-10(-/-) mice did not exhibit a survival benefit. Consistent with this observation, we demonstrated marked differences in the inflammatory responses of SM- and MC-infected IL-10(-/-) and wild-type mice. This included a more Th1-polarized inflammatory response with enhanced recruitment of macrophages and natural killer and CD8 cells in MC- than in SM-infected IL-10(-/-) and wild-type mice. In contrast, both SM-infected IL-10(-/-) and wild-type mice exhibited higher recruitment of CD4 cells, consistent with enhanced survival and differences in recruitment and Th1/Th2 polarization. Lung tissue levels of IL-21, IL-6, IL-4, transforming growth factor beta, IL-12, and gamma interferon were higher in MC-infected IL-10(-/-) and wild-type mice than in SM-infected mice, whereas tumor necrosis factor alpha levels were higher in SM-infected IL-10(-/-) mice. In conclusion, the MC variant elicits an excessive inflammatory response in a Th1-polarized host environment, and therefore, the outcome is negatively affected by the absence of IL-10.


Assuntos
Variação Antigênica/imunologia , Variação Antigênica/fisiologia , Criptococose/imunologia , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/patogenicidade , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Contagem de Colônia Microbiana , Citocinas/análise , Citocinas/imunologia , Feminino , Interleucina-10/deficiência , Interleucina-10/imunologia , Células Matadoras Naturais/imunologia , Pulmão/química , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Análise de Sobrevida , Virulência
19.
Vet Microbiol ; 121(1-2): 39-44, 2007 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-17169509

RESUMO

Twelve dogs dead as consequence of natural infection caused by canine parvovirus (CPV) type 2a (n=4), type 2b (n=4) or type 2c (n=4) were investigated for determining the viral DNA loads in different tissue samples. By means of a real-time PCR assay, CPV DNA was detected in all tissues examined, with the highest titres observed in the lymphoid tissue and the lowest loads in the urinary tract. Surprisingly, the nervous tissue was found to contain considerable amounts of CPV nucleic acid. Similar patterns of tissue distribution were observed in all the examined dogs irrespective of the antigenic variant causing the disease.


Assuntos
Variação Antigênica/fisiologia , Doenças do Cão/virologia , Infecções por Parvoviridae/virologia , Parvovirus Canino/imunologia , Animais , DNA Viral/química , DNA Viral/genética , Cães , Tecido Linfoide/virologia , Parvovirus Canino/genética , Parvovirus Canino/crescimento & desenvolvimento , Reação em Cadeia da Polimerase/veterinária , Carga Viral/veterinária
20.
Mol Microbiol ; 61(1): 185-93, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16824104

RESUMO

The obligate human pathogen Neisseria gonorrhoeae (Gc) has co-opted conserved recombination pathways to achieve immune evasion by way of antigenic variation (Av). We show that both the RuvABC and RecG Holliday junction (HJ) processing pathways are required for recombinational repair, each can act during genetic transfer, and both are required for pilin Av. Analysis of double mutants shows that either the RecG or RuvAB HJ processing pathway must be functional for normal growth of Gc when RecA is expressed. HJ processing-deficient survivors of RecA expression are enriched for non-piliated bacteria that carry large deletions of the pilE gene. Mutations that prevent pilin variation such as recO, recQ, and a cis-acting pilE transposon insertion all rescue the RecA-dependent growth inhibition of a HJ processing-deficient strain. These results show that pilin Av produces a recombination intermediate that must be processed by either one of the HJ pathways to retain viability, but requires both HJ processing pathways to yield pilin variants. The need for diversity generation through frequent recombination reactions creates a situation where the HJ processing machinery is essential for growth and presents a possible target for novel antimicrobials against gonorrhoea.


Assuntos
Variação Antigênica/genética , Proteínas de Bactérias/genética , DNA Cruciforme/genética , Fímbrias Bacterianas/metabolismo , Neisseria gonorrhoeae/genética , Variação Antigênica/fisiologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Cruciforme/metabolismo , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/imunologia , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Gonorreia/microbiologia , Humanos , Modelos Genéticos , Neisseria gonorrhoeae/imunologia , Neisseria gonorrhoeae/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Genética/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transformação Bacteriana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA