Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
Arch Microbiol ; 206(9): 368, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107625

RESUMO

This study investigated crotamine (CTA), a peptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, known for its exceptional cell penetration potential. The objective was to explore the antibacterial and antifungal activity of CTA, its ability to inhibit efflux pumps and evaluate the effectiveness of its pharmacological combination with antibiotics and antifungals. In microbiological assays, CTA in combination with antibiotics was tested against strains of S. aureus and the inhibition of NorA, Tet(K) and MepA efflux pumps was also evaluated. CTA alone did not present clinically relevant direct antibacterial action, presenting MIC > 209.7 µM against strains S. aureus 1199B, IS-58, K2068. The standard efflux pump inhibitor CCCP showed significant effects in all negative relationships to assay reproducibility. Against the S. aureus 1199B strain, CTA (20.5 µM) associated with norfloxacin diluted 10 × (320.67 µM) showed a potentiating effect, in relation to the control. Against the S. aureus IS-58 strain, the CTA associated with tetracycline did not show a significant combinatorial effect, either with 2304 or 230.4 µM tetracycline. CTA at a concentration of 2.05 µM associated with ciprofloxacin at a concentration of 309.4 µM showed a significant potentiating effect. In association with EtBr, CTA at concentrations of 2.05 and 20.5 µM potentiated the effect in all strains tested, reducing the prevention of NorA, Tet(K) and MepA efflux pumps. In the C. albicans strain, a potentiating effect of fluconazole (334.3 µM) was observed when combined with CTA (2.05 µM). Against the C. tropicalis strain, a significant effect was also observed in the association of fluconazole 334.3 µM, where CTA 2.05 µM considerably reduced fungal growth and decreased the potentiation of fluconazole. Against the C. krusei strain, no significant potentiating effect of fluconazole was obtained by CTA. Our results indicate that CTA in pharmacological combination potentiates the effects of antibiotics and antifungal. This represents a new and promising antimicrobial strategy for treating a wide variety of infections.


Assuntos
Antibacterianos , Antifúngicos , Venenos de Crotalídeos , Crotalus , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Venenos de Crotalídeos/farmacologia , Animais , Staphylococcus aureus/efeitos dos fármacos , Sinergismo Farmacológico , Candida albicans/efeitos dos fármacos , Serpentes Peçonhentas
2.
Exp Clin Transplant ; 22(5): 399-401, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38970285

RESUMO

Envenomation of humans by snakes, a global health challenge, is poorly studied in liver transplant recipients. We report a case of rattlesnake envenomation in a 52-year-old female patient who had previously received a liver transplant to treat nonalcoholic steatohepatitis cirrhosis. Despite stable graft function since her transplant, she exhibited elevated liver enzymes on admission, with a mixed hepatocellular and cholestatic pattern. Treatment included CroFab Crotalidae polyvalent immune Fab (ovine) antivenom and close monitoring, with continuation of her standard immunosuppression regimen. Inpatient observation showed reduced swelling and pain but persistently elevated enzymes. Imaging indicated fatty infiltration with patent hepatic vasculature. Her liver enzymes improved spontaneously, and she was discharged after 5 days, with complete normalization of herliver enzyme levels as shown by repeated laboratory test results 1 month later. Our case emphasizes the risk of graftinjury in liver transplant recipients, as well as the need for vigilant monitoring and early antivenom administration. We urge furtherresearch to establish guidelines for optimal care in this unique population.


Assuntos
Antivenenos , Transplante de Fígado , Mordeduras de Serpentes , Humanos , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/complicações , Pessoa de Meia-Idade , Transplante de Fígado/efeitos adversos , Feminino , Antivenenos/uso terapêutico , Resultado do Tratamento , Animais , Venenos de Crotalídeos , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/cirurgia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Crotalus
3.
Lasers Med Sci ; 39(1): 171, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38965082

RESUMO

To evaluate the effects of red and infrared wavelengths, separately and combined, on the inflammatory process and collagen deposition in muscle damage caused by B. leucurus venom. 112 mice were inoculated with diluted venom (0.6mg/kg) in the gastrocnemius muscle. The animals were divided into four groups: one control (CG) and three treatments, namely: 1) red laser (λ=660 nm) (RG), 2) infrared laser (λ=808 nm) (IG) and 3) red laser (λ=660 nm) + infrared (λ=808 nm) (RIG). Each group was subdivided into four subgroups, according to the duration of treatment application (applications every 24 hours over evaluation times of up to 144 hours). A diode laser was used (0.1 W, CW, 1J/point, ED: 10 J/cm2). Both wavelengths reduced the intensity of inflammation and the combination between them significantly intensified the anti-inflammatory response. Photobiomodulation also changed the type of inflammatory infiltrate observed and RIG had the highest percentage of mononuclear cells in relation to the other groups. Hemorrhage intensity was significantly lower in treated animals and RIG had the highest number of individuals in which this variable was classified as mild. As for collagen deposition, there was a significant increase in RG in relation to CG, in RIG in relation to CG and in RIG in relation to IG. Photobiomodulation proved to be effective in the treatment of inflammation and hemorrhage caused by B. leucurus venom and stimulated collagen deposition. Better results were obtained with the combined wavelengths.


Assuntos
Bothrops , Colágeno , Venenos de Crotalídeos , Hemorragia , Inflamação , Terapia com Luz de Baixa Intensidade , Músculo Esquelético , Animais , Camundongos , Terapia com Luz de Baixa Intensidade/métodos , Músculo Esquelético/efeitos da radiação , Músculo Esquelético/efeitos dos fármacos , Hemorragia/patologia , Colágeno/metabolismo , Colágeno/análise , Venenos de Crotalídeos/toxicidade , Raios Infravermelhos , Masculino , Lasers Semicondutores/uso terapêutico , Mordeduras de Serpentes/radioterapia
4.
Artigo em Inglês | MEDLINE | ID: mdl-39002622

RESUMO

It is well known that C. d. terrificus venom causes pathophysiological effects such as neuropathies, coagulopathies, and even death. Previous studies have reported that ASC16 can interact with monomeric phospholipases A2 from the venom of various snake species (e.g., Vipera russelli and Echis carinatus). As a result, ASC16 has been proposed as an inhibitor of the toxic effects induced by the heterodimeric complex (crotoxin) and other components of the venom of C. d. terrificus. To investigate this further, in silico studies were designed using the crotoxin (CTX) protein complex as a model, and experimental assays were conducted to evaluate the inhibitory effect of ASC16 on CTX, as well as on other venom enzymes such as thrombin-like enzyme (TLE), phosphodiesterase (PDE) and l-aminoxidase (LAAO). For in vitro assays, specific substrates were used, and lethal activity was measured over 48 h using an in vivo murine experimental model (CF01). In silico studies have indicated that the hydrophilic portion of ASC16 adopts a stable conformation while interacting with the catalytic site of crotoxin. At the highest concentrations, ASC16 significantly inhibited the activities of PLA2 (40.89 ± 0.09 %), TLE (11.03 ± 0.69 %), PDE (51.33 ± 2.83 %), and LAAO (56.79 ± 2.91 %). Furthermore, ASC16 neutralized the 2 LD50 lethality of crotalic venom. These findings lay the groundwork for designing promising adjuvants that can facilitate the incorporation of a larger quantity of proteins in immunization schemes. Consequently, this approach aims to achieve higher antibody titers, reduce the number of required immunizations, and minimize local damage in the producer animal.


Assuntos
Venenos de Crotalídeos , Crotalus , Crotoxina , Animais , Camundongos , Venenos de Crotalídeos/toxicidade , Crotoxina/toxicidade , Simulação de Acoplamento Molecular , Antivenenos/farmacologia , Masculino , Fosfolipases A2/toxicidade , Fosfolipases A2/metabolismo , Serpentes Peçonhentas
5.
ACS Chem Neurosci ; 15(14): 2600-2611, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957957

RESUMO

Over a century has passed since Alois Alzheimer first described Alzheimer's disease (AD), and since then, researchers have made significant strides in understanding its pathology. One key feature of AD is the presence of amyloid-ß (Aß) peptides, which form amyloid plaques, and therefore, it is a primary target for treatment studies. Naturally occurring peptides have garnered attention for their potential pharmacological benefits, particularly in the central nervous system. In this study, nine peptide derivatives of Crotamine, a polypeptide from Crotalus durissus terrificus Rattlesnake venom, as well as one d-enantiomer, were evaluated for their ability to modulate Aß42 aggregation through various assays such as ThT, QIAD, SPR, and sFIDA. All tested peptides were able to decrease Aß42 aggregation and eliminate Aß42 aggregates. Additionally, all of the peptides showed an affinity for Aß42. This study is the first to describe the potential of crotamine derivative peptides against Aß42 aggregation and to identify a promising d-peptide that could be used as an effective pharmacological tool against AD in the future.


Assuntos
Peptídeos beta-Amiloides , Venenos de Crotalídeos , Fragmentos de Peptídeos , Peptídeos beta-Amiloides/metabolismo , Humanos , Animais , Agregados Proteicos/efeitos dos fármacos , Venenos de Serpentes/química , Peptídeos/farmacologia , Peptídeos/química , Crotalus
6.
Proc Biol Sci ; 291(2027): 20240719, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39079665

RESUMO

Understanding how environmental factors affect the performance of predators can provide profound insights into predator-prey interactions from evolutionary and ecological perspectives and the global distributional patterns of each taxon. Almost all venomous predators are ectotherms, with muscle contraction properties depending on temperature. For predators having venom transportation systems driven by muscle contraction, temperature may have quite large effects on envenomation performance for prey subjugation. Here, we used videography and enzyme-linked immunosorbent assay to examine thermal effects on envenomation kinematics and venom expenditure in predatory strikes of a venomous snake, the Mamushi Gloydius blomhoffii, to its main rodent prey at various body temperatures under both field and laboratory experimental conditions. Unexpectedly, we found that the thermal effects on envenomation performance are limited over nearly the entire ecologically relevant range of temperature (from 13.2°C to 26.2°C). Although temperature statistically significantly affected the mass of venom injected under field conditions, temperature explained only a minor proportion of the variation in venom expenditure. These findings suggest that the Mamushi is able to maintain prey subjugation performance across a wide range of temperatures, which is highly advantageous for ectothermic predators. Further studies should examine the underlying mechanisms of the limited thermal effects and their ubiquity across venomous predators.


Assuntos
Crotalinae , Comportamento Predatório , Animais , Crotalinae/fisiologia , Temperatura , Mordeduras de Serpentes , Venenos de Crotalídeos , População do Leste Asiático , Serpentes Peçonhentas
7.
Toxins (Basel) ; 16(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057931

RESUMO

This study investigated the intraspecific and interspecific variability in the venom effects of Agkistrodon viperid snake species and subspecies (eleven venoms total) on plasma clotting times, fibrinogen levels, and fibrin clot strength. Significant delays in plasma clotting time were observed for A. conanti, A. contortrix mokasen, A. contortrix phaeogaster, A. howardgloydi, A. piscivorus leucostoma, and A. piscivorus piscivorus. Notably, the phylogenetically disjunct lineages A. conanti, A. contortrix mokasen, and A. howardgloydi exhibited the most potent anticoagulant effects, indicating the independent amplification of a basal trait. Inhibition assays with the activated clotting enzymes Factors XIa, IXa, Xa, and IIa (thrombin) revealed that FXa inhibition is another basal trait amplified independently on multiple occasions within the genus, but with A. howardgloydi, notably more potent than all others. Phospholipid degradation and zymogen destruction were identified as mechanisms underlying the variability in venom effects observed experimentally and in previous clinical reports. Thromboelastography demonstrated that the venoms did not clot fibrinogen directly but affected fibrin clot strength by damaging fibrinogen and that thrombin was subsequently only able to cleave into weak, unstable clots. The ability to activate Protein C, an endogenous anticoagulant enzyme, varied across species, with some venoms exceeding that of A. contortrix contortrix, which previously yielded the protein diagnostic agent Protac®. Phylogenetic analysis suggested that both fibrinogen degradation and Protein C activation were each amplified multiple times within the genus, albeit with negative correlation between these two modes of action. This study highlights the evolutionary, clinical, and biodiscovery implications of venom variability in the Agkistrodon species, underscoring their dynamic evolution, emphasising the need for tailored clinical approaches, and highlighting the potential for novel diagnostic and therapeutic developments inspired by the unique properties of snake venoms.


Assuntos
Agkistrodon , Anticoagulantes , Coagulação Sanguínea , Venenos de Crotalídeos , Especificidade da Espécie , Anticoagulantes/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Fibrinogênio/metabolismo , Filogenia , Tromboelastografia
8.
Toxins (Basel) ; 16(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39057940

RESUMO

Envenoming resulting from snakebites is recognized as a priority neglected tropical disease by The World Health Organization. The Bothrops genus, consisting of different pitviper species, is considered the most medically significant taxa in Central and South America. Further research into Bothrops venom composition is important to aid in the development of safer and more effective snakebite treatments. In addition, the discovery of Bothrops toxins that could potentially be used for medical or diagnostic purposes is of interest to the pharmaceutical industry. This study aimed to employ high-throughput (HT) venomics to qualitatively analyze venom composition while utilizing coagulation bioassays for identifying coagulopathic toxins and characterizing coagulopathic activity in various Bothrops venoms. Using the recently demonstrated HT venomics workflow in combination with post-column coagulopathic bioassaying, focus was placed at anticoagulant toxins. Well-known procoagulant toxins were also investigated, taking into account that using the HT venomics workflow, procoagulant toxins are especially prone to denaturation during the reversed-phase chromatographic separations performed in the workflow. The findings revealed that the venoms of B. atrox and B. jararaca harbored procoagulant toxins, whereas those of B. alternatus and B. neuwiedi contained both procoagulant and anticoagulant toxins. In general, anticoagulation was associated with phospholipases A2s, while procoagulation was associated with snake venom metalloproteinases and snake venom serine proteases. These results showed the identification of coagulopathic venom toxins in the Bothrops venoms analyzed using multiple analytical methods that complement each other. Additionally, each venom underwent qualitative characterization of its composition.


Assuntos
Coagulação Sanguínea , Bothrops , Venenos de Crotalídeos , Ensaios de Triagem em Larga Escala , Animais , Venenos de Crotalídeos/química , Coagulação Sanguínea/efeitos dos fármacos , Bioensaio , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/análise , Humanos
9.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38928132

RESUMO

Ruthenium chloride (RuCl3) is widely utilized for synthesis and catalysis of numerous compounds in academia and industry and is utilized as a key molecule in a variety of compounds with medical applications. Interestingly, RuCl3 has been demonstrated to modulate human plasmatic coagulation and serves as a constituent of a compounded inorganic antivenom that neutralizes the coagulopathic effects of snake venom in vitro and in vivo. Using thrombelastography, this investigation sought to determine if RuCl3 inhibition of the fibrinogenolytic effects of Crotalus atrox venom could be modulated by vehicle composition in human plasma. Venom was exposed to RuCl3 in 0.9% NaCl, phosphate-buffered saline (PBS), or 0.9% NaCl containing 1% dimethyl sulfoxide (DMSO). RuCl3 inhibited venom-mediated delay in the onset of thrombus formation, decreased clot growth velocity, and decreased clot strength. PBS and DMSO enhanced the effects of RuCl3. It is concluded that while a Ru-based cation is responsible for significant inhibition of venom activity, a combination of Ru-based ions containing phosphate and DMSO enhances RuCl3-mediated venom inhibition. Additional investigation is indicated to determine what specific Ru-containing molecules cause venom inhibition and what other combinations of inorganic/organic compounds may enhance the antivenom effects of RuCl3.


Assuntos
Antivenenos , Coagulação Sanguínea , Venenos de Crotalídeos , Crotalus , Dimetil Sulfóxido , Humanos , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Antivenenos/farmacologia , Antivenenos/química , Venenos de Crotalídeos/antagonistas & inibidores , Venenos de Crotalídeos/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Compostos de Rutênio/farmacologia , Compostos de Rutênio/química , Cloreto de Sódio/farmacologia , Cloreto de Sódio/química , Tromboelastografia , Serpentes Peçonhentas
10.
Cells ; 13(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38920625

RESUMO

Envenomation by the Hypnale hypnale in the Western Ghats of India (particularly in the Malabar region of Kerala) and the subcontinent island nation of Sri Lanka is known to inflict devastating mortality and morbidity. Currently, H. hypnale bites in India are devoid of anti-venom regimens. A detailed characterization of the venom is essential to stress the need for therapeutic anti-venom. Notably, the deleterious effects of this venom on human blood cells have largely remained less explored. Therefore, in continuation of our previous study, in the present study, we envisioned investigating the effect of venom on the morphological and physiological properties of red blood cells (RBCs). The venom readily induced deleterious morphological changes and, finally, the aggregation of washed RBCs. The aggregation process was independent of the ROS and the intracellular Ca2+ ion concentration. Confocal and scanning electron microscopy (SEM) images revealed the loss of biconcave morphology and massive cytoskeletal disarray. Crenation or serrated plasma membrane projections were evenly distributed on the surface of the RBCs. The venom did not cause the formation of methemoglobin in washed RBCs but was significantly induced in whole blood. Venom did not affect glucose uptake and Na+/K+ -ATPase activity but inhibited glucose 6 phosphate dehydrogenase activity and decreased the fluidity of the plasma membrane. Venom-induced RBC aggregates exhibited pro-coagulant activity but without affecting platelet aggregation. In pre-incubation or co-treatment studies, none of the bioactive compounds, such as melatonin, curcumin, fisetin, berberine, and quercetin, sugars such as mannose and galactose, and therapeutic polyvalent anti-venoms (Bharat and VINS) were inhibited, whereas only N-acetylcysteine and H. hypnale monovalent anti-venom could inhibit venom-induced deleterious morphological changes and aggregation of RBCs. In post-treatment studies, paradoxically, none of the bioactives and anti-venoms, including N-acetylcysteine and H. hypnale monovalent anti-venom, reversed the venom-induced RBC aggregates.


Assuntos
Acetilcisteína , Venenos de Crotalídeos , Eritrócitos , Animais , Humanos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Acetilcisteína/farmacologia , Agregação Eritrocítica/efeitos dos fármacos , Antivenenos/farmacologia , Cálcio/metabolismo , Crotalinae , Espécies Reativas de Oxigênio/metabolismo
11.
Biomed Pharmacother ; 177: 116967, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908206

RESUMO

Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.


Assuntos
Injúria Renal Aguda , Metaloproteases , Mordeduras de Serpentes , Animais , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Camundongos , Masculino , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Mordeduras de Serpentes/tratamento farmacológico , Mordeduras de Serpentes/complicações , Inibidores de Fosfolipase A2/farmacologia , Fosfolipases A2/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Crotalinae , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Estresse Oxidativo/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/patologia , Venenos de Crotalídeos/toxicidade , Venenos de Serpentes , Apoptose/efeitos dos fármacos , Venenos Elapídicos
12.
Toxicon ; 247: 107826, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38909759

RESUMO

This case report presents an exotic envenomation by a Chinese snake, Protobothrops mangshanensis. Its venom exhibited potent activity against plasma and fibrinogen, among other enzymatic activities. The patient initially presented with edema of the right upper limb, without tissue necrosis. There were no signs of bleeding; however, severe hypofibrinogenemia was observed (nadir value at 0.4 g/L), with a marked increase in fibrinogen degradation products and D-dimers, without any other coagulation disturbances. In the absence of a specific antivenom available against Asian Crotalinae venoms, the patient was treated at the 29th hour after bite with six vials of Antivipmyn™ TRI (Instituto Bioclon, Mexico, Mexico), a Mexican antivenom initially intended for American Crotalinae venoms, i.e., Bothrops asper, Lachesis muta and Crotalus durissus. Fibrinogen began to rise 6 hours after the antivenom infusion and was within the normal range 38 hours later. The report also underscores the utility of ClotPro® (Haemonetics ®USA), a viscoelastic test, for real-time monitoring of the snakebite-related coagulopathy. The clotting time was extended to 188 seconds on the EX-test while the MCF was decreased to 31 mm on the EX-test and the AP-test and was not measurable on the FIB-test, confirming severe hypofibrinogenemia. In order to confirm the paraspecificity of antivenom on the venom of P. mangshanensis, we studied the experimental neutralization of the venom procoagulant effect by Antivipmyn TRI and Green Pit Viper antivenom, which has been used in previous published clinical cases of P. mangshanensis envenomation. Both Antivipmyn™ TRI and Green Pit Viper antivenom corrected the procoagulant effect induced by P. mangshanensis venom. These findings suggest that Antivipmyn™ TRI cross-reacts with Protobothrops mangshanensis venom. In the absence of antivenom covering Asian Crotalinae, Antivipmyn TRI should be considered to treat an envenomation by Protobothrops spp.


Assuntos
Antivenenos , Venenos de Crotalídeos , Mordeduras de Serpentes , Antivenenos/uso terapêutico , Animais , Mordeduras de Serpentes/tratamento farmacológico , Humanos , Venenos de Crotalídeos/toxicidade , Masculino , México , França , Crotalinae , Coagulação Sanguínea/efeitos dos fármacos , Fibrinogênio
13.
Toxicon ; 247: 107798, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38871030

RESUMO

We investigated the hemotoxic effects of three North American pit vipers in healthy human donor blood. Using experiments focusing on platelet and red blood cell activity, we found differential effects of these venoms on these cellular components. Platelet aggregation was most induced by C. adamanteus. Platelet activation was highest with C. atrox. Red blood cells had calcium expression and erythrocyte formation most induced by C. adamanteus and A. piscivorus. These results demonstrate the complex interplay of individual cellular effects with clinical presentations seen in envenomings from these species.


Assuntos
Plaquetas , Eritrócitos , Humanos , Eritrócitos/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Animais , Venenos de Crotalídeos/toxicidade , Agregação Plaquetária/efeitos dos fármacos , Cálcio/metabolismo , Cálcio/sangue , Ativação Plaquetária/efeitos dos fármacos , Crotalinae
14.
Toxicon ; 247: 107835, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942240

RESUMO

Serine peptidases and metallopeptidases are the primary toxins found in Bothrops snakes venoms, which act on proteins in the tissues of victims or prey, and release of peptides formed through proteolytic activity. Various studies have indicated that these peptides, released by the proteolytic activity of heterologous enzymes, generate molecules with unidentified functions, referred to as cryptids. To address this, we purified serine peptidases from Bothrops jararaca venom using molecular exclusion chromatography and then incubated them with the endogenous substrate myoglobin. As a control, we also incubated the substrate with trypsin. The resulting proteolytic fragments were analyzed, separated, and collected via HPLC. These fractions were then tested on cell cultures, the active fractions were sequenced (ALELFR and TGHPETLEK) and synthesized. After confirming their activity, the peptides underwent sequencing and synthesis for additional cell tests, including the increase of cell viability, cycle phases, proliferation, signaling, growth kinetics, angiogenesis, and migration. The results revealed that the synthesized peptides exhibited cellular repair properties, suggesting a potential role in tissue repair in the range of 0.05-5 µ M. Additionally, the effects of fragments resulting from myoglobin degradation isolated (ALELFR and TGHPETLEK) revealed a regenerative action on tissue.


Assuntos
Bothrops , Venenos de Crotalídeos , Mioglobina , Serina Proteases , Animais , Venenos de Crotalídeos/química , Serina Proteases/metabolismo , Serina Proteases/química , Mioglobina/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Humanos , Sobrevivência Celular/efeitos dos fármacos , Bothrops jararaca
15.
Toxicon ; 247: 107837, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945216

RESUMO

Camelid immunoglobulins represent a unique facet of antibody biology, challenging conventional understandings of antibody diversification. IgG2 and IgG3 in particular are composed solely of heavy chains and exhibit a reduced molecular weight (90 kDa); their elongated complementarity determining region (CDR) loops play a pivotal role in their functioning, delving deep into enzyme active sites with precision. Serum therapy stands as the primary venom-specific treatment for snakebite envenomation, harnessing purified antibodies available in diverse forms such as whole IgG, monovalent fragment antibody (Fab), or divalent fragment antibody F (ab')2. This investigation looks into the intricacies of IgGs derived from camelid serum previously immunized with crotamine and crotoxin, toxins predominantly in Crotalus durissus venom, exploring their recognition capacity, specificity, and cross-reactivity to snake venoms and its toxins. Initially, IgG purification employed affinity chromatography via protein A and G columns to segregate conventional antibodies (IgG1) from heavy chain antibodies (IgG2 and IgG3) of camelid isotypes sourced from Lama glama serum. Subsequent electrophoretic analysis (SDS-PAGE) revealed distinct bands corresponding to molecular weight profiles of IgG's fractions representing isotypes in Lama glama serum. ELISA cross-reactivity assays demonstrated all three IgG isotypes' ability to recognize the tested venoms. Notably, IgG1 exhibited the lowest interactivity in analyses involving bothropic and crotalic venoms. However, IgG2 and IgG3 displayed notable cross-reactivity, particularly with crotalic venoms and toxins, albeit with exceptions such as PLA2-CB, showing reduced reactivity, and C. atrox, where IgGs exhibited insignificant reactivity. In Western blot assays, IgG2 and IgG3 exhibited recognition of proteins within molecular weight (≈15 kDa) of C. d. collilineatus to C. d. terrificus, with some interaction observed even with bothropic proteins despite lower reactivity. These findings underscore the potential of camelid heavy-chain antibodies, suggesting Lama glama IgGs as prospective candidates for a novel class of serum therapies. However, further investigations are imperative to ascertain their suitability for serum therapy applications.


Assuntos
Antivenenos , Imunoglobulina G , Animais , Antivenenos/imunologia , Imunoglobulina G/imunologia , Crotalus/imunologia , Venenos de Crotalídeos/imunologia , Reações Cruzadas , Camelídeos Americanos/imunologia , Crotoxina/imunologia , Camelidae/imunologia
16.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928044

RESUMO

Eastern Diamondback Rattlesnake (Crotalus adamanteus) envenomation is a medical emergency encountered in the Southeastern United States. The venom contains a snake venom thrombin-like enzyme (SVTLE) that is defibrinogenating, causing coagulopathy without effects on platelets in humans. This investigation utilized thrombelastographic methods to document this coagulopathy kinetically on the molecular level in a rabbit model of envenomation via the analyses of whole blood samples without and with platelet inhibition. Subsequently, the administration of a novel ruthenium compound containing site-directed antivenom abrogated the coagulopathic effects of envenomation in whole blood without platelet inhibition and significantly diminished loss of coagulation in platelet-inhibited samples. This investigation provides coagulation kinetic insights into the molecular interactions and results of SVTLE on fibrinogen-dependent coagulation and confirmation of the efficacy of a ruthenium antivenom. These results serve as a rationale to investigate the coagulopathic effects of other venoms with this model and assess the efficacy of this site-directed antivenom.


Assuntos
Antivenenos , Coagulação Sanguínea , Venenos de Crotalídeos , Crotalus , Animais , Coelhos , Antivenenos/farmacologia , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/antagonistas & inibidores , Coagulação Sanguínea/efeitos dos fármacos , Tromboelastografia , Rutênio/química , Rutênio/farmacologia , Mordeduras de Serpentes/tratamento farmacológico , Masculino , Serpentes Peçonhentas
17.
Toxicon ; 247: 107793, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38838861

RESUMO

Bothrops atrox envenomations in the Brazilian Amazon are responsible for a number of local and systemic effects. Among these, stroke presents the worst prognosis for the patient since it may evolve into disabilities and/or premature death. This complication is caused by coagulation disorders and generates hemorrhagic and thrombotic conditions. This study presents a case report of a 54-year-old female patient who presented extensive cerebral ischemia after a B. atrox envenomation that occurred in the state of Amazonas, Brazil. The patient was hospitalized for 102 days, which included a stay in the intensive care unit. Clinical and laboratory findings indicated a thrombogenic coagulopathy. On discharge, the patient had no verbal response, partial motor response, and right hemiplegia. The assessment carried out four years after discharge evidenced incapacitation, global aphasia and bilateral lower and upper limbs showed hypotrophy with a global decrease in strength. Ischemic stroke is a possible complication of B. atrox snakebites even after antivenom treatment, with the potential to cause debilitating long-term consequences.


Assuntos
Antivenenos , Bothrops , Mordeduras de Serpentes , Mordeduras de Serpentes/complicações , Feminino , Pessoa de Meia-Idade , Animais , Humanos , Brasil , Antivenenos/uso terapêutico , AVC Isquêmico/etiologia , Venenos de Crotalídeos/toxicidade , Venenos de Crotalídeos/intoxicação , Isquemia Encefálica/etiologia , Bothrops atrox
18.
Toxicon ; 244: 107775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38782188

RESUMO

Patients occasionally present with reports of ocular exposure to fluids from rattlesnakes, claiming or suspecting the substance to be venom. This study set out to evaluate and characterize reported cases of suspected venom-induced ophthalmia in humans. A retrospective review of rattlesnake exposures reported to the Arizona Poison and Drug Information Center over a 24-year period was conducted for ocular exposures. Recorded information included patient demographics, clinical course, laboratory results, and treatments. Documentation regarding interactions between patients and snakes was reviewed by Arizona Poison and Drug Information Center herpetologists to evaluate what substance was expelled from the snake resulting in ocular exposure. Our review of rattlesnake encounters found a total of 26 ocular exposure cases. Patient demographics were largely intentional interactions and involved the male sex. Symptoms ranged from asymptomatic to minor effects with 46.2% managed from home and treated with fluid irrigation. A review of cases by herpetologists concluded the exposure patients commonly experienced was to snake musk. Kinematics of venom expulsion by rattlesnakes conclude the venom gland must be compressed, fangs erected to ≥60o, and fang sheath compressed against the roof of the mouth for venom expulsion. Evidence suggests the chance of venom "spitting" by rattlesnakes is close to zero. Rattlesnakes are documented to forcefully expel airborne malodorous "musk" defensively. An important distinction to remember is musk has a foul odor and is usually colorless, while venom is comparatively odorless and yellow. Rattlesnake venom-induced ophthalmia is a rare event as venom expulsion requires the kinematics of feeding or defensive bites. If the rattlesnake is not in the process of biting or otherwise contacting some other object with its mouth, it is more biologically plausible patients are being exposed to snake musk as a deterrent. Whether it's venom or musk, topical exposure to the eyes should prompt immediate irrigation.


Assuntos
Venenos de Crotalídeos , Crotalus , Mordeduras de Serpentes , Animais , Arizona , Humanos , Masculino , Estudos Retrospectivos , Feminino , Venenos de Crotalídeos/toxicidade , Adulto , Pessoa de Meia-Idade , Adolescente , Idoso , Criança , Olho/efeitos dos fármacos , Adulto Jovem , Centros de Controle de Intoxicações
19.
PLoS Negl Trop Dis ; 18(5): e0012227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814992

RESUMO

BACKGROUND: Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS: C2C12 myoblast cells were exposed to BjsuV (12.5 µg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кß, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-ß, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-ß, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE: These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.


Assuntos
Bothrops , Venenos de Crotalídeos , Citocinas , Terapia com Luz de Baixa Intensidade , Mioblastos , Miogenina , Animais , Mioblastos/efeitos dos fármacos , Mioblastos/efeitos da radiação , Mioblastos/metabolismo , Camundongos , Terapia com Luz de Baixa Intensidade/métodos , Citocinas/metabolismo , Linhagem Celular , Venenos de Crotalídeos/toxicidade , Miogenina/metabolismo , Miogenina/genética , Fator de Transcrição PAX7/metabolismo , Fator de Transcrição PAX7/genética , NF-kappa B/metabolismo , Proteína MyoD/metabolismo , Proteína MyoD/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Fator Regulador Miogênico 5/metabolismo , Fator Regulador Miogênico 5/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Mordeduras de Serpentes/radioterapia , Serpentes Peçonhentas
20.
Genome Biol Evol ; 16(7)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38753011

RESUMO

Understanding and predicting the relationships between genotype and phenotype is often challenging, largely due to the complex nature of eukaryotic gene regulation. A step towards this goal is to map how phenotypic diversity evolves through genomic changes that modify gene regulatory interactions. Using the Prairie Rattlesnake (Crotalus viridis) and related species, we integrate mRNA-seq, proteomic, ATAC-seq and whole-genome resequencing data to understand how specific evolutionary modifications to gene regulatory network components produce differences in venom gene expression. Through comparisons within and between species, we find a remarkably high degree of gene expression and regulatory network variation across even a shallow level of evolutionary divergence. We use these data to test hypotheses about the roles of specific trans-factors and cis-regulatory elements, how these roles may vary across venom genes and gene families, and how variation in regulatory systems drive diversity in venom phenotypes. Our results illustrate that differences in chromatin and genotype at regulatory elements play major roles in modulating expression. However, we also find that enhancer deletions, differences in transcription factor expression, and variation in activity of the insulator protein CTCF also likely impact venom phenotypes. Our findings provide insight into the diversity and gene-specificity of gene regulatory features and highlight the value of comparative studies to link gene regulatory network variation to phenotypic variation.


Assuntos
Venenos de Crotalídeos , Crotalus , Evolução Molecular , Animais , Crotalus/genética , Venenos de Crotalídeos/genética , Redes Reguladoras de Genes , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA