Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
BMC Microbiol ; 21(1): 298, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34715771

RESUMO

BACKGROUND: Akkermansia muciniphila is a member of the human gut microbiota where it resides in the mucus layer and uses mucin as the sole carbon, nitrogen and energy source. A. muciniphila is the only representative of the Verrucomicrobia phylum in the human gut. However, A. muciniphila 16S rRNA gene sequences have also been found in the intestines of many vertebrates. RESULTS: We detected A. muciniphila-like bacteria in the intestines of animals belonging to 15 out of 16 mammalian orders. In addition, other species belonging to the Verrucomicrobia phylum were detected in fecal samples. We isolated 10 new A. muciniphila strains from the feces of chimpanzee, siamang, mouse, pig, reindeer, horse and elephant. The physiology and genome of these strains were highly similar in comparison to the type strain A. muciniphila MucT. Overall, the genomes of the new strains showed high average nucleotide identity (93.9 to 99.7%). In these genomes, we detected considerable conservation of at least 75 of the 78 mucin degradation genes that were previously detected in the genome of the type strain MucT. CONCLUSIONS: The low genomic divergence observed in the new strains may indicate that A. muciniphila favors mucosal colonization independent of the differences in hosts. In addition, the conserved mucus degradation capability points towards a similar beneficial role of the new strains in regulating host metabolic health.


Assuntos
Genoma Bacteriano/genética , Mamíferos/microbiologia , Akkermansia/classificação , Akkermansia/genética , Akkermansia/isolamento & purificação , Akkermansia/metabolismo , Animais , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Variação Genética , Genômica , Humanos , Mamíferos/classificação , Camundongos , Mucinas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
2.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34623952

RESUMO

A bacterial strain designated 32AT was isolated from the skin of an Anderson's salamander (Ambystoma andersoni) and subjected to a comprehensive taxonomic study. The strain was Gram-stain-negative, rod-shaped, non-motile, oxidase- and urease-negative, and catalase-positive. 16S rRNA gene sequence comparisons placed the strain in the genus Luteolibacter with highest sequence similarities to Luteolibacter pohnpeiensis A4T-83T (95.2%), Luteolibacter gellanilyticus CB-286403T (95.1%) and Luteolibacter cuticulihirudinis E100T (94.9%). Genomic sequence analysis revealed a size of 5.3 Mbp, a G+C-content of 62.2 mol% and highest ANI values with Luteolibacter luteus (71.2%), Luteolibacter yonseiensis (71.4%) and L. pohnpeiensis (69.5%). In the polyamine pattern, 1,3-diaminopropane and spermidine were predominant. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The quinone system was composed of the major menaquinones MK-9 and MK-10. Major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, the unidentified aminolipid AL2, the unidentified phospholipid PL2 and the unidentified aminophospholipid APL1. The fatty acid profile contained major amounts of iso-C14:0, iso-C16:0, C16 : 0 and C16 : 1 ω9c. In addition, C14 : 0, C15:0, anteiso-C15 : 0, summed feature 2 (C14 : 0 3OH and/or iso-C16 : 0 I), and the hydroxylated fatty acids iso-C14 : 0 3OH, iso-C16 : 0 3OH and C16 : 0 3-OH were detected. Physiologically, strain 32AT is distinguishable from its next relatives. Based on phylogenetic, genomic, physiological and chemotaxonomic data, strain 32AT represents a novel species of the genus Luteolibacter for which we propose the name Luteolibacter ambystomatis sp. nov. The type strain is 32AT (=CCM 9141T=LMG 32214T).


Assuntos
Ambystoma , Filogenia , Pele/microbiologia , Verrucomicrobia/classificação , Ambystoma/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Verrucomicrobia/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
3.
Nat Commun ; 12(1): 5308, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489463

RESUMO

Climate change is altering the frequency and severity of drought events. Recent evidence indicates that drought may produce legacy effects on soil microbial communities. However, it is unclear whether precedent drought events lead to ecological memory formation, i.e., the capacity of past events to influence current ecosystem response trajectories. Here, we utilize a long-term field experiment in a mountain grassland in central Austria with an experimental layout comparing 10 years of recurrent drought events to a single drought event and ambient conditions. We show that recurrent droughts increase the dissimilarity of microbial communities compared to control and single drought events, and enhance soil multifunctionality during drought (calculated via measurements of potential enzymatic activities, soil nutrients, microbial biomass stoichiometry and belowground net primary productivity). Our results indicate that soil microbial community composition changes in concert with its functioning, with consequences for soil processes. The formation of ecological memory in soil under recurrent drought may enhance the resilience of ecosystem functioning against future drought events.


Assuntos
Secas/estatística & dados numéricos , Microbiota/fisiologia , Microbiologia do Solo , Solo/química , Água/análise , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Altitude , Áustria , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biomassa , Carbono/análise , Chloroflexi/classificação , Chloroflexi/genética , Chloroflexi/isolamento & purificação , Pradaria , Humanos , Nitrogênio/análise , Fósforo/análise , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/isolamento & purificação , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Enxofre/análise , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
4.
PLoS One ; 16(4): e0250354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872333

RESUMO

Constipation is a common condition that affects individuals of all ages, and prolonged constipation needs to be prevented to avoid potential complications and reduce the additional stress on individuals with pre-medical conditions. This study aimed to evaluate the effects of heat-inactivated Lactobacillus plantarum (HLp-nF1) on loperamide-induced constipation in rats. Constipation-induced male rats were treated orally with low to high doses of HLp-nF1 and an anti-constipation medication Dulcolax for five weeks. Study has 8 groups, control group; loperamide-treated group; Dulcolax-treated group; treatment with 3.2 × 1010, 8 × 1010 and 1.6 × 1011, cells/mL HLp-nF1; Loperamide + Dulcolax treated group. HLp-nF1 treated rats showed improvements in fecal pellet number, weight, water content, intestinal transit length, and contractility compared to the constipation-induced rats. Also, an increase in the intestine mucosal layer thickness and the number of mucin-producing crypt epithelial cells were observed in HLp-nF1-treated groups. Further, the levels of inflammatory cytokines levels were significantly downregulated by treatment with HLp-nF1 and Dulcolax. Notably, the metagenomics sequencing analysis demonstrated a similar genus pattern to the pre-preparation group and control with HLp-nF1 treatment. In conclusion, the administration of >3.2 × 1010 cells/mL HLp-nF1 has a positive impact on the constipated rats overall health.


Assuntos
Constipação Intestinal/terapia , Trânsito Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Lactobacillus plantarum/fisiologia , Laxantes/farmacologia , Metagenoma , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Actinobacteria/isolamento & purificação , Animais , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Bisacodil/farmacologia , Constipação Intestinal/induzido quimicamente , Constipação Intestinal/microbiologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fezes/microbiologia , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Trânsito Gastrointestinal/fisiologia , Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Mucosa Intestinal/microbiologia , Loperamida/efeitos adversos , Masculino , Viabilidade Microbiana , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/isolamento & purificação
5.
PLoS One ; 16(4): e0250423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914799

RESUMO

The tight association between malnutrition and gut microbiota (GM) dysbiosis enables microbiota-targeting intervention to be a promising strategy. Thus, we used a malnourished pig model to investigate the host response and GM alterations under different diet supplementation strategies. Pigs at age of 4 weeks were fed with pure maize diet to induce malnutrition symptoms, and followed by continuous feeding with maize (Maize, n = 8) or re-feeding using either corn-soy-blend (CSB+, n = 10) or millet-soy-blend based (MSB+, n = 10) supplementary food for 3 weeks. Meanwhile, 8 pigs were fed on a standard formulated ration as control (Ref). The effect of nutritional supplementation was assessed by the growth status, blood chemistry, gastrointestinal pathology, mucosal microbiota composition and colon production of short-chain fatty acids. Compared with purely maize-fed pigs, both CSB+ and MSB+ elevated the concentrations of total protein and globulin in blood. These pigs still showed most malnutrition symptoms after the food intervention period. MSB+ had superior influence on the GM development, exhibiting better performance in both structural and functional aspects. MSB+ pigs were colonized by less Proteobacteria but more Bacteroidetes, Firmicutes and Lachnospira spp. Pearson's correlation analysis indicated a strong correlation between the abundance of mucosal e.g., Faecalibacterium and Lachnospira spp. and body weight, crown-rump length and total serum protein. In conclusion, the malnutrition symptoms were accompanied by an aberrant GM, and millet-based nutritional supplementation showed promising potentials to restore the reduced GM diversity implicated in pig malnutrition.


Assuntos
Ração Animal/análise , Dieta/métodos , Disbiose/dietoterapia , Microbioma Gastrointestinal/fisiologia , Desnutrição/dietoterapia , Milhetes/química , Animais , Bacteroidetes/genética , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Biodiversidade , Proteínas Sanguíneas/agonistas , Proteínas Sanguíneas/metabolismo , Peso Corporal , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Clostridiales/isolamento & purificação , Disbiose/microbiologia , Disbiose/patologia , Faecalibacterium/genética , Faecalibacterium/crescimento & desenvolvimento , Faecalibacterium/isolamento & purificação , Ácidos Graxos Voláteis/biossíntese , Feminino , Firmicutes/genética , Firmicutes/crescimento & desenvolvimento , Firmicutes/isolamento & purificação , Desnutrição/microbiologia , Desnutrição/patologia , Proteobactérias/genética , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Glycine max/química , Suínos , Verrucomicrobia/genética , Verrucomicrobia/crescimento & desenvolvimento , Verrucomicrobia/isolamento & purificação , Zea mays/química
6.
Cell Rep Med ; 2(3): 100206, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33763652

RESUMO

Extremely low birth weight (ELBW) infants often develop an altered gut microbiota composition, which is related to clinical complications, such as necrotizing enterocolitis and sepsis. Probiotic supplementation may reduce these complications, and modulation of the gut microbiome is a potential mechanism underlying the probiotic effectiveness. In a randomized, double-blind, placebo-controlled trial, we assessed the effect of Lactobacillus reuteri supplementation, from birth to post-menstrual week (PMW)36, on infant gut microbiota. We performed 16S amplicon sequencing in 558 stool samples from 132 ELBW preterm infants at 1 week, 2 weeks, 3 weeks, 4 weeks, PMW36, and 2 years. Probiotic supplementation results in increased bacterial diversity and increased L. reuteri abundance during the 1st month. At 1 week, probiotic supplementation also results in a lower abundance of Enterobacteriaceae and Staphylococcaceae. No effects were found at 2 years. In conclusion, probiotics may exert benefits by modulating the gut microbiota composition during the 1st month in ELBW infants.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal/genética , Recém-Nascido de Peso Extremamente Baixo ao Nascer/crescimento & desenvolvimento , Lactente Extremamente Prematuro/crescimento & desenvolvimento , Limosilactobacillus reuteri/fisiologia , Probióticos/administração & dosagem , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodiversidade , Fezes/microbiologia , Feminino , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Fusobactérias/classificação , Fusobactérias/genética , Fusobactérias/isolamento & purificação , Humanos , Lactente , Masculino , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
7.
Int J Biol Macromol ; 172: 490-502, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472022

RESUMO

Pea starches, in both native (NPS) and retrograded-autoclaved forms (RAPS), were subjected to simulated gastrointestinal (GI) digestion in vitro, their multi-scale structural characteristics, morphological features, molecular distribution and thermal properties were characterized. A gradual increase in the short-/long-range crystallinity, melting enthalpy of gelatinization on increasing digestion time was observed for both the native and retrograded-autoclaved pea starch samples based on the X-ray diffraction, Fourier-transform infrared spectra, solid-state 13CNMR and differential scanning calorimetry measurements. It was especially noticed that the growth rate of crystallinity and double helices, as well as the decrease in Mw values were evidently greater for RAPS than for NPS. To investigate how different molecular fine structure of pea starch substrate affects the gut microbiota shifts and dynamic short-chain fatty acid profile, their resistant starch residues obtained from both native and retrograded-autoclaved pea starch after 8 h of simulated GI tract digestion was used as the fermentation substrate. The levels of acetate, propionate and butyrate gradually increased with the increasing fermentation time for NPS and RAPS. In comparison to the blank control (i.e., the group without the addition of carbohydrate), the fermented NPS and RAPS obviously resulted in an increased abundance of Firmicutes and Bacteroidetes, accompanied by a decrease in Proteobacteria, Actinobacteria and Verrucomicrobia. Both NPS and RAPS promoted different shifts in the microbial community at the genus level, with an increase in the abundance of Bacteroides, Megamonas and Bifidobacterium, as well as a reduction in the abundance of Fusobacterium, Faecalibacterium and Lachnoclostridium in comparison to the blank control samples.


Assuntos
Ácidos Graxos Voláteis/biossíntese , Microbioma Gastrointestinal/fisiologia , Pisum sativum/química , Amido Resistente/metabolismo , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Adulto , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , Materiais Biomiméticos/química , Configuração de Carboidratos , Ácidos Graxos Voláteis/classificação , Fezes/microbiologia , Feminino , Fermentação , Firmicutes/classificação , Firmicutes/isolamento & purificação , Firmicutes/metabolismo , Suco Gástrico/química , Humanos , Hidrólise , Masculino , Filogenia , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Amido Resistente/análise , Verrucomicrobia/classificação , Verrucomicrobia/isolamento & purificação , Verrucomicrobia/metabolismo
8.
Sci Rep ; 10(1): 20311, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219271

RESUMO

Taxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism characterization: (1) the presence of associated microorganisms (e.g.: symbionts, microbiome), (2) the mitochondrial genome of the host, (3) the symbiont genome. This approach aims to provide a deeper comprehension of the evolutionary/ecological dimensions of organisms since their very first description. Particularly interesting, are those complexes formed by the host plus associated microorganisms, that in the present study we refer to as "holobionts". We illustrate this approach through the description of the ciliate Euplotes vanleeuwenhoeki sp. nov. and its bacterial endosymbiont "Candidatus Pinguicoccus supinus" gen. nov., sp. nov. The endosymbiont possesses an extremely reduced genome (~ 163 kbp); intriguingly, this suggests a high integration between host and symbiont.


Assuntos
Euplotes/classificação , Simbiose/genética , Terminologia como Assunto , Verrucomicrobia/genética , Biologia Computacional , DNA Bacteriano/isolamento & purificação , Euplotes/genética , Euplotes/microbiologia , Euplotes/ultraestrutura , Genoma Bacteriano , Genoma Mitocondrial , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Filogenia , Verrucomicrobia/isolamento & purificação
9.
Int J Syst Evol Microbiol ; 70(11): 5654-5664, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32931410

RESUMO

A Gram-stain-negative, aerobic coccus, designated CK1056T, was isolated from coastal sediment of Xiaoshi Island, Weihai, PR China. Strain CK1056T was found to grow at 15-37 °C (optimum, 30 °C), with 0.5-6.5 % (w/v) NaCl (optimum, 3.5 %) and displayed alkaliphilic growth within the pH range of pH 6.5-10.0 (optimum, pH 8.0). The major fatty acids identified were iso-C15 : 0 and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The main polar lipids consisted of aminophosphoglycolipid and phosphatidylethanolamine. The predominant respiratory quinone was MK-7. The G+C content of the genomic DNA was 54.0 mol%. The result of the 16S rRNA gene sequence analysis confirmed the affiliation of this micro-organism to the family Puniceicoccaceae, with Coraliomargarita akajimensis KCTC 12865T as its closest relative with only 88.0 % sequence similarity. From the taxonomic data obtained in this study, we propose that the new marine isolate be placed into a novel species within a novel genus in the family Puniceicoccaceae, phylum Verrucomicrobia, for which the name Oceanipulchritudo coccoides gen. nov., sp. nov. is proposed. The type strain is CK1056T (=KCTC 72798T=MCCC 1H00425T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Verrucomicrobia/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Ilhas , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Verrucomicrobia/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
10.
Int J Syst Evol Microbiol ; 70(5): 3440-3448, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375956

RESUMO

Bacterial strain TWA-58T, isolated from irrigation water in Taiwan, was characterized using a polyphasic taxonomy approach. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain TWA-58T formed a phylogenetic lineage in the genus Oleiharenicola of the family Opitutaceae. Strain TWA-58T was most closely related to Oleiharenicola alkalitolerans NVTT with a 96.7 % 16S rRNA gene sequence similarity. Strain TWA-58T showed 75.2 % average nucleotide identity, 70.9 % average amino acid identity and 21.0 % digital DNA-DNA hybridization identity with O. alkalitolerans NVTT. Cells were Gram-stain-negative, aerobic, motile, coccoid-shaped and formed transparent colonies. Optimal growth occurred at 25 °C, pH 6, and 0 % NaCl. The major fatty acids of strain TWA-58T were iso-C15 : 0 and anteiso-C15 : 0. The predominant hydroxy fatty acid was iso-C13 : 0 3-OH. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified aminophospholipids. The major isoprenoid quinone was MK-7. Genomic DNA G+C content of strain TWA-58T was 65.3 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain TWA-58T should be classified in a novel species of the genus Oleiharenicola, for which the name Oleiharenicola lentus sp. nov. is proposed. The type strain is TWA-58T (=BCRC 81161T=LMG 31019T=KCTC 62872T).


Assuntos
Filogenia , Verrucomicrobia/classificação , Microbiologia da Água , Irrigação Agrícola , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan , Verrucomicrobia/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
Nat Microbiol ; 5(8): 1026-1039, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32451471

RESUMO

Brown algae are important players in the global carbon cycle by fixing carbon dioxide into 1 Gt of biomass annually, yet the fate of fucoidan-their major cell wall polysaccharide-remains poorly understood. Microbial degradation of fucoidans is slower than that of other polysaccharides, suggesting that fucoidans are more recalcitrant and may sequester carbon in the ocean. This may be due to the complex, branched and highly sulfated structure of fucoidans, which also varies among species of brown algae. Here, we show that 'Lentimonas' sp. CC4, belonging to the Verrucomicrobia, acquired a remarkably complex machinery for the degradation of six different fucoidans. The strain accumulated 284 putative fucoidanases, including glycoside hydrolases, sulfatases and carbohydrate esterases, which are primarily located on a 0.89-megabase pair plasmid. Proteomics reveals that these enzymes assemble into substrate-specific pathways requiring about 100 enzymes per fucoidan from different species of brown algae. These enzymes depolymerize fucoidan into fucose, which is metabolized in a proteome-costly bacterial microcompartment that spatially constrains the metabolism of the toxic intermediate lactaldehyde. Marine metagenomes and microbial genomes show that Verrucomicrobia including 'Lentimonas' are abundant and highly specialized degraders of fucoidans and other complex polysaccharides. Overall, the complexity of the pathways underscores why fucoidans are probably recalcitrant and more slowly degraded, since only highly specialized organisms can effectively degrade them in the ocean.


Assuntos
Phaeophyceae/metabolismo , Polissacarídeos/metabolismo , Verrucomicrobia/enzimologia , Verrucomicrobia/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Esterases , Genes Bacterianos/genética , Glicosídeo Hidrolases , Redes e Vias Metabólicas , Metagenoma , Filogenia , Proteoma , Especificidade por Substrato , Sulfatases , Sulfatos/metabolismo , Transcriptoma , Estados Unidos , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
12.
Sci Rep ; 10(1): 8692, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457320

RESUMO

Despite the relevance of complex root microbial communities for plant health, growth and productivity, the molecular basis of these plant-microbe interactions is not well understood. Verrucomicrobia are cosmopolitans in the rhizosphere, nevertheless their adaptations and functions are enigmatic since the proportion of cultured members is low. Here we report four cultivated Verrucomicrobia isolated from rice, putatively representing four novel species, and a novel subdivision. The aerobic strains were isolated from roots or rhizomes of Oryza sativa and O. longistaminata. Two of them are the first cultivated endophytes of Verrucomicrobia, as validated by confocal laser scanning microscopy inside rice roots after re-infection under sterile conditions. This extended known verrucomicrobial niche spaces. Two strains were promoting root growth of rice. Discovery of root compartment-specific Verrucomicrobia permitted an across-phylum comparison of the genomic conformance to life in soil, rhizoplane or inside roots. Genome-wide protein domain comparison with niche-specific reference bacteria from distant phyla revealed signature protein domains which differentiated lifestyles in these microhabitats. Our study enabled us to shed light into the dark microbial matter of root Verrucomicrobia, to define genetic drivers for niche adaptation of bacteria to plant roots, and provides cultured strains for revealing causal relationships in plant-microbe interactions by reductionist approaches.


Assuntos
Oryza/microbiologia , Verrucomicrobia/fisiologia , Microscopia Confocal , Oryza/crescimento & desenvolvimento , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Rizosfera , Microbiologia do Solo , Verrucomicrobia/classificação , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
13.
Nat Med ; 26(4): 589-598, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32235930

RESUMO

Direct evidence in humans for the impact of the microbiome on nutrient absorption is lacking. We conducted an extended inpatient study using two interventions that we hypothesized would alter the gut microbiome and nutrient absorption. In each, stool calorie loss, a direct proxy of nutrient absorption, was measured. The first phase was a randomized cross-over dietary intervention in which all participants underwent in random order 3 d of over- and underfeeding. The second was a randomized, double-blind, placebo-controlled pharmacologic intervention using oral vancomycin or matching placebo (NCT02037295). Twenty-seven volunteers (17 men and 10 women, age 35.1 ± 7.3, BMI 32.3 ± 8.0), who were healthy other than having impaired glucose tolerance and obesity, were enrolled and 25 completed the entire trial. The primary endpoints were the effects of dietary and pharmacological intervention on stool calorie loss. We hypothesized that stool calories expressed as percentage of caloric intake would increase with underfeeding compared with overfeeding and increase during oral vancomycin treatment. Both primary endpoints were met. Greater stool calorie loss was observed during underfeeding relative to overfeeding and during vancomycin treatment compared with placebo. Key secondary endpoints were to evaluate the changes in gut microbial community structure as evidenced by amplicon sequencing and metagenomics. We observed only a modest perturbation of gut microbial community structure with under- versus overfeeding but a more widespread change in community structure with reduced diversity with oral vancomycin. Increase in Akkermansia muciniphila was common to both interventions that resulted in greater stool calorie loss. These results indicate that nutrient absorption is sensitive to environmental perturbations and support the translational relevance of preclinical models demonstrating a possible causal role for the gut microbiome in dietary energy harvest.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Desnutrição/metabolismo , Desnutrição/microbiologia , Nutrientes/farmacocinética , Vancomicina/administração & dosagem , Administração Oral , Adolescente , Adulto , Restrição Calórica , Estudos Cross-Over , Dieta , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vancomicina/farmacologia , Verrucomicrobia/isolamento & purificação , Adulto Jovem
14.
Molecules ; 25(3)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033507

RESUMO

The allicin diallyldisulfid-S-oxide, a major garlic organosulfur compound (OSC) in crushed garlic (Allium sativum L.), possesses antibacterial effects, and influences gut bacteria. In this study, we made allicin-free garlic (AFG) extract and investigated its effects on gut microbiome. C57BL/6N male mice were randomly divided into 6 groups and fed normal diet (ND) and high-fat diet (HFD) supplemented with or without AFG in concentrations of 1% and 5% for 11 weeks. The genomic DNAs of feces were used to identify the gut microbiome by sequencing 16S rRNA genes. The results revealed that the ratio of p-Firmicutes to p-Bacteroidetes increased by aging and HFD was reduced by AFG. In particular, the f-Lachnospiraceae, g-Akkermansia, and g-Lactobacillus decreased by aging and HFD was enhanced by AFG. The g-Dorea increased by aging and HFD decreased by AFG. In addition, the ratio of glutamic-pyruvic transaminase to glutamic-oxaloacetic transaminase (GPT/GOT) in serum was significantly increased in the HFD group and decreased by AFG. In summary, our data demonstrated that dietary intervention with AFG is a potential way to balance the gut microbiome disturbed by a high-fat diet.


Assuntos
Antibacterianos/farmacologia , Suplementos Nutricionais , Alho/química , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/isolamento & purificação , Dieta Hiperlipídica , Dissulfetos , Firmicutes/efeitos dos fármacos , Firmicutes/isolamento & purificação , Alho/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Sulfínicos/análise , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/isolamento & purificação
15.
Sci Rep ; 10(1): 2719, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066764

RESUMO

The white leg Litopenaeus vannamei shrimp is of importance to the eastern Pacific fisheries and aquaculture industry but suffer from diseases such as the recently emerged early mortality syndrome. Many bacterial pathogens have been identified but the L. vannamei microbiota is still poorly known. Using a next-generation sequencing (NGS) approach, this work evaluated the impact of the inclusion in the diet of mannan oligosaccharide, (MOS, 0.5% w/w), over the L. vannamei microbiota and production behavior of L. vannamei under intensive cultivation in Ecuador. The MOS supplementation lasted for 60 days, after which the shrimp in the ponds were harvested, and the production data were collected. MOS improved productivity outcomes by increasing shrimp survival by 30%. NGS revealed quantitative differences in the shrimp microbiota between MOS and control conditions. In the treatment with inclusion of dietary MOS, the predominant phylum was Actinobacteria (28%); while the control group was dominated by the phylum Proteobacteria (30%). MOS has also been linked to an increased prevalence of Lactococcus- and Verrucomicrobiaceae-like bacteria. Furthermore, under the treatment of MOS, the prevalence of potential opportunistic pathogens, like Vibrio, Aeromonas, Bergeyella and Shewanella, was negligible. This may be attributable to MOS blocking the adhesion of pathogens to the surfaces of the host tissues. Together, these findings point to the fact that the performance (survival) improvements of the dietary MOS may be linked to the impact on the microbiota, since bacterial lines with pathogenic potential towards shrimps were excluded in the gut.


Assuntos
Actinobacteria/fisiologia , Aquicultura/métodos , Mananas/administração & dosagem , Microbiota , Oligossacarídeos/administração & dosagem , Penaeidae/microbiologia , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Aeromonas/isolamento & purificação , Aeromonas/patogenicidade , Ração Animal , Animais , Aderência Bacteriana , Equador , Flavobacteriaceae/isolamento & purificação , Flavobacteriaceae/patogenicidade , Lactococcus/isolamento & purificação , Lactococcus/fisiologia , Longevidade/fisiologia , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Proteobactérias/fisiologia , Alimentos Marinhos/microbiologia , Alimentos Marinhos/provisão & distribuição , Shewanella/isolamento & purificação , Shewanella/patogenicidade , Verrucomicrobia/classificação , Verrucomicrobia/isolamento & purificação , Verrucomicrobia/fisiologia , Vibrio/isolamento & purificação , Vibrio/patogenicidade
16.
Int J Syst Evol Microbiol ; 70(3): 2108-2114, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32038004

RESUMO

The Gram-stain-negative, aerobic, non-motile, oxidase- and catalase-positive, rod-shaped yellow-coloured bacterial strain MG-N-17T was isolated from a water sample of Lake Ferto/Neusiedler See (Hungary). Results of phylogenetic analysis based on the 16S rRNA gene sequence revealed that the strain forms a distinct linage within the family Verrucomicrobiaceae of the phylum Verrucomicrobia, and its closest relatives are Verrucomicrobium spinosum DSM 4136T (94.38 %) and Roseimicrobium gellanilyticum DC2a-G7T (91.55 %). The novel bacterial strain prefers a weak alkaline environment and grows optimally between 22-28 °C in the absence of NaCl. The major isoprenoid quinones are MK-10, MK-11, MK-12 and MK-9. The major cellular fatty acids are anteiso-C15 : 0, C16 : 0, C16 : 1ω5c and iso-C14 : 0. The polar lipid profile contains phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and four unidentified glycolipids. The assembled draft genome of strain MG-N-17T had 44 contigs with an N50 value 348255 nt, 56.5× genome coverage, total length of 5 910 933 bp and G+C content of 56.9 mol%. Strain MG-N-17T (=DSM 106674T=NCAIM B.02643T) is proposed as the type strain of a new genus and species in the family Verrucomicrobiaceae, for which the name Phragmitibacter flavus gen. nov., sp. nov. is proposed.


Assuntos
Lagos/microbiologia , Filogenia , Verrucomicrobia/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hungria , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Verrucomicrobia/isolamento & purificação , Vitamina K 2/química
17.
Nat Microbiol ; 5(4): 630-641, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31959968

RESUMO

Intestinal microbiotas contain beneficial microorganisms that protect against pathogen colonization; treatment with antibiotics disrupts the microbiota and compromises colonization resistance. Here, we determine the impact of exchanging microorganisms between hosts on resilience to the colonization of invaders after antibiotic-induced dysbiosis. We assess the functional consequences of dysbiosis using a mouse model of colonization resistance against Escherichia coli. Antibiotics caused stochastic loss of members of the microbiota, but the microbiotas of co-housed mice remained more similar to each other compared with the microbiotas among singly housed animals. Strikingly, co-housed mice maintained colonization resistance after treatment with antibiotics, whereas most singly housed mice were susceptible to E. coli. The ability to retain or share the commensal Klebsiella michiganensis, a member of the Enterobacteriaceae family, was sufficient for colonization resistance after treatment with antibiotics. K. michiganensis generally outcompeted E. coli in vitro, but in vivo administration of galactitol-a nutrient that supports the growth of only E. coli-to bi-colonized gnotobiotic mice abolished the colonization-resistance capacity of K. michiganensis against E. coli, supporting the idea that nutrient competition is the primary interaction mechanism. K. michiganensis also hampered colonization of the pathogen Salmonella, prolonging host survival. Our results address functional consequences of the stochastic effects of microbiota perturbations, whereby microbial transmission through host interactions can facilitate reacquisition of beneficial commensals, minimizing the negative impact of antibiotics.


Assuntos
Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Klebsiella/fisiologia , Interações Microbianas , Simbiose/fisiologia , Animais , Antibacterianos/farmacologia , Bacteroidetes/classificação , Bacteroidetes/isolamento & purificação , Ciprofloxacina/farmacologia , Contagem de Colônia Microbiana , Disbiose/induzido quimicamente , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Firmicutes/classificação , Firmicutes/isolamento & purificação , Vida Livre de Germes , Klebsiella/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Estreptomicina/farmacologia , Verrucomicrobia/classificação , Verrucomicrobia/isolamento & purificação
18.
Int J Syst Evol Microbiol ; 70(3): 1830-1836, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31958053

RESUMO

The bacterial strain 53C-WASEF was isolated from a small freshwater ditch located in Eugendorf, Austria. Phylogenetic reconstructions with 16S rRNA gene sequences and genome based, with amino acid sequences obtained from 105 single copy genes, suggested that the strain represents a new genus and a new species within the family Opitutaceae, which belongs to the class Opitutae of the phylum Verrucomicrobia. Comparisons of the 16S rRNA gene sequence of strain 53C-WASEF with those of related type strains revealed a highest sequence similarity of 93.5 % to Nibricoccus aquaticus and of 92.9 % to Geminisphaera colitermitum. Interestingly, phylogentic trees indicated the latter as being the closest known relative of the new strain. Phenotypic, chemotaxonomic and genomic traits were investigated. Cells were observed to be small, spherical, motile and unpigmented, and grew chemoorganotrophically and aerobically. The respiratory quinone was MK-7, the predominant fatty acids were anteiso-C15 : 0, C16 : 1ω5c and C16 : 0. The identified polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Genome sequencing revealed genes putatively encoding for flagella synthesis and cellulose degradation. The genome size was 4.1 Mbp and the G+C content 60.6 mol%. For the new genus and the new species, we propose the name Rariglobus hedericola gen. nov., sp. nov. (=CIP 111665T=DSM 109123T).


Assuntos
Água Doce/microbiologia , Filogenia , Verrucomicrobia/classificação , Microbiologia da Água , Áustria , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Verrucomicrobia/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
PLoS One ; 15(1): e0227373, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31910227

RESUMO

METHODS: Patients transplanted at our institution provided fecal samples before, and 3-9 months after KT. Fecal bacterial DNA was extracted and 9 bacteria or bacterial groups were quantified by qPCR. RESULTS: 50 patients (19 controls without diabetes, 15 who developed New Onset Diabetes After Transplantation, NODAT, and 16 with type 2 diabetes before KT) were included. Before KT, Lactobacillus sp. tended to be less frequently detected in controls than in those who would become diabetic following KT (NODAT) and in initially diabetic patients (60%, 87.5%, and 100%, respectively, p = 0.08). The relative abundance of Faecalibacterium prausnitzii was 30 times lower in initially diabetic patients than in controls (p = 0.002). The relative abundance of F. prausnitzii of NODAT patients was statistically indistinguishable from controls and from diabetic patients. The relative abundance of Lactobacillus sp. increased following KT in NODAT and in initially diabetic patients (20-fold, p = 0.06, and 25-fold, p = 0.02, respectively). In contrast, the proportion of Akkermansia muciniphila decreased following KT in NODAT and in initially diabetic patients (2,500-fold, p = 0.04, and 50,000-fold, p<0.0001, respectively). The proportion of Lactobacillus and A. muciniphila did not change in controls between before and after the transplantation. Consequently, after KT the relative abundance of Lactobacillus sp. was 25 times higher (p = 0.07) and the relative abundance of A. muciniphila was 2,000 times lower (p = 0.002) in diabetics than in controls. CONCLUSION: An alteration of the gut microbiota composition involving Lactobacillus sp., A. muciniphila and F. prausnitzii is associated with the glycemic status in KT recipients, raising the question of their role in the genesis of NODAT.


Assuntos
DNA Bacteriano/genética , Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/genética , Transplante de Rim/efeitos adversos , Akkermansia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Faecalibacterium prausnitzii/genética , Faecalibacterium prausnitzii/isolamento & purificação , Faecalibacterium prausnitzii/metabolismo , Fezes/microbiologia , Feminino , Humanos , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação , Verrucomicrobia/metabolismo
20.
J Ethnopharmacol ; 247: 112299, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31606537

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Hua-Feng-Dan (HFD) is a traditional Chinese medicine used for neurological disorders. HFD contains cinnabar (HgS) and realgar (As4S4). The ethnopharmacological basis of cinnabar and realgar in HFD is not known. AIM OF THE STUDY: To address the role of cinnabar and realgar in HFD-produced neuroprotection against neurodegenerative diseases and disturbance of gut microbiota. MATERIALS AND METHODS: Lipopolysaccharide (LPS) plus rotenone (ROT)-elicited rat dopaminergic (DA) neuronal damage loss was performed as a Parkinson's disease animal model. Rats were given a single injection of LPS. Four months later, rats were challenged with the threshold dose of ROT. The clinical dose of HFD was administered via feed, starting from ROT administration for 46 days. Behavioral dysfunction was detected by rotarod and Y-maze tests. DA neuron loss and microglial activation were assessed via immunohistochemical staining and western bolt analysis. The colon content was collected to extract bacterial DNA followed by real-time PCR analysis with 16S rRNA primers. RESULTS: LPS plus ROT induced neurotoxicity, as evidenced by DA neuron loss in substantia nigra, impaired behavioral functions and increased microglial activation. HFD-original (containing 10% cinnabar and 10% realgar) rescued loss of DA neurons, improved behavioral dysfunction and attenuated microglial activation. Compared with HFD-original, HFD-reduced (3% cinnabar and 3% realgar) was also effective, but to be a less extent, while HFD-removed (without cinnabar and realgar) was ineffective. In analysis of gut microbiome, the increased Verrucomicrobiaceae and Lactobacteriaceae, and the decreased Enterobacteeriaceae by LPS plus ROT were ameliorated by HFD-original, and to be the less extent by HFD-reduced. CONCLUSION: Cinnabar and realgar are active ingredients in HFD to exert beneficial effects in a neurodegenerative model and gut microbiota.


Assuntos
Arsenicais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Compostos de Mercúrio/farmacologia , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/tratamento farmacológico , Sulfetos/farmacologia , Animais , Arsenicais/química , Arsenicais/uso terapêutico , DNA Bacteriano/isolamento & purificação , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/uso terapêutico , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Etnofarmacologia , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Lactobacillaceae/efeitos dos fármacos , Lactobacillaceae/genética , Lactobacillaceae/isolamento & purificação , Lipopolissacarídeos/toxicidade , Masculino , Compostos de Mercúrio/química , Compostos de Mercúrio/uso terapêutico , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/patologia , Degeneração Neural , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/imunologia , Síndromes Neurotóxicas/patologia , RNA Ribossômico 16S/genética , Ratos , Rotenona/toxicidade , Sulfetos/química , Sulfetos/uso terapêutico , Verrucomicrobia/efeitos dos fármacos , Verrucomicrobia/genética , Verrucomicrobia/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA