RESUMO
The RNA binding protein is crucial for gene regulation at the post transcription level. In this study, functions of the DUF1127-containing protein and ProQ, which are RNA-binding proteins, were revealed in Vibrio alginolyticus. DUF1127 deletion increased the ability of biofilm formation, whereas ProQ deletion reduced the amount of biofilm. Moreover, extracellular proteinase secretion was significantly reduced in the DUF1127 deletion strain. ProQ, not DUF1127-containing protein, can help the cell to defense oxidative stress. Deletion of DUF1127 resulted in a higher ROS level in the cell, however, ProQ deletion showed no difference. RNA-seq unveiled the expression of genes involved in extracellular protease secretion were significantly downregulated and biofilm synthesis-related genes, such as rbsB and alsS, were differentially expressed in the DUF1127 deletion strain. ProQ affected the expression of genes involved in biofilm synthesis (flgC and flgE), virulence (betB and hutG), and oxidative stress. Moreover, the DUF1127-containing and ProQ affected the mRNA levels of various regulators, such as LysR and BetI. Overall, our study revealed that the DUF1127-containing protein and ProQ have crucial functions on biofilm formation in V. alginolyticus.
Assuntos
Proteínas de Bactérias , Biofilmes , Regulação Bacteriana da Expressão Gênica , Estresse Oxidativo , Vibrio alginolyticus , Biofilmes/crescimento & desenvolvimento , Vibrio alginolyticus/genética , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Virulência/genética , Deleção de Genes , Espécies Reativas de Oxigênio/metabolismoRESUMO
This study investigated a disease outbreak characterized by caligid copepod infestations and subsequent secondary bacterial infections in European seabass (Dicentrarchus labrax) and flathead grey mullet (Mugil cephalus) cultivated at a private facility in the Deeba Triangle region of Egypt. Moribund fish displayed brown spots on the skin, tongue, and gills, along with lethargy and excess mucus. The fish suffered severe infections, exhibiting external hemorrhages, ulcers, and ascites. The fish had pale, enlarged livers with hemorrhaging. Comprehensive parasitological, bacteriological, molecular, immunity and histopathological analyses were conducted to identify the etiological agents and pathological changes. Caligid copepod infestation was observed in wet mounts from the buccal and branchial cavities of all examined fish, and the caligids were identified as Caligus clemensi through COI gene sequencing and phylogenetic analysis. Vibrio alginolyticus was confirmed as a secondary bacterial infection through biochemical tests, recA gene sequencing, and phylogenetic analyses. Antibiotic susceptibility testing revealed resistance to ß-lactams, aminoglycosides, and trimethoprim-sulfamethoxazole in V. alginolyticus isolates. Upregulation of the inflammatory marker IL-1ß in gill and skin tissues indicated a robust cell-mediated immune response against the pathogens. Histopathological examination revealed severe tissue damage, hyperplasia, hemorrhage, and congestion in the gills, along with hepatocellular degeneration and steatosis in the liver, providing initial insights into this outbreak. A comprehensive therapeutic regimen was implemented, comprising prolonged hydrogen peroxide immersion baths, followed by the application of the nature-identical plant-based compound Lice-less and probiotic Sanolife Pro-W supplementation. This integrated approach effectively eliminated C. clemensi infestations, controlled secondary bacterial infections, and restored fish health, reducing morbidity and mortality rates to minimal levels.
Assuntos
Coinfecção , Doenças dos Peixes , Vibrio alginolyticus , Animais , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/patogenicidade , Coinfecção/microbiologia , Doenças dos Peixes/microbiologia , Vibrioses/veterinária , Vibrioses/tratamento farmacológico , Vibrioses/microbiologia , Copépodes/fisiologia , Copépodes/microbiologia , Bass/microbiologia , Filogenia , AquiculturaRESUMO
This study investigates the prolonged effect of immune disease resistance in Litopenaeus vannamei through the administration of tyramine (TA) formulated with polyethylene glycol (PEG). Facing the challenges of intensive farming, environmental stress, and global climate changes, innovative approaches to improve shrimp health are essential. The research focuses on the role of biogenic amines in stress response and immune regulation, demonstrating that TA, especially when combined with PEG, significantly prolongs immunity and resistance against Vibrio alginolyticus. The experimental design included administering TA, PEG, and TA-PEG, followed by evaluations of immunity, lactate and glucose levels, and immune-related gene expressions. Results showed notable prolonged effects in total hemocyte count, phenoloxidase activity, and phagocytic activity in the TA-PEG group, indicating enhanced immune activation period. Additionally, the expression of prophenoloxidase system-related genes was significantly upregulated in the TA-PEG group. Furthermore, the TA-PEG group exhibited a significantly higher survival rate in a susceptibility test against V. alginolyticus. The results of this study confirm that the combined use of PEG can effectively extend the immunostimulatory duration of TA.
Assuntos
Resistência à Doença , Hemócitos , Penaeidae , Polietilenoglicóis , Tiramina , Vibrio alginolyticus , Animais , Penaeidae/imunologia , Polietilenoglicóis/química , Polietilenoglicóis/administração & dosagem , Vibrio alginolyticus/imunologia , Vibrio alginolyticus/fisiologia , Resistência à Doença/imunologia , Resistência à Doença/genética , Hemócitos/imunologia , Catecol Oxidase/metabolismo , Imunidade Inata , Vibrioses/imunologia , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Fagocitose , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Proteínas de Artrópodes/imunologia , Adjuvantes Imunológicos/administração & dosagemRESUMO
Acetylation modification has become one of the most popular topics in protein post-translational modification (PTM) research and plays an important role in bacterial virulence. A previous study indicated that the virulence-associated caseinolytic protease proteolytic subunit (ClpP) is acetylated at the K165 site in Vibrio alginolyticus strain HY9901, but its regulation regarding the virulence of V. alginolyticus is still unknown. We further confirmed that ClpP undergoes lysine acetylation (Kace) modification by immunoprecipitation and Western blot analysis and constructed the complementation strain (C-clpP) and site-directed mutagenesis strains including K165Q and K165R. The K165R strain significantly increased biofilm formation at 36 h of incubation, and K165Q significantly decreased biofilm formation at 24 h of incubation. However, the acetylation modification of ClpP did not affect the extracellular protease (ECPase) activity. In addition, we found that the virulence of K165Q was significantly reduced in zebrafish by in vivo injection. To further study the effect of lysine acetylation on the pathogenicity of V. alginolyticus, GS cells were infected with four strains, namely HY9901, C-clpP, K165Q and K165R. This indicated that the effect of the K165Q strain on cytotoxicity was significantly reduced compared with the wild-type strain, while K165R showed similar levels to the wild-type strain. In summary, the results of this study indicate that the Kace of ClpP is involved in the regulation of the virulence of V. alginolyticus.
Assuntos
Biofilmes , Endopeptidase Clp , Lisina , Processamento de Proteína Pós-Traducional , Vibrio alginolyticus , Peixe-Zebra , Vibrio alginolyticus/patogenicidade , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Acetilação , Lisina/metabolismo , Virulência , Endopeptidase Clp/metabolismo , Endopeptidase Clp/genética , Animais , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genéticaRESUMO
The marine bacterium Vibrio alginolyticus possesses a polar flagellum driven by a sodium ion flow. The main components of the flagellar motor are the stator and rotor. The C-ring and MS-ring, which are composed of FliG and FliF, respectively, are parts of the rotor. Here, we purified an MS-ring composed of FliF-FliG fusion proteins and solved the near-atomic resolution structure of the S-ring-the upper part of the MS-ring-using cryo-electron microscopy. This is the first report of an S-ring structure from Vibrio, whereas, previously, only those from Salmonella have been reported. The Vibrio S-ring structure reveals novel features compared with that of Salmonella, such as tilt angle differences of the RBM3 domain and the ß-collar region, which contribute to the vertical arrangement of the upper part of the ß-collar region despite the diversity in the RBM3 domain angles. Additionally, there is a decrease of the inter-subunit interaction between RBM3 domains, which influences the efficiency of the MS-ring formation in different bacterial species. Furthermore, although the inner-surface electrostatic properties of Vibrio and Salmonella S-rings are altered, the residues potentially interacting with other flagellar components, such as FliE and FlgB, are well structurally conserved in the Vibrio S-ring. These comparisons clarified the conserved and non-conserved structural features of the MS-ring across different species.IMPORTANCEUnderstanding the structure and function of the flagellar motor in bacterial species is essential for uncovering the mechanisms underlying bacterial motility and pathogenesis. Our study revealed the structure of the Vibrio S-ring, a part of its polar flagellar motor, and highlighted its unique features compared with the well-studied Salmonella S-ring. The observed differences in the inter-subunit interactions and in the tilt angles between the Vibrio and Salmonella S-rings highlighted the species-specific variations and the mechanism for the optimization of MS-ring formation in the flagellar assembly. By concentrating on the region where the S-ring and the rod proteins interact, we uncovered conserved residues essential for the interaction. Our research contributes to the advancement of bacterial flagellar biology.
Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Flagelos , Vibrio alginolyticus , Flagelos/metabolismo , Flagelos/química , Flagelos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Vibrio alginolyticus/química , Salmonella/genética , Salmonella/metabolismo , Salmonella/química , Conformação Proteica , Proteínas de MembranaRESUMO
The study isolated two strains of intestinal autochthonous bacteria Lactiplantibacillus plantarum1 (MH155966.1) (L1) and Lactiplantibacillus plantarum2 (MH105076.1) (L2) from the Choobdeh Abadan region. The aim of this study was to investigate the effects of different strains of probiotic bacteria on the growth performance, digestive enzyme activity, histopathologic and histomorphometric characterization of the intestine, expression of immune and growth related genes, and evaluate Lates calcarifer resistance against Vibrio alginolyticus. To achieve this, for each treatment 60 L. calcarifer juveniles (75 ± 12 g) were randomly distributed in three fiberglass tanks (300 L) and fed for 45 days. The treatments were established as Diet 1 (control diet); L1 (diet with Lb. plantarum isolated 1); L2 (diet with Lb. plantarum isolated 2) with a bacterial concentration of 1 × 109 CFU/g. Nine fish from each treatment were sampled and examined, after euthanasia. The fish were placed 2 cm from the beginning of the intestine for microscopic sampling of villi height, villi width and thickness of the epithelium, with 3 treatments: The result showed differences in the mean values of total weight were found at the end of the experiment. After 45 days of culture, the fish fed with L1 had higher (P < 0.05) growth performance than the other treatment groups. But at the end of the trial, in L2, the digestive enzyme activities were higher (P < 0.05) than the other treatment groups. The fishes fed diets supplemented with the L2 group, like the digestive enzyme activities test, presented an increase in the thickness of the epithelium of the intestine, and villus height, and villus width were greatest in L2. Fish feeding with L1 and L2 probiotics induced higher transcription levels of interleukin-10 (IL-10), granulocyte-macrophage colony-forming cells (GMCFC), epidermal growth factor (EGF), and Transforming Growth Factor Beta (TGF-ß) genes in the gut, which may correlate with better immune and hematological parameters in these groups. The results of the challenge test revealed that the percentage of survival was significantly higher in L1 (76.2%) and L2 (80.95%) treatments than in the control (P < 0.05). These results indicate that host-derived probiotics (Lb. plantarum) have significant potential as important probiotics to enhance nutrient utilization, Digestive enzymes, and metabolism by increasing the gut surface area of Lates calcarifer juveniles at 45 days of culture.
Assuntos
Ração Animal , Dieta , Doenças dos Peixes , Intestinos , Probióticos , Vibrioses , Vibrio alginolyticus , Animais , Probióticos/farmacologia , Probióticos/administração & dosagem , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Vibrio alginolyticus/fisiologia , Ração Animal/análise , Intestinos/microbiologia , Vibrioses/veterinária , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrioses/microbiologia , Dieta/veterinária , Distribuição Aleatória , Resistência à Doença , Perciformes/imunologia , Perciformes/microbiologiaRESUMO
Fish early life stages are particularly vulnerable and heavily affected by changing environmental factors. The interactive effects of multiple climate change-related stressors on fish larvae remain, however, largely underexplored. As rising temperatures can increase the abundance and virulence of bacteria, we investigated the combination of a spring heat wave and bacterial exposure on the development of Atlantic herring larvae (Clupea harengus). Eggs and larvae of Western Baltic Spring-spawners were reared at a normal and high temperature ramp and exposed to Vibrio alginolyticus and V. anguillarum, respectively. Subsequently, mRNA and miRNA transcriptomes, microbiota composition, growth and survival were assessed. Both high temperature and V. alginolyticus exposure induced a major downregulation of gene expression likely impeding larval cell proliferation. In contrast, interactive effects of elevated temperature and V. alginolyticus resulted in minimal gene expression changes, indicating an impaired plastic response, which may cause cellular damage reducing survival in later larval stages. The heat wave alone or in combination with V. alginolyticus induced a notable shift in miRNA expression leading to the down- but also upregulation of predicted target genes. Moreover, both increased temperature and the Vibrio exposures significantly altered the larval microbiota composition, with warming reducing microbial richness and diversity. The outcomes of this study highlight the high sensitivity of herring early life stages towards multiple climate change-related stressors. Our results indicate that interactive effects of rapidly changing environmental factors may exceed the larval stress threshold impairing essential acclimation responses, which may contribute to the ongoing recruitment decline of Western Baltic Spring-Spawning herring.
Assuntos
Aclimatação , Mudança Climática , Peixes , Larva , Vibrio , Animais , Peixes/fisiologia , Vibrio/fisiologia , Vibrio alginolyticus/fisiologia , Estresse FisiológicoRESUMO
The pathogen recognition system involves receptors and genes that play a crucial role in activating innate immune response in brown-marbled grouper (Epinephelus fuscoguttatus) as a control agent against various infections including vibriosis. Here, we report the molecular cloning of partial open reading frames, sequences characterization, and expression profiles of Pattern Recognition Receptors (PRRs) in brown-marbled grouper. The PRRs, namely pglyrp5, tlr5, ctlD, and ctlE in brown-marbled grouper, possess conserved domains and showed shared evolutionary relationships with other fishes, humans, mammals, birds, reptilians, amphibians, and insects. In infection experiments, up to 50% mortality was found in brown-marbled grouper fingerlings infected with Vibrio alginolyticus compared to 27% mortality infected Vibrio parahaemolyticus and 100% survival of control groups. It is also demonstrated that all four PRRs had higher expression in samples infected with V. alginolyticus compared to V. parahaemolyticus. This PRRs gene expression analysis revealed that all four PRRs expressed rapidly at 4-h post-inoculation even though the Vibrio count was only detected earliest at 12-h post-inoculation in samples. The highest expression recorded was from V. alginolyticus inoculated fish spleen with up to 73-fold change for pglyrp5 gene, followed by 14 to 38-fold expression for the same treatment in spleen, head kidney, and blood samples for other PRRs, namely tlr5, ctlD, and ctlE genes. Meanwhile less than a 10% increase in expression of all four genes was detected in spleen, head kidney, and blood samples inoculated with V. parahaemolyticus. These findings indicated that pglyrp5, tlr5, ctlD, and ctlE play important roles in the early immune response to vibriosis infected, brown-marbled grouper fingerlings.
Assuntos
Doenças dos Peixes , Proteínas de Peixes , Imunidade Inata , Receptores de Reconhecimento de Padrão , Vibrioses , Animais , Vibrioses/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/genética , Imunidade Inata/genética , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo , Bass/imunologia , Bass/genética , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/imunologia , Filogenia , Clonagem Molecular , Vibrio parahaemolyticus/fisiologia , Vibrio parahaemolyticus/imunologiaRESUMO
Introduction: Vibrio alginolyticus is a Gram-negative, rod-shaped bacterium belonging to the family of Vibrionaceae, a common pathogen in aquaculture animals, However, studies on its impact on Scylla serrata (mud crabs) are limited. In this study, we isolated V. alginolyticus SWS from dead mud crab during a disease outbreak in a Hong Kong aquaculture farm, which caused up to 70% mortality during summer. Methods: Experimental infection and histopathology were used to investigate the pathogenicity of V. alginolyticus SWS in S. serrata and validate Koch's postulates. Comprehensive whole-genome analysis and phylogenetic analysis antimicrobial susceptibility testing, and biochemical characterization were also performed. Results: Our findings showed that V. alginolyticus SWS caused high mortality (75%) in S. serrata with infected individuals exhibiting inactivity, loss of appetite, decolored and darkened hepatopancreas, gills, and opaque muscle in the claw. Histopathological analysis revealed tissue damage and degeneration in the hepatopancreas, gills, and claw muscle suggesting direct and indirect impacts of V. alginolyticus SWS infection. Conclusions: This study provides a comprehensive characterization of V. alginolyticus SWS as an emerging pathogen in S. serrata aquaculture. Our findings underscore the importance of ongoing surveillance, early detection, and the development of targeted disease management strategies to mitigate the economic impact of vibriosis outbreaks in mud crab aquaculture.
Assuntos
Aquicultura , Braquiúros , Filogenia , Vibrio alginolyticus , Animais , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Vibrio alginolyticus/isolamento & purificação , Vibrio alginolyticus/classificação , Braquiúros/microbiologia , Hong Kong/epidemiologia , Vibrioses/microbiologia , Vibrioses/veterinária , Brânquias/microbiologia , Brânquias/patologia , Virulência , Sequenciamento Completo do Genoma , Genoma Bacteriano/genética , Hepatopâncreas/microbiologia , Hepatopâncreas/patologia , Surtos de Doenças , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologiaRESUMO
Vibrio alginolyticus causes substantial economic losses in the aquaculture industry. With the rise of multidrug-resistant Vibrio strains, phages present a promising solution. Here, a novel lytic Vibrio phage, vB_ValC_RH2G (RH2G), that efficiently infects the pathogenic strain V. alginolyticus ATCC 17749T, was isolated from mixed wastewater from an aquatic market in Xiamen, China. Transmission electron microscopy revealed that RH2G has the morphology of Siphoviruses, featuring an icosahedral head (73 ± 2 nm diameter) and long noncontractile tail (142 ± 4 nm). A one-step growth experiment showed that RH2G had a short latent period (10 min) and a burst size of 48 phage particles per infected cell. Additionally, RH2G was highly species-specific and was relatively stable at 4-55 °C and pH 4-10. A genomic analysis showed that RH2G has a 116,749 bp double-stranded DNA genome with 43.76% GC content. The intergenomic similarity between the genome sequence of RH2G and other phages recorded in the GenBank database was below 38.8%, suggesting that RH2G represents a new genus. RH2G did not exhibit any virulence or resistance genes. Its rapid lysis capacity, lytic activity, environmental resilience, and genetic safety suggested that RH2G may be a safe candidate for phage therapy in combatting vibriosis in aquaculture settings.
Assuntos
Bacteriófagos , Genoma Viral , Vibrio alginolyticus , Vibrio alginolyticus/virologia , Vibrio alginolyticus/genética , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Bacteriófagos/ultraestrutura , Filogenia , Composição de BasesRESUMO
Quorum sensing (QS) orchestrates many bacterial behaviors, including virulence and biofilm formation, across bacterial populations. Nevertheless, the underlying mechanism by which QS regulates capsular polysaccharide (CPS)-dependent phage-bacterium interactions remains unclear. In this study, we report that QS upregulates the expression of CPS-dependent phage receptors, thus increasing phage adsorption and infection rates in Vibrio alginolyticus. We found that QS upregulated the expression of the ugd gene, leading to increased synthesis of Autographiviridae phage receptor CPS synthesis in V. alginolyticus. The signal molecule autoinducer-2 released by Vibrio from different sources can potentially enhance CPS-dependent phage infections. Therefore, our data suggest that inhibiting QS may reduce, rather than improve, the therapeutic efficacy of CPS-specific phages. IMPORTANCE: Phage resistance is a direct threat to phage therapy, and understanding phage-host interactions, especially how bacteria block phage infection, is essential for developing successful phage therapy. In the present study, we demonstrate for the first time that Vibrio alginolyticus uses quorum sensing (QS) to promote capsular polysaccharide (CPS)-specific phage infection by upregulating ugd expression, which is necessary for the synthesis of Autographiviridae phage receptor CPS. Although increased CPS-specific phage susceptibility is a novel trade-off mediated by QS, it results in the upregulation of virulence factors, promoting biofilm development and enhanced capsular polysaccharide production in V. alginolyticus. This suggests that inhibiting QS may improve the effectiveness of antibiotic treatment, but it may also reduce the efficacy of phage therapy.
Assuntos
Percepção de Quorum , Vibrio alginolyticus , Vibrio alginolyticus/virologia , Vibrio alginolyticus/fisiologia , Bacteriófagos/fisiologia , Bacteriófagos/genética , Homosserina/análogos & derivados , Homosserina/metabolismo , Cápsulas Bacterianas/metabolismo , Podoviridae/genética , Podoviridae/fisiologia , Biofilmes/crescimento & desenvolvimento , Polissacarídeos Bacterianos/metabolismoRESUMO
Vibrio phages have emerged as a potential alternative to antibiotic therapy for treating Vibrio infections. In this study, a lytic Vibrio phage, vB_ValA_R15Z against Vibrio alginolyticus ATCC 17749T, was isolated from an aquatic water sample collected in Xiamen, China. The phage had an icosahedral head (diameter 69 ± 2 nm) and a short, non-contractile tail measuring 16 ± 2 nm. The genome of vB_ValA_R15Z was found to be a double-stranded DNA consisting of 43, 552 bp, containing 54 coding sequences (CDSs) associated with phage packaging, structure, DNA metabolism, lysis and additional functions. The BLASTN results indicated that vB_ValA_R15Z shared less than 90.18% similarity with known phages recorded in the NCBI GenBank database, suggesting that vB_ValA_R15Z was a novel Vibrio phage. Furthermore, phylogenetic analysis revealed that vB_ValA_R15Z belongs to the genus Kaohsiungvirus. In addition, a typical lytic mechanism (holin-endolysim) was found in the genome of vB_ValA_R15Z, while no antibiotic resistance- or virulence factor-related gene was detected. Overall, the study provides valuable insights into the isolation and characterization of vB_ValA_R15Z, highlighting its potential as an effective phage therapy option for combating Vibrio alginolyticus infections.
Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/classificação , China , DNA Viral/genética , Vibrio alginolyticus/virologia , Vibrio alginolyticus/genética , Vibrio/virologia , Vibrio/genética , Análise de Sequência de DNARESUMO
Bacterial ribonuclease E (RNase E) is vital for posttranscriptional regulation by degrading and processing RNA. The RraA protein inhibits RNase E activity through protein-protein interactions, exerting a global regulatory effect on gene expression. However, the specific role of RraA remains unclear. In this study, we investigated rraA expression in Vibrio alginolyticus ZJ-T and identified three promoters responsible for its expression, resulting in transcripts with varying 5'-UTR lengths. During the stationary phase, rraA was significantly posttranscriptionally inhibited. Deletion of rraA had no impact on bacterial growth in rich medium Luria-Bertani broth with salt (LBS) but resulted in decreased biofilm formation and increased resistance to polymyxin B. Transcriptome analysis revealed 350 differentially expressed genes (DEGs) between the wild type and the rraA mutant, while proteome analysis identified 267 differentially expressed proteins (DEPs). Integrative analysis identified 55 genes common to both DEGs and DEPs, suggesting that RraA primarily affects gene expression at the posttranscriptional level. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis demonstrated that RraA facilitates the conversion of fatty acids, propionic acid, and branched-chain amino acids to acetyl-CoA while enhancing amino acid and peptide uptake. Notably, RraA positively regulates the expression of virulence-associated genes, including those involved in biofilm formation and the type VI secretion system. This study expands the understanding of the regulatory network of RraA through transcriptome analysis, emphasizing the importance of proteomic analysis in investigating posttranscriptional regulation.IMPORTANCERraA is an inhibitor protein of ribonuclease E that interacts with and suppresses its endonucleolytic activity, thereby playing a widespread regulatory role in the degradation and maturation of diverse mRNAs and noncoding small RNAs. However, the physiological functions and associated regulon of RraA in Vibrio alginolyticus have not been fully elucidated. Here, we report that RraA impacts virulence-associated physiological processes, namely, antibiotic resistance and biofilm formation, in V. alginolyticus. By conducting an integrative analysis of both the transcriptome and proteome, we revealed the involvement of RraA in carbon metabolism, amino acid catabolism, and transport, as well as in the type VI secretion system. Collectively, these findings elucidate the regulatory influence of RraA on multiple pathways associated with metabolism and pathogenesis in V. alginolyticus.
Assuntos
Proteínas de Bactérias , Biofilmes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteoma , Transcriptoma , Vibrio alginolyticus , Vibrio alginolyticus/genética , Vibrio alginolyticus/metabolismo , Vibrio alginolyticus/patogenicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteoma/genética , Biofilmes/crescimento & desenvolvimento , Endorribonucleases/genética , Endorribonucleases/metabolismo , Antibacterianos/farmacologiaRESUMO
DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.
Assuntos
Crassostrea , Metilação de DNA , Epigênese Genética , NF-kappa B , Transdução de Sinais , Vibrio alginolyticus , Animais , Crassostrea/genética , Crassostrea/imunologia , Crassostrea/microbiologia , Vibrio alginolyticus/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Transdução de Sinais/genética , Imunidade Inata/genética , Vibrioses/imunologia , Vibrioses/veterinária , Vibrioses/genéticaRESUMO
Protein succinylation modification is a common post-translational modification (PTM) that plays an important role in bacterial metabolic regulation. In this study, quantitative analysis was conducted on the succinylated proteome of wild-type and florfenicol-resistant Vibrio alginolyticus to investigate the mechanism of succinylation regulating antibiotic resistance. Bioinformatic analysis showed that the differentially succinylated proteins were mainly enriched in energy metabolism, and it was found that the succinylation level of phosphoenolpyruvate carboxyl kinase (PEPCK) was highly expressed in the florfenicol-resistant strain. Site-directed mutagenesis was used to mutate the lysine (K) at the succinylation site of PEPCK to glutamic acid (E) and arginine (R), respectively, to investigate the function of lysine succinylation of PEPCK in the florfenicol resistance of V. alginolyticus. The detection of site-directed mutagenesis strain viability under florfenicol revealed that the survival rate of the E mutant was significantly higher than that of the R mutant and wild type, indicating that succinylation modification of PEPCK protein may affect the resistance of V. alginolyticus to florfenicol. This study indicates the important role of PEPCK during V. alginolyticus antibiotic-resistance evolution and provides a theoretical basis for the prevention and control of vibriosis and the development of new antibiotics.
Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Lisina , Processamento de Proteína Pós-Traducional , Tianfenicol , Vibrio alginolyticus , Tianfenicol/farmacologia , Tianfenicol/análogos & derivados , Tianfenicol/metabolismo , Vibrio alginolyticus/genética , Vibrio alginolyticus/efeitos dos fármacos , Vibrio alginolyticus/metabolismo , Farmacorresistência Bacteriana/genética , Lisina/metabolismo , Antibacterianos/farmacologia , Mutagênese Sítio-Dirigida , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Ácido Succínico/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genéticaRESUMO
Vibrio alginolyticus is one of the most common opportunistic pathogens in marine animals and humans. In this study, A transposon mutation library of the V. alginolyticus E110 was used to identify motility-related genes, and we found three flagellar and one capsular polysaccharide (CPS) synthesis-related genes were linked to swarming motility. Then, gene deletion and complementation further confirmed that CPS synthesis-related gene ugd is involved in the swarming motility of V. alginolyticus. Phenotype assays showed that the Δugd mutant reduced CPS production, decreased biofilm formation, impaired swimming ability, and increased cytotoxicity compared to the wild-type strain. Transcriptome analysis showed that 655 genes (15%) were upregulated and 914 genes (21%) were downregulated in the Δugd strain. KEGG pathway and heatmap analysis revealed that genes involved in two-component systems (TCSs), chemotaxis, and flagella assembly pathways were downregulated in the Δugd mutant. On the other hand, genes involved in pathways of human diseases, biosynthesis ABC transporters, and metabolism were upregulated in the Δugd mutant. The RT-qPCR further validated that ugd-regulated genes are associated with motility, biofilm formation, virulence, and TCSs. These findings imply that ugd may be an important player in the control of some physiological processes in V. alginolyticus, highlighting its potential as a target for future research and potential therapeutic interventions.
Assuntos
Cápsulas Bacterianas , Proteínas de Bactérias , Biofilmes , Flagelos , Regulação Bacteriana da Expressão Gênica , Vibrio alginolyticus , Vibrio alginolyticus/genética , Vibrio alginolyticus/fisiologia , Vibrio alginolyticus/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Flagelos/fisiologia , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Polissacarídeos Bacterianos/biossíntese , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/genética , Virulência , Animais , Perfilação da Expressão Gênica , Deleção de Genes , Humanos , Vibrioses/microbiologiaRESUMO
Interleukin-10 (IL-10) is an immunosuppressive cytokine, which plays a vital role in regulating inflammation for inhibiting the generation and function of pro-inflammatory cytokines in vivo or in vitro. In the present study, the full length cDNA of IL-10 was characterized from Nibea albiflora (named as NaIL-10) of 1238 base pairs (bp), containing a 5'-UTR (untranslated region) of 350 bp, a 3'-UTR of 333 bp and an open reading frame (ORF) of 555 bp (Fig. 1A) to encode 184 amino acid residues with a signal peptide at the N-terminus. The sequence analysis showed that NaIL-10 possessed the typical IL-10 family symbolic motif and conversed cysteine residues, similar to its teleost orthologues. Real-time PCR indicated that NaIL-10 had wide distribution in different healthy tissues, with a relatively high expression in immune-related tissues (head kidney, spleen, kidney, liver and gill). Significantly, up-regulations of NaIL-10 after infection against Vibrio parahaemolyticus, Vibrio alginolyticus and Poly I:C were also observed. Subcellular localization manifested that NaIL-10 mainly distributed in the cytoplasm unevenly and aggregately, and there was also a small amount on the cell membrane, indicating that NaIL-10 was secreted to the extracellular space as the known IL-10 homologous molecules. It could co-locate with IL-10 Rα on the membrane of HEK293T cells for their potential interaction, and GST pull-down and Co-IP studies certified the specific and direct interaction between NaIL-10 and NaIL-10 Rα, confirming that an IL-10 ligand-receptor system existed in N.albiflora. The expression of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1ß, were dramatically inhibited in LPS-stimulated RAW264.7 macrophages pre-incubated with recombinant NaIL-10 protein, demonstrating its anti-inflammatory roles. Taken together, the results demonstrated the existence of IL-10 ligand-receptor system in N.albiflora for the first time, and indicated the suppressive function of NaIL-10 on pro-inflammatory cytokine expression in inflammatory response, which would be conducive to better comprehending the role of IL-10 in the immunomodulatory mechanisms of teleost.
Assuntos
Sequência de Aminoácidos , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Imunidade Inata , Interleucina-10 , Filogenia , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Imunidade Inata/genética , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vibrio parahaemolyticus/fisiologia , Alinhamento de Sequência/veterinária , Perfilação da Expressão Gênica/veterinária , Poli I-C/farmacologia , Vibrioses/imunologia , Vibrioses/veterinária , Cyprinidae/imunologia , Cyprinidae/genética , Vibrio alginolyticus/fisiologia , Sequência de BasesRESUMO
AIMS: This study aimed to evaluate the efficiency of two phages [VB_VaC_TDDLMA (phage TDD) and VB_VaC_SRILMA (phage SRI)] alone and in a cocktail to control Vibrio alginolyticus in brine shrimp before their administration in larviculture. METHODS AND RESULTS: Phages were isolated from seawater samples and characterized by host spectrum, growth parameters, adsorption rate, genomic analysis, and inactivation efficiency. Both phages belong to the Caudoviricetes class and lack known virulence or antibiotic-resistance genes. They exhibit specificity, infecting only their host, V. alginolyticus CECT 521. Preliminary experiments in a culture medium showed that phage TDD (reduction of 5.8 log CFU ml-1 after 10 h) outperformed phage SRI (reduction of 4.6 log CFU ml-1 after 6 h) and the cocktail TDD/SRI (reduction of 5.2 log CFU ml-1 after 8 h). In artificial marine water experiments with Artemia franciscana, both single phage suspensions and the phage cocktail, effectively inactivated V. alginolyticus in culture water (reduction of 4.3, 2.1, and 1.9 log CFU ml-1 for phages TDD, SRI, and the phage cocktail, respectively, after 12 h) and in A. franciscana (reduction of 51.6%, 87.3%, and 85.3% for phages TDD, SRI, and the phage cocktail, respectively, after 24 h). The two phages and the phage cocktail did not affect A. franciscana natural microbiota or other Vibrio species in the brine shrimp. CONCLUSIONS: The results suggest that phages can safely and effectively control V. alginolyticus in A. franciscana prior to its administration in larviculture.
Assuntos
Aquicultura , Artemia , Bacteriófagos , Vibrio alginolyticus , Vibrio alginolyticus/virologia , Animais , Artemia/microbiologia , Artemia/virologia , Ração Animal , Água do Mar/microbiologia , Larva/microbiologiaRESUMO
Vibrio alginolyticus, an emergent species of Vibrio genus, exists in aquatic and marine environments. It has undergone genetic diversification, but its detailed genomic diversity is still unclear. Here, we performed a multi-dimensional comparative genomic analysis to explore the population phylogeny, virulence-related genes and potential drug resistance genes of 184 V. alginolyticus isolates. Although genetic diversity is complex, we analysed the population structure using three sub-datasets, including the subdivision for three lineages into sublineages and the distribution of strains in the marine ecological niche. Accessory genes, most of which reclassified V. alginolyticus genomes as different but with relatively close affinities, were nonuniformly distributed among these isolates. We demonstrated that the spread of some post-evolutionary isolates (mainly L3 strains isolated from Chinese territorial seas) was likely to be closely related to human activities, whereas other more ancestral strains (strains in the L1 and L2) tended to be locally endemic and formed clonal complex groups. In terms of pathogenicity, the potential virulence factors were mainly associated with toxin, adherence, motility, chemotaxis, and the type III secretion system (T3SS). We also found five types of antibacterial drug resistance genes. The prevalence of ß-lactam resistance genes was 100%, which indicated that there may be a potential risk of natural resistance to ß-lactam drugs. Our study reveals insights into genomic characteristics, evolution and potential virulence-associated gene profiles of V. alginolyticus.
Assuntos
Evolução Molecular , Genoma Bacteriano , Filogenia , Vibrioses , Vibrio alginolyticus , Fatores de Virulência , Vibrio alginolyticus/genética , Vibrio alginolyticus/patogenicidade , Vibrio alginolyticus/classificação , Vibrio alginolyticus/efeitos dos fármacos , Fatores de Virulência/genética , Virulência/genética , Vibrioses/microbiologia , Variação Genética , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , AnimaisRESUMO
This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.