Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 11(1): 819, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048589

RESUMO

Vibrio spp. are major pathogens responsible for mortality and disease in various marine aquaculture organisms. Effective disease control and genetic breeding strategies rely heavily on understanding host vibriosis resistance mechanisms. The Chinese tongue sole (Cynoglossus semilaevis) is economically vital but suffers from substantial mortalities due to vibriosis. Through continuous selective breeding, we have successfully obtained vibriosis-resistant families of this species. In this study, we conducted RNA-seq analysis on three organs, including liver, spleen and intestine from selected resistant and susceptible tongue soles. Additionally, we integrated these data with our previously published RNA-seq datasets of skin and gill, enabling the construction of organ-specific transcriptional profiles and a comprehensive gene co-expression network elucidating the differences in vibriosis resistance. Furthermore, we identified 12 modules with organ-specific functional implications. Overall, our findings provide a valuable resource for investigating the molecular basis of vibriosis resistance in fish, offering insights into target genes and pathways essential for molecular selection and genetic manipulation to enhance vibriosis resistance in fish breeding programs.


Assuntos
Resistência à Doença , Doenças dos Peixes , Linguados , Transcriptoma , Vibrioses , Vibrio , Animais , Vibrioses/veterinária , Vibrioses/genética , Doenças dos Peixes/microbiologia , Doenças dos Peixes/genética , Linguados/genética , Linguados/microbiologia , Resistência à Doença/genética , Redes Reguladoras de Genes , Fígado/metabolismo , Baço
2.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824265

RESUMO

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Assuntos
Cistatinas , Doenças dos Peixes , Proteínas de Peixes , Linguados , Macrófagos , Vibrio , Animais , Linguados/imunologia , Linguados/genética , Linguados/metabolismo , Vibrio/patogenicidade , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/microbiologia , Vibrioses/imunologia , Vibrioses/veterinária , Vibrioses/genética , NF-kappa B/metabolismo , Clonagem Molecular/métodos , Regulação da Expressão Gênica
3.
Fish Shellfish Immunol ; 151: 109705, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885801

RESUMO

DNA methylation, an essential epigenetic alteration, is tightly linked to a variety of biological processes, such as immune response. To identify the epigenetic regulatory mechanism in Pacific oyster (Crassostrea gigas), whole-genome bisulfite sequencing (WGBS) was conducted on C. gigas at 0 h, 6 h, and 48 h after infection with Vibrio alginolyticus. At 6 h and 48 h, a total of 11,502 and 14,196 differentially methylated regions (DMRs) were identified (p<0.05, FDR<0.001) compared to 0 h, respectively. Gene ontology (GO) analysis showed that differentially methylated genes (DMGs) were significantly enriched in various biological pathways including immunity, cytoskeleton, epigenetic modification, and metabolic processes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that transcription machinery (ko03021) is one of the most important pathways. Integrated transcriptome and methylome analyses allowed the identification of 167 and 379 DMG-related DEGs at 6 h and 48 h, respectively. These genes were significantly enriched in immune-related pathways, including nuclear factor kappa B (NF-κB) signaling pathway (ko04064) and tumor necrosis factor (TNF) signaling pathway (ko04668). Interestingly, it's observed that the NF-κB pathway could be activated jointly by TNF Receptor Associated Factor 2 (TRAF2) and Baculoviral IAP Repeat Containing 3 (BIRC3, the homolog of human BIRC2) which were regulated by DNA methylation in response to the challenge posed by V. alginolyticus infection. Through this study, we provided insightful information about the epigenetic regulation of immunity-related genes in the C. gigas, which will be valuable for the understanding of the innate immune system modulation and defense mechanism against bacterial infection in invertebrates.


Assuntos
Crassostrea , Metilação de DNA , Epigênese Genética , NF-kappa B , Transdução de Sinais , Vibrio alginolyticus , Animais , Crassostrea/genética , Crassostrea/imunologia , Crassostrea/microbiologia , Vibrio alginolyticus/fisiologia , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Transdução de Sinais/genética , Imunidade Inata/genética , Vibrioses/imunologia , Vibrioses/veterinária , Vibrioses/genética
4.
PLoS Pathog ; 20(3): e1012094, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38536895

RESUMO

Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis in humans worldwide. The major virulence factor responsible for the enteropathogenicity of this pathogen is type III secretion system 2 (T3SS2), which is encoded on the 80-kb V. parahaemolyticus pathogenicity island (Vp-PAI), the gene expression of which is governed by the OmpR-family transcriptional regulator VtrB. Here, we found a positive autoregulatory feature of vtrB transcription, which is often observed with transcriptional regulators of bacteria, but the regulation was not canonically dependent on its own promoter. Instead, this autoactivation was induced by heterogeneous transcripts derived from the VtrB-regulated operon upstream of vtrB. VtrB-activated transcription overcame the intrinsic terminator downstream of the operon, resulting in transcription read-through with read-in transcription of the vtrB gene and thus completing the autoregulatory loop for vtrB gene expression. The dampening of read-through transcription with an exogenous strong terminator reduced vtrB gene expression. Furthermore, a V. parahaemolyticus mutant with defects in the vtrB autoregulatory loop also showed compromises in T3SS2 expression and T3SS2-dependent cytotoxicity in vitro and enterotoxicity in vivo, indicating that this autoregulatory loop is essential for sustained vtrB activation and the consequent robust expression of T3SS2 genes for pathogenicity. Taken together, these findings demonstrate that the regulatory loop for vtrB gene expression based on read-through transcription from the upstream operon is a crucial pathway in T3SS2 gene regulatory network to ensure T3SS2-mediated virulence of V. parahaemolyticus.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Humanos , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vibrioses/genética , Vibrioses/microbiologia , Regulação Bacteriana da Expressão Gênica
5.
Virus Res ; 341: 199320, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38224841

RESUMO

Vibrio parahaemolyticus, an important zoonotic pathogen, can cause severe diseases and even death in aquatic animals and humans. As the widespread use of antibiotics gradually diminishes their effectiveness, phages, which can selectively lyse bacteria, are garnering increased attention as a valuable alternative antibacterial strategy. This study characterized PG288, a lytic phage utilizing V. parahaemolyticus strain G855 as its host. Morphologically, the phage features a polyhedral head and a long, non-retractable tail. Bactericidal assays revealed that phage PG288 exhibited a strong lytic ability against V. parahaemolyticus strain G855 and demonstrated a broad host range, as evidenced by the ability to infect several distinct Vibrio species. The one-step growth curve indicated a latent period of approximately 50 min for phage PG288, with a burst size of roughly 92 PFU per cell. Additionally, phage PG288 exhibited remarkable stability within a temperature range of 20-50°C and a pH range of 4-10. Genomic analysis unveiled 105 ORFs within phage PG288, notably devoid of genes associated with antibiotic resistance, virulence, and lysogenic activity. Phylogenetic analysis conclusively identified it as a new member of the genus Mardecavirus within the class Caudoviricetes. In summary, this study contributes valuable insights to the phage database, presenting phage PG288 as a promising candidate for phage therapies against Vibrio infections.


Assuntos
Bacteriófagos , Vibrioses , Vírus , Animais , Humanos , Bacteriófagos/genética , Filogenia , Genômica , Vírus/genética , Vibrioses/terapia , Vibrioses/genética , Genoma Viral , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA