Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Sci Rep ; 13(1): 18410, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891231

RESUMO

Necrotizing fasciitis (NF) is a life-threatening infection. Skin necrosis is an important skin sign of NF. The purposes of this study was to investigate the initial skin conditions of Vibrio NF patients between emergency room (ER) to preoperative status, to compare the clinical and laboratory risk indicators of the skin necrosis group and non-skin necrosis group when they arrived at ER, and to evaluate whether initial cutaneous necrosis related to fulminant course and higher fatalities. From 2015 to 2019, seventy-two Vibrio NF patients with surgical confirmation were enrolled. We identified 25 patients for inclusion in the skin necrosis group and 47 patients for inclusion in the non-skin necrosis group due to the appearance of skin lesion at ER. Seven patients died, resulting in a mortality rate of 9.7%. Six patients of skin necrosis group and one patient of non-skin necrosis group died, which revealed the skin necrosis group had a significantly higher mortality rate than the non-skin necrosis group. All the patients in the skin necrosis group and 30 patients of non-skin necrosis group developed serous or hemorrhagic bullous lesions before operation (p = 0.0003). The skin necrosis group had a significantly higher incidence of APACHE score, postoperative intubation, Intensive care unit stay, septic shock, leukopenia, higher counts of banded leukocytes, elevated C-reactive protein (CRP), and lower serum albumin level. Vibrio NF patients presenting skin necrosis at ER were significantly associated with fulminant clinical courses and higher mortality. Physicians should alert the appearance of skin necrosis at ER to early suspect NF and treat aggressively by those clinical and laboratory risk indicators, such as elevated APACHE score, shock, leukopenia, higher banded leukocytes, elevated CRP, and hypoalbuminia.


Assuntos
Fasciite Necrosante , Leucopenia , Vibrioses , Vibrio , Humanos , Vibrioses/patologia , Estudos Retrospectivos , Progressão da Doença , Serviço Hospitalar de Emergência , Necrose/complicações
2.
Zhonghua Shao Shang Za Zhi ; 38(3): 276-280, 2022 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-35325973

RESUMO

This article analyzed the medical records of two patients with Vibrio vulnificus primary sepsis who were admitted to the First Affiliated Hospital of Naval Medical University and reviewed the latest literature. On November 6, 2019, a 54-year-old male patient was admitted to the hospital. The patient's lower limbs were red, swollen, and painful with ecchymosis and hemorrhagic bullae after he ate freshwater products. The emergency fasciotomy was performed 3 h after admission, and the multiple organ failure occurred after operation. The patient was given up treatment 24 h after admission. On August 12, 2020, a 73-year-old male patient was admitted to the hospital. He was in shock state on admission and had hemorrhagic bullae on his right lower limb after he ate seafood. At 3 h post admission, he underwent emergency surgical exploration and amputation of right thigh. Six days later, he received negative pressure wound treatment on the stump. On the 13th day post admission, his families forgo the active treatment and he died 15 d after admission. The two cases were both failed to be diagnosed at the first time, and the disease progressed rapidly. Necrotizing fasciitis and multiple organ failure occurred. After the diagnosis was confirmed, timely fasciotomy and high amputation were performed respectively. The microbiological examinations both reported Vibrio vulnificus. Although the 2 cases were not cured successfully, the course of disease and some indexes of patient with early amputation were better than those of patients with fasciotomy. Vibrio vulnificus is widely distributed and frequently detected in fresh water products. The pathogenic pathway is fuzzy and complex, and it is easy to be misdiagnosed. It is necessary to establish the treatment process of Vibrio vulnificus sepsis. Early and aggressive surgical intervention should be carried out as soon as possible, fasciotomy and debridement should be thorough, and the patients with hemorrhagic bullae should be amputated early. Postoperative comprehensive measures are also important for improving the survival rate of patients.


Assuntos
Fasciite Necrosante , Sepse , Vibrioses , Vibrio vulnificus , Idoso , Fasciite Necrosante/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos , Sepse/diagnóstico , Vibrioses/diagnóstico , Vibrioses/microbiologia , Vibrioses/patologia
3.
Braz J Microbiol ; 53(1): 289-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34652743

RESUMO

Vibrio parahaemolyticus is an important foodborne pathogenic bacterium that harbors the type III secretion system 1 (T3SS1) as an essential virulence factor. However, the pathogenesis and infection mechanism mediated by T3SS1 are not entirely clarified. Similar to previous studies on other T3SS-positive bacteria, the T3SS1 needle is a major extracellular component in V. parahaemolyticus. We recently showed that the needle gene-deletion mutant (ΔvscF) exhibited markedly decreased cytotoxicity and effector translocation during interaction with HeLa cells. To further elucidate the pathogenesis of T3SS1 during host cell infection, bacterial RNA was extracted from wild-type POR-1 and ΔvscF mutants under infected condition for comparative RNA sequencing analysis in HeLa cell. The results showed that 120 differentially expressed genes (DEGs) were identified in the ΔvscF-infected group. These encoded proteins of DEGs, such as VP2088, VP2089, and VP2091, were annotated as ABC transporter system, whereas VP0757, VP1123, and VP1289 may be new transcriptional regulators. In addition, the downregulation of T3SS1 had a positive influence on the expression of T3SS2. Moreover, the transcription of the basal body is unaffected by the needle, and there was a close relation among the tip, translocon, and needle, because bacterial adenylate cyclase two-hybrid system (BACTH system) assay indicated the interaction of VP1656, VP1670, VP1693, and VP1694 (VscF). This study provides insights into transcription mechanism of T3SS1 upon infecting HeLa cell, which is expected to better clarify the T3SS1 virulent mechanism.


Assuntos
Vibrioses , Vibrio parahaemolyticus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células HeLa , Humanos , Transcriptoma , Vibrioses/microbiologia , Vibrioses/patologia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/metabolismo
4.
Emerg Microbes Infect ; 10(1): 1890-1895, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34487488

RESUMO

Vibrio vulnificus is a pathogenic marine bacteria associated with high mortality. Changes in climate and the global seafood trade have increased the prevalence of marine and freshwater systems affected by V. vulnificus. As a result, the incidence of land animals, plants, and insects contacting V. vulnificus and acting as disease vectors is on the rise. We report the case of a 53-year-old male who was infected with V. vulnificus as the result of a bee sting. The patient had no history of contact with the sea or fresh water or aquatic organisms or products. Due to bacterial pathogenicity and the patient's underlying diseases, his condition deteriorated rapidly and eventually resulted in death. Here, we review the pathogenic mechanisms and treatment of V. vulnificus. We determined that V. vulnificus has spread from seawater to freshwater and that individuals may become infected from insects, even in the absence of direct contact with infected water. This case report will inform clinicians about the possible sources of V. vulnificus infection and indicates the possibility that more insects may transmit V. vulnificus in the future.


Assuntos
Mordeduras e Picadas de Insetos/microbiologia , Sepse/microbiologia , Vibrioses/mortalidade , Vibrioses/patologia , Animais , Abelhas/microbiologia , Humanos , Mordeduras e Picadas de Insetos/patologia , Masculino , Pessoa de Meia-Idade , Água do Mar/microbiologia , Sepse/patologia , Vibrio vulnificus/isolamento & purificação
5.
Toxins (Basel) ; 13(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34437395

RESUMO

Shrimp, as a high-protein animal food commodity, are one of the fastest growing food producing sectors in the world. It has emerged as a highly traded seafood product, currently exceeding 8 MT of high value. However, disease outbreaks, which are considered as the primary cause of production loss in shrimp farming, have moved to the forefront in recent years and brought socio-economic and environmental unsustainability to the shrimp aquaculture industry. Acute hepatopancreatic necrosis disease (AHPND), caused by Vibrio spp., is a relatively new farmed penaeid shrimp bacterial disease. The shrimp production in AHPND affected regions has dropped to ~60%, and the disease has caused a global loss of USD 43 billion to the shrimp farming industry. The conventional approaches, such as antibiotics and disinfectants, often applied for the mitigation or cure of AHPND, have had limited success. Additionally, their usage has been associated with alteration of host gut microbiota and immunity and development of antibiotic resistance in bacterial pathogens. For example, the Mexico AHPND-causing V. parahaemolyticus strain (13-306D/4 and 13-511/A1) were reported to carry tetB gene coding for tetracycline resistance gene, and V. campbellii from China was found to carry multiple antibiotic resistance genes. As a consequence, there is an urgent need to thoroughly understand the virulence mechanism of AHPND-causing Vibrio spp. and develop novel management strategies to control AHPND in shrimp aquaculture, that will be crucially important to ensure food security in the future and offer economic stability to farmers. In this review, the most important findings of AHPND are highlighted, discussed and put in perspective, and some directions for future research are presented.


Assuntos
Penaeidae , Vibrioses , Doença Aguda , Animais , Aquicultura , Hepatopâncreas/patologia , Necrose , Vibrioses/patologia , Vibrioses/prevenção & controle , Vibrioses/veterinária , Virulência
6.
Nat Commun ; 12(1): 2464, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927201

RESUMO

National-based prospective surveillance of all-age patients with acute diarrhea was conducted in China between 2009‒2018. Here we report the etiological, epidemiological, and clinical features of the 152,792 eligible patients enrolled in this analysis. Rotavirus A and norovirus are the two leading viral pathogens detected in the patients, followed by adenovirus and astrovirus. Diarrheagenic Escherichia coli and nontyphoidal Salmonella are the two leading bacterial pathogens, followed by Shigella and Vibrio parahaemolyticus. Patients aged <5 years had higher overall positive rate of viral pathogens, while bacterial pathogens were more common in patients aged 18‒45 years. A joinpoint analysis revealed the age-specific positivity rate and how this varied for individual pathogens. Our findings fill crucial gaps of how the distributions of enteropathogens change across China in patients with diarrhea. This allows enhanced identification of the predominant diarrheal pathogen candidates for diagnosis in clinical practice and more targeted application of prevention and control measures.


Assuntos
Diarreia/epidemiologia , Diarreia/patologia , Gastroenterite/epidemiologia , Gastroenterite/patologia , Adolescente , Adulto , Fatores Etários , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/patologia , Criança , Pré-Escolar , China/epidemiologia , Diarreia/microbiologia , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/patologia , Gastroenterite/microbiologia , Humanos , Pessoa de Meia-Idade , Norovirus/isolamento & purificação , Rotavirus/isolamento & purificação , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/patologia , Salmonella/isolamento & purificação , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/patologia , Shigella/isolamento & purificação , Vibrioses/epidemiologia , Vibrioses/patologia , Vibrio parahaemolyticus/isolamento & purificação , Adulto Jovem
7.
Mol Cell Probes ; 56: 101695, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453365

RESUMO

Researchers have developed multiple methods to characterize clinical and environmental strains of Vibrio vulnificus. The aim of our study was to use four assays to detect virulence factors in strains from infected patients and those from surface waters/sediments/oysters of South Carolina and the Gulf of Mexico. Vibrio vulnificus strains from clinical (n = 81) and environmental (n = 171) sources were tested using three real-time PCR methods designed to detect polymorphisms in the 16S rRNA, vcg and pilF genes and a phenotypic method, the ability to ferment D-mannitol. Although none of the tests correctly categorized all isolates, the differentiation between clinical and environmental isolates was similar for the pilF, vcgC/E and 16S rRNA assays, with sensitivities of 74.1-79.2% and specificities of 77.4-82.7%. The pilF and vcgC/E assays are comparable in efficacy to the widely used 16S rRNA method, while the D-mannitol fermentation test is less discriminatory (sensitivity = 77.8%, specificity = 61.4%). Overall percent agreement for the D-mannitol fermentation method was also lower (66.7%) than overall percent agreement for the 3 molecular assays (78.0%-80.2%). This study demonstrated, using a large, diverse group of Vibrio vulnificus isolates, that three assays could be used to distinguish most clinical vs environmental isolates; however, additional assays are needed to increase accuracy.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Vibrioses/diagnóstico , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Fermentação , Expressão Gênica , Humanos , Manitol/metabolismo , RNA Ribossômico 16S/genética , Alimentos Marinhos/microbiologia , Frutos do Mar/microbiologia , Estados Unidos , Vibrioses/microbiologia , Vibrioses/patologia , Vibrio vulnificus/isolamento & purificação , Virulência , Microbiologia da Água
8.
BMC Microbiol ; 20(1): 341, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176689

RESUMO

BACKGROUND: Vibrio scophthalmi is an opportunistic bacterial pathogen, which is widely distributed in the marine environment. Earlier studies have suggested that it is a normal microorganism in the turbot gut. However, recent studies have confirmed that this bacterial strain can cause diseases in many different marine animals. Therefore, it is necessary to investigate its whole genome for better understanding its physiological and pathogenic mechanisms. RESULTS: In the present study, we obtained a pathogenic strain of V. scophthalmi from diseased half-smooth tongue sole (Cynoglossus semilaevis) and sequenced its whole genome. Its genome contained two circular chromosomes and two plasmids with a total size of 3,541,838 bp, which harbored 3185 coding genes. Among these genes, 2648, 2298, and 1915 genes could be found through annotation information in COG, Blast2GO, and KEGG databases, respectively. Moreover, 10 genomic islands were predicted to exist in the chromosome I through IslandViewer online system. Comparison analysis in VFDB and PHI databases showed that this strain had 334 potential virulence-related genes and 518 pathogen-host interaction-related genes. Although it contained genes related to four secretion systems of T1SS, T2SS, T4SS, and T6SS, there was only one complete T2SS secretion system. Based on CARD database blast results, 180 drug resistance genes belonging to 27 antibiotic resistance categories were found in the whole genome of such strain. However, there were many differences between the phenotype and genotype of drug resistance. CONCLUSIONS: Based on the whole genome analysis, the pathogenic V. scophthalmi strain contained many types of genes related to pathogenicity and drug resistance. Moreover, it showed inconsistency between phenotype and genotype on drug resistance. These results suggested that the physiological mechanism seemed to be complex.


Assuntos
Doenças dos Peixes/microbiologia , Linguados/microbiologia , Vibrioses/veterinária , Vibrio/genética , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Doenças dos Peixes/patologia , Genes Bacterianos/genética , Tamanho do Genoma , Genoma Bacteriano/genética , Ilhas Genômicas , Interações Hospedeiro-Patógeno/genética , Testes de Sensibilidade Microbiana , Filogenia , Vibrio/classificação , Vibrio/efeitos dos fármacos , Vibrio/patogenicidade , Vibrioses/microbiologia , Vibrioses/patologia , Fatores de Virulência/genética
9.
Proc Natl Acad Sci U S A ; 117(45): 28374-28383, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097672

RESUMO

Viruses, such as white spot syndrome virus, and bacteria, such as Vibrio species, wreak havoc in shrimp aquaculture [C. M. Escobedo-Bonilla et al., J. Fish. Dis. 31, 1-18 (2008)]. As the main portal of entry for shrimp-related pathogens remain unclear, infectious diseases are difficult to prevent and control. Because the cuticle is a strong pathogen barrier, regions lacking cuticular lining, such as the shrimp's excretory organ, "the antennal gland," are major candidate entry portals [M. Corteel et al., Vet. Microbiol. 137, 209-216 (2009)]. The antennal gland, up until now morphologically underexplored, is studied using several imaging techniques. Using histology-based three-dimensional technology, we demonstrate that the antennal gland resembles a kidney, connected to a urinary bladder with a nephropore (exit opening) and a complex of diverticula, spread throughout the cephalothorax. Micromagnetic resonance imaging of live shrimp not only confirms the histology-based model, but also indicates that the filling of the diverticula is linked to the molting cycle and possibly involved therein. Based on function and complexity, we propose to rename the antennal gland as the "nephrocomplex." By an intrabladder inoculation, we showed high susceptibility of this nephrocomplex to both white spot syndrome virus and Vibrio infection compared to peroral inoculation. An induced drop in salinity allowed the virus to enter the nephrocomplex in a natural way and caused a general infection followed by death; fluorescent beads were used to demonstrate that particles may indeed enter through the nephropore. These findings pave the way for oriented disease control in shrimp.


Assuntos
Muda/fisiologia , Penaeidae/microbiologia , Penaeidae/virologia , Glândulas Sebáceas/microbiologia , Glândulas Sebáceas/patologia , Animais , Aquicultura , Salinidade , Glândulas Sebáceas/diagnóstico por imagem , Glândulas Sebáceas/virologia , Vibrio/patogenicidade , Vibrioses/patologia , Vibrioses/veterinária , Internalização do Vírus , Vírus da Síndrome da Mancha Branca 1/patogenicidade
10.
Fish Shellfish Immunol ; 106: 1052-1066, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32950679

RESUMO

Vibrio vulnificus is a major pathogen of cultured Cynoglossus semilaevis and results in skin ulceration and haemorrhage, but the proteomic mechanism of skin immunity against V. vulnificus remains unclear. In this study, we investigated the histopathology and skin immune response in C. semilaevis with V. vulnificus infection at the protein levels, the differential proteomic profiling of its skin was examined by using iTRAQ and LC-MS/MS analyses. A total of 951 proteins were identified in skin, in which 134 and 102 DEPs were screened at 12 and 36 hpi, respectively. Selected eleven immune-related DEPs (pvß, Hsp71, MLC1, F2, α2ML, HCII, C3, C5, C8ß, C9 and CD59) were verified for their immune roles in the V. vulnificus infection via using qRT-PCR assay. KEGG enrichment analysis revealed that most of the identified immune proteins were significantly associated with complement and coagulation cascades, antigen processing and presentation, salivary secretion and phagosome pathways. To our knowledge, this study is the first to describe the proteome response of C. semilaevis skin against V. vulnificus infection. The outcome of this study contributed to provide a new perspective for understanding the molecular mechanism of local skin mucosal immunity, and facilitating the development of novel mucosal vaccination strategies in fish.


Assuntos
Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Linguado/imunologia , Pele/imunologia , Vibrioses/imunologia , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Linguado/microbiologia , Regulação da Expressão Gênica , Proteoma , Pele/patologia , Vibrio , Vibrioses/genética , Vibrioses/patologia , Vibrioses/veterinária
11.
PLoS One ; 15(7): e0236601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730353

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), exhibit antibacterial and anti-inflammatory activities. Furthermore, diets rich in n-3 PUFAs are known to improve disease resistance and limit pathogen infection in commercial aquaculture fishes. In this study, we examined the effects of transgenic overexpression of n-3 PUFA biosynthesis genes on the physiological response to bacterial infection in tilapia. We first established tilapia strains with single or dual expression of salmon delta-5 desaturase and/or delta-6 desaturase and then challenged the fish with Vibrio vulnificus infection. Interestingly, our data suggest that n-3 PUFA-mediated alterations in gut microbiota may be important in determining disease outcome via effects on immune response of the host. Both liver- and muscle-specific single and dual expression of delta-5 desaturase and delta-6 desaturase resulted in higher n-3 PUFA content in transgenic fish fed with a LO basal diet. The enrichment of n-3 PUFAs in dual-transgenic fish is likely responsible for their improved survival rate and comparatively reduced expression of inflammation- and immune-associated genes after V. vulnificus infection. Gut microbiome analysis further revealed that dual-transgenic tilapia had high gut microbiota diversity, with low levels of inflammation-associated microbiota (i.e., Prevotellaceae). Thus, our findings indicate that dual expression of transgenic delta-5 and delta-6 desaturase in tilapia enhances disease resistance, an effect that is associated with increased levels of n-3 PUFAs and altered gut microbiota composition.


Assuntos
Resistência à Doença , Ácidos Graxos Dessaturases/metabolismo , Proteínas de Peixes/metabolismo , Microbioma Gastrointestinal , Linoleoil-CoA Desaturase/metabolismo , Tilápia/microbiologia , Vibrio vulnificus/patogenicidade , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/microbiologia , Dessaturase de Ácido Graxo Delta-5 , Dieta/veterinária , Análise Discriminante , Resistência à Doença/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Ômega-3/metabolismo , Doenças dos Peixes/microbiologia , Doenças dos Peixes/patologia , Proteínas de Peixes/genética , Expressão Gênica , Análise dos Mínimos Quadrados , Linoleoil-CoA Desaturase/genética , Tilápia/genética , Vibrioses/patologia , Vibrioses/veterinária
12.
Environ Microbiol ; 22(10): 4342-4355, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32337781

RESUMO

The bacterium Vibrio cholerae is a natural inhabitant of aquatic ecosystems across the planet. V. cholerae serogroups O1 and O139 are responsible for cholera outbreaks in developing countries accounting for 3-5 million infections worldwide and 28.800-130.000 deaths per year according to the World Health Organization. In contrast, V. cholerae serogroups other than O1 and O139, also designated as V. cholerae non-O1/O139 (NOVC), are not associated with epidemic cholera but can cause other illnesses that may range in severity from mild (e.g. gastroenteritis, otitis, etc.) to life-threatening (e.g. necrotizing fasciitis). Although generally neglected, NOVC-related infections are on the rise and represent one of the most striking examples of emerging human diseases linked to climate change. NOVC strains are also believed to potentially contribute to the emergence of new pathogenic strains including strains with epidemic potential as a direct consequence of genetic exchange mechanisms such as horizontal gene transfer and genetic recombination. Besides general features concerning the biology and ecology of NOVC strains and their associated diseases, this review aims to highlight the most relevant aspects related to the emergence and potential threat posed by NOVC strains under a rapidly changing environmental and climatic scenario.


Assuntos
Mudança Climática , Ecossistema , Gastroenterite/patologia , Vibrioses/patologia , Vibrio cholerae não O1/patogenicidade , Surtos de Doenças , Ecologia , Gastroenterite/microbiologia , Transferência Genética Horizontal , Humanos , Água do Mar/microbiologia , Vibrioses/microbiologia , Vibrio cholerae não O1/classificação , Vibrio cholerae não O1/genética
13.
Fish Shellfish Immunol ; 99: 184-189, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32035168

RESUMO

The intestine is the primary target of pathogenic microbes during invasion. However, the interaction of Vibrio parahaemolyticus (V. parahaemolyticus) with intestinal epithelial cells and its effects on the intestinal function of Litopenaeus vannamei (L. vannamei) are poorly studied. Therefore, the aim of this study was to investigate the influence of V. parahaemolyticus infection on intestinal barrier function and nutrient absorption in L. vannamei. In the present study, a total of 90 shrimp were randomly divided into two groups including the control group and V. parahaemolyticus infection group (final concentration of 1 × 105 CFU/mL), with three replicates per group. The result showed that compared with the control group, V. parahaemolyticus infection increased (P < 0.05) serum diamine oxidase activity and endotoxin quantification, and down-regulated (P < 0.05) the mRNA levels of intestinal peroxinectin, integrin, midline fasciclin at 48 h and 72 h; V. parahaemolyticus infection decreased (P < 0.05) the mRNA expression of intestinal amino acid transporter (CAT1, EAAT3 and ASCT1) and glucose transporter (SGLT-1, GLUT) at 24 h, 48 h and 72 h, and increased (P < 0.05) serum glucose and amino acid (Asp, Thr, Ser, Glu, Gly, Ala, Val, Ile, Leu, Tyr, Phe, Lys, His and Arg) concentration at 24 h. The results indicated that V. parahaemolyticus infection increased intestinal permeability, inhibited absorption of glucose and amino acid in L. vannamei.


Assuntos
Enteropatias/veterinária , Intestinos/fisiopatologia , Nutrientes/metabolismo , Penaeidae/microbiologia , Vibrioses/veterinária , Sistemas de Transporte de Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Enteropatias/patologia , Intestinos/citologia , Intestinos/microbiologia , Permeabilidade , Vibrioses/patologia , Vibrio parahaemolyticus
14.
J Biomed Sci ; 27(1): 21, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906951

RESUMO

BACKGROUND: Melatonin (5-methoxy-N-acetyltryptamine), a hormone produced in the pineal gland, has a variety of biological functions as an antioxidant, but a functional role of melatonin in the regulation of intestinal mucin (Muc) production during bacterial infection has yet to be described in detail. In this study, we investigate the effects of melatonin during Muc2 repression elicited by the Gram-negative bacterium V. vulnificus. METHODS: Mucus-secreting human HT29-MTX cells were used to study the functional role of melatonin during Muc2 depletion induced by the recombinant protein (r) VvpM produced by V. vulnificus. The regulatory effects of melatonin coupling with melatonin receptor 2 (MT2) on the production of reactive oxygen species (ROS), the activation of PKCδ and ERK, and the hypermethylation of the Muc2 promoter as induced by rVvpM were examined. Experimental mouse models of V. vulnificus infection were used to study the role of melatonin and how it neutralizes the bacterial toxin activity related to Muc2 repression. RESULTS: Recombinant protein (r) VvpM significantly reduced the level of Muc2 in HT29-MTX cells. The repression of Muc2 induced by rVvpM was significantly restored upon a treatment with melatonin (1 µM), which had been inhibited by the knockdown of MT2 coupling with Gαq and the NADPH oxidase subunit p47 phox. Melatonin inhibited the ROS-mediated phosphorylation of PKCδ and ERK responsible for region-specific hypermethylation in the Muc2 promoter in rVvpM-treated HT29-MTX cells. In the mouse models of V. vulnificus infection, treatment with melatonin maintained the level of Muc2 expression in the intestine. In addition, the mutation of the VvpM gene from V. vulnificus exhibited an effect similar to that of melatonin. CONCLUSIONS: These results demonstrate that melatonin acting on MT2 inhibits the hypermethylation of the Muc2 promoter to restore the level of Muc2 production in intestinal epithelial cells infected with V. vulnificus.


Assuntos
Toxinas Bacterianas/metabolismo , Metilação de DNA , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Melatonina/farmacologia , Mucina-2/biossíntese , Receptor MT2 de Melatonina/metabolismo , Vibrioses/metabolismo , Vibrio vulnificus/metabolismo , Animais , Toxinas Bacterianas/farmacologia , Células HT29 , Humanos , Camundongos , Vibrioses/patologia
15.
Clin Microbiol Infect ; 26(5): 644.e1-644.e7, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31606549

RESUMO

OBJECTIVES: During surveillance, we found a new type of Vibrio parahaemolyticus named 'O4:KUT-recAin' and studied the phenotypic, pathogenic and epidemiological characteristics of O4:KUT-recAin. METHODS: V. parahaemolyticus were isolated from acute diarrhoeal patients in coastal hospitals of China. Serum agglutination test, specific PCR assay, growth curves under different conditions and rabbit diarrhoeal models were using to characterize O4:KUT-recAin. RESULTS: The O4:KUT-recAin strain has a new type of K antigen and a 25 043-bp-large fragment encoding 20 proteins inserted in the housekeeping gene recA. Retrospective analysis found that only one O4:KUT-recAin strain was detected in 563 V. parahaemolyticus strains in 2014; then the proportion increased rapidly and reached 17.8% (105/590) in 2016 and 31.1% (224/721) in 2017, making O4:KUT-recAin the second dominant serotype following O3:K6. O4:KUT-recAin strains (100%, 14/14) exhibited increased acid resistance and could reproduce in medium at pH 4.9, while 92.9% (13/14) of the O3:K6 strains could not grow at this pH value. O4:KUT-recAin could cause diarrhoea and small intestinal tissue lesions in infant rabbits, but its diarrhoeal (93.1%, 27/29) and mortality (78.6%, 22/28) rates were slightly lower than those of O3:K6 (100% 16/16, 100% 16/16). Based on diarrhoea patients, there were no significant differences in the two groups for most clinical symptoms and laboratory results, except media age, haemoglobin and the number of red blood cells in stool samples. CONCLUSIONS: O4:KUT-recAin had enhanced acid resistance, was capable of causing infectious diarrhoea in both rabbits and humans, and has become widespread during a short period of time in China.


Assuntos
Epidemias , Vibrioses/epidemiologia , Vibrioses/microbiologia , Vibrio parahaemolyticus/patogenicidade , Ácidos/metabolismo , Adulto , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , China/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Diarreia/patologia , Modelos Animais de Doenças , Feminino , Genoma Bacteriano/genética , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Mutagênese Insercional , Filogenia , Prevalência , Coelhos , Sorogrupo , Vibrioses/patologia , Vibrio parahaemolyticus/classificação , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/fisiologia
16.
PLoS Pathog ; 15(8): e1007767, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437245

RESUMO

The tad operons encode the machinery required for adhesive Flp (fimbrial low-molecular-weight protein) pili biogenesis. Vibrio vulnificus, an opportunistic pathogen, harbors three distinct tad loci. Among them, only tad1 locus was highly upregulated in in vivo growing bacteria compared to in vitro culture condition. To understand the pathogenic roles of the three tad loci during infection, we constructed single, double and triple tad loci deletion mutants. Interestingly, only the Δtad123 triple mutant cells exhibited significantly decreased lethality in mice. Ultrastructural observations revealed short, thin filamentous projections disappeared on the Δtad123 mutant cells. Since the pilin was paradoxically non-immunogenic, a V5 tag was fused to Flp to visualize the pilin protein by using immunogold EM and immunofluorescence microscopy. The Δtad123 mutant cells showed attenuated host cell adhesion, decreased biofilm formation, delayed RtxA1 exotoxin secretion and subsequently impaired translocation across the intestinal epithelium compared to wild type, which could be partially complemented with each wild type operon. The Δtad123 mutant was susceptible to complement-mediated bacteriolysis, predominantly via the alternative pathway, suggesting stealth hiding role of the Tad pili. Complement depletion by treating with anti-C5 antibody rescued the viable count of Δtad123 in infected mouse bloodstream to the level comparable to wild type strain. Taken together, all three tad loci cooperate to confer successful invasion of V. vulnificus into deeper tissue and evasion from host defense mechanisms, ultimately resulting in septicemia.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Ativação do Complemento/imunologia , Fímbrias Bacterianas/fisiologia , Vibrioses/microbiologia , Vibrio vulnificus/patogenicidade , Virulência , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos ICR , Óperon , Ratos , Ratos Sprague-Dawley , Vibrioses/genética , Vibrioses/imunologia , Vibrioses/patologia , Vibrio vulnificus/genética , Vibrio vulnificus/crescimento & desenvolvimento
17.
Artigo em Inglês | MEDLINE | ID: mdl-31332060

RESUMO

The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Sepse/tratamento farmacológico , Tigeciclina/farmacologia , Vibrioses/tratamento farmacológico , Vibrio vulnificus/efeitos dos fármacos , Animais , Cefotaxima/farmacologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Sepse/microbiologia , Sepse/mortalidade , Sepse/patologia , Análise de Sobrevida , Vibrioses/microbiologia , Vibrioses/mortalidade , Vibrioses/patologia , Vibrio vulnificus/crescimento & desenvolvimento
18.
Eur J Clin Microbiol Infect Dis ; 38(11): 1999-2004, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31325061

RESUMO

Vibrio vulnificus is a Gram-negative bacterium that belongs to the Vibrionaceae family. It represents a deadly opportunistic human pathogen which grows in water with the proper temperature and salinity, and is mostly acquired from seafood eating or direct contact. In susceptible individuals, a traumatic infection could be fatal, causing severe wound infection and even septic shock, and may require amputation. Global warming plays an important role in the geographical area expanding of Vibrio disease. The pathogenesis of Vibrio vulnificus-associated sepsis is very complex, including iron intake, cell injury, and adhesion-related protein and virulence regulation. Vibrio vulnificus infection mainly manifests clinical subtypes such as primary sepsis, traumatic infection, and gastroenteritis, with rapid symptom progression and signs of multiple organ dysfunction syndrome (MODS). It is important to assess these pathogenetic mechanisms in order to select more appropriate measures to prevent and treat Vibrio vulnificus infections, including antibiotic usage and surgical intervention. In this work, we report a typical case of successful treatment of necrotizing fasciitis caused by Vibrio vulnificus, and review the epidemiology, pathogenetic mechanism, clinical characteristics, and treatment of Vibrio vulnificus infection.


Assuntos
Vibrioses , Vibrio vulnificus/patogenicidade , Idoso , Amputação Cirúrgica , Antibacterianos/uso terapêutico , Mordeduras e Picadas/complicações , Mordeduras e Picadas/microbiologia , Fasciite Necrosante/epidemiologia , Fasciite Necrosante/etiologia , Fasciite Necrosante/patologia , Fasciite Necrosante/terapia , Feminino , Humanos , Insuficiência de Múltiplos Órgãos/epidemiologia , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/patologia , Insuficiência de Múltiplos Órgãos/terapia , Resultado do Tratamento , Vibrioses/complicações , Vibrioses/epidemiologia , Vibrioses/patologia , Vibrioses/terapia
19.
Proc Natl Acad Sci U S A ; 116(28): 14238-14247, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31221761

RESUMO

Vibrio species cause infectious diseases in humans and animals, but they can also live as commensals within their host tissues. How Vibrio subverts the host defenses to mount a successful infection remains poorly understood, and this knowledge is critical for predicting and managing disease. Here, we have investigated the cellular and molecular mechanisms underpinning infection and colonization of 2 virulent Vibrio species in an ecologically relevant host model, oyster, to study interactions with marine Vibrio species. All Vibrio strains were recognized by the immune system, but only nonvirulent strains were controlled. We showed that virulent strains were cytotoxic to hemocytes, oyster immune cells. By analyzing host and bacterial transcriptional responses to infection, together with Vibrio gene knock-outs, we discovered that Vibrio crassostreae and Vibrio tasmaniensis use distinct mechanisms to cause hemocyte lysis. Whereas V. crassostreae cytotoxicity is dependent on a direct contact with hemocytes and requires an ancestral gene encoding a protein of unknown function, r5.7, V. tasmaniensis cytotoxicity is dependent on phagocytosis and requires intracellular secretion of T6SS effectors. We conclude that proliferation of commensal vibrios is controlled by the host immune system, preventing systemic infections in oysters, whereas the successful infection of virulent strains relies on Vibrio species-specific molecular determinants that converge to compromise host immune cell function, allowing evasion of the host immune system.


Assuntos
Interações Hospedeiro-Patógeno/genética , Ostreidae/microbiologia , Vibrioses/genética , Vibrio/genética , Animais , Citoplasma/genética , Citoplasma/microbiologia , Hemócitos/microbiologia , Fagocitose/genética , Especificidade da Espécie , Vibrio/patogenicidade , Vibrioses/patologia
20.
J Fish Dis ; 42(5): 623-630, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30851004

RESUMO

Vibrio rotiferianus is an important marine pathogen of various aquatic organisms and can be found widely distributed in the marine environment. To further characterize this pathogen, the pathogenic properties and genome of V. rotiferianus SSVR1601 isolated from Sebastes schlegelii with skin ulcer were analysed. SSVR1601 was shown to be short rod-shaped cell with a single polar flagellum. Different degrees of pathological changes in fish kidney, intestine, gills and liver were observed after SSVR1601 challenge. The SSVR1601 genome consists of two chromosomes and two plasmids with a total of 5,717,113 bp, 42.04%-44.93% GC content, 5,269 predicted CDSs, 134 tRNAs and 40 rRNAs. The common virulence factors including OMPs, haemolysin, flagellin, DNase, entF, algU, tcpI, acfB and rfaD were found in strain SSVR1601. Furthermore, factors responsible for iron uptake (fur, fepC and ccmC) and types II, IV and VI secretion systems were detected, which are likely responsible for the pathogenicity of SSVR1601. The antimicrobial resistance genes, bacA, tet34 and norM, were detected based on Antibiotic Resistance Genes Database. The phylogenetic analysis revealed SSVR1601 to be most closely related to V. rotiferianus strains CAIM577 and B64D1.


Assuntos
Doenças dos Peixes/patologia , Peixes , Genoma Bacteriano , Úlcera Cutânea/veterinária , Vibrioses/veterinária , Vibrio/genética , Vibrio/patogenicidade , Animais , Doenças dos Peixes/microbiologia , Filogenia , Análise de Sequência de DNA/veterinária , Úlcera Cutânea/microbiologia , Úlcera Cutânea/patologia , Vibrio/classificação , Vibrioses/microbiologia , Vibrioses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA