Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.433
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Methods Mol Biol ; 2854: 1-7, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192112

RESUMO

Antiviral innate immunity is a complicated system initiated by the induction of type I interferon (IFN-I) and downstream interferon-stimulated genes (ISGs) and is finely regulated by numerous positive and negative factors at different signaling adaptors. During this process, posttranslational modifications, especially ubiquitination, are the most common regulatory strategy used by the host to switch the antiviral innate signaling pathway and are mainly controlled by E3 ubiquitin ligases from different protein families. A comprehensive understanding of the regulatory mechanisms and a novel discovery of regulatory factors involved in the IFN-I signaling pathway are important for researchers to identify novel therapeutic targets against viral infectious diseases based on innate immunotherapy. In this section, we use the E3 ubiquitin ligase as an example to guide the identification of a protein belonging to the RING Finger (RNF) family that regulates the RIG-I-mediated IFN-I pathway through ubiquitination.


Assuntos
Imunidade Inata , Interferon Tipo I , Transdução de Sinais , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Interferon Tipo I/metabolismo , Viroses/imunologia , Viroses/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética
2.
Methods Mol Biol ; 2854: 9-18, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192113

RESUMO

Antiviral innate immunity is the first line of defence against viruses. The interferon (IFN) signaling pathway, the DNA damage response (DDR), apoptosis, endoplasmic reticulum (ER) stress, and autophagy are involved in antiviral innate immunity. Viruses abrogate the antiviral immune response of cells to replication in various ways. Viral genes/proteins play a key role in evading antiviral innate immunity. Here, we will discuss the interference of viruses with antiviral innate immunity and the strategy for identifying viral gene/protein immune evasion.


Assuntos
Imunidade Inata , Humanos , Proteínas Virais/imunologia , Proteínas Virais/genética , Vírus/imunologia , Vírus/genética , Evasão da Resposta Imune , Viroses/imunologia , Viroses/virologia , Animais , Genes Virais , Autofagia/imunologia , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais/imunologia
3.
Methods Mol Biol ; 2854: 83-91, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192121

RESUMO

Transcriptomics is an extremely important area of molecular biology and is a powerful tool for studying all RNA molecules in an organism. Conventional transcriptomic technologies include microarrays and RNA sequencing, and the rapid development of single-cell sequencing and spatial transcriptomics in recent years has provided an enormous scope for research in this field. This chapter describes the application, significance, and experimental procedures of a variety of transcriptomic technologies in antiviral natural immunity.


Assuntos
Perfilação da Expressão Gênica , Imunidade Inata , Transcriptoma , Imunidade Inata/genética , Humanos , Perfilação da Expressão Gênica/métodos , Animais , Viroses/imunologia , Viroses/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
4.
Methods Mol Biol ; 2854: 61-74, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192119

RESUMO

With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Imunidade Inata , Camundongos Knockout , RNA Guia de Sistemas CRISPR-Cas , Animais , Imunidade Inata/genética , Camundongos , RNA Guia de Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Técnicas de Inativação de Genes/métodos , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Viroses/imunologia , Viroses/genética
5.
Methods Mol Biol ; 2854: 199-212, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192131

RESUMO

Antiviral innate immunity plays a critical role in the defense against viral infections, yet its complex interactions with viruses have been challenging to study using traditional models. Organoids, three-dimensional (3D) tissue-like structures derived from stem cells, have emerged as powerful tools for modeling human tissues and studying the complex interactions between viruses and the host innate immune system. This chapter summarizes relevant applications of organoids in antiviral innate immunity studies and provides detailed information and experimental procedures for using organoids to study antiviral innate immunity.


Assuntos
Imunidade Inata , Organoides , Viroses , Organoides/imunologia , Organoides/virologia , Humanos , Viroses/imunologia , Viroses/virologia , Animais , Interações Hospedeiro-Patógeno/imunologia , Vírus/imunologia
6.
Methods Mol Biol ; 2854: 221-236, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192133

RESUMO

Zebrafish is a widely used model organism in genetics, developmental biology, pathology, and immunology research. Due to their fast reproduction, large numbers, transparent early embryos, and high genetic conservation with the human genome, zebrafish have been used as a model for studying human and fish viral diseases. In particular, the ability to easily perform forward and reverse genetics and lacking a functional adaptive immune response during the early period of development establish the zebrafish as a favored option to assess the functional implication of specific genes in the antiviral innate immune response and the pathogenesis of viral diseases. In this chapter, we detail protocols for the antiviral innate immunity analysis using the zebrafish model, including the generation of gene-overexpression zebrafish, generation of gene-knockout zebrafish by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, methods of viral infection in zebrafish larvae, analyzing the expression of antiviral genes in zebrafish larvae using qRT-PCR, Western blotting and transcriptome sequencing, and in vivo antiviral assays. These experimental protocols provide effective references for studying the antiviral immune response in the zebrafish model.


Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Imunidade Inata , Peixe-Zebra , Animais , Peixe-Zebra/imunologia , Peixe-Zebra/genética , Peixe-Zebra/virologia , Imunidade Inata/genética , Viroses/imunologia , Viroses/genética , Técnicas de Inativação de Genes , Animais Geneticamente Modificados
7.
Methods Mol Biol ; 2854: 253-264, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39192135

RESUMO

Innate immunity is an important defense barrier for the human body. After viral pathogen-associated molecular patterns (PAMPs) are detected by host-pathogen recognition receptors (PRRs), the associated signaling pathways trigger the activation of the interferon (IFN) regulatory factor (IRF) family members and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). However, any gene defects among the signaling adaptors will compromise innate immune efficiency. Therefore, investigating genetic defects in the antiviral innate immune signaling pathway is important. We summarize the commonly used research methods related to antiviral immune gene defects and outline the relevant research protocols, which will help investigators study antiviral innate immunity.


Assuntos
Imunidade Inata , Transdução de Sinais , Humanos , Animais , Viroses/imunologia , Viroses/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , NF-kappa B/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/genética
9.
Am J Reprod Immunol ; 92(3): e13930, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39302213

RESUMO

Chronic endometritis (CE) is a frequent pathological condition that is defined as localized inflammation in the endometrium. Some adverse fertility consequences such as recurrent miscarriage and failure of implantation are associated with chronic endometritis. On the one hand, inflammation plays an important role in the pathogenesis of endometritis, and on the other hand, the role of viral infections in inducing inflammation can make this review strongly attractive and practical. We set out to provide an overview of viral infections as a potential etiology of CE pathophysiology through the alteration of an endometrial microenvironment and its association with infertility. To the best of our knowledge, this is the first review to demonstrate the role of viral infection in chronic endometritis, and whether or not infection ultimately plays a role..


Assuntos
Endometrite , Endométrio , Viroses , Humanos , Feminino , Endometrite/virologia , Endometrite/imunologia , Viroses/imunologia , Viroses/complicações , Endométrio/patologia , Endométrio/virologia , Endométrio/imunologia , Doença Crônica , Animais , Infertilidade Feminina/virologia , Infertilidade Feminina/imunologia , Infertilidade Feminina/etiologia
11.
Cell ; 187(19): 5128-5145, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303682

RESUMO

Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology. We highlight the challenges that virology will face moving forward-not just the scientific and technical but also the social and political. Although there are inherent limitations in trying to outline the virology of the future, we hope this article will help inspire the next generation of virologists.


Assuntos
COVID-19 , Virologia , Humanos , Virologia/história , COVID-19/virologia , COVID-19/epidemiologia , SARS-CoV-2/genética , Pandemias , Vírus/genética , Viroses/virologia , Interações Hospedeiro-Patógeno , História do Século XXI
13.
Virol J ; 21(1): 225, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304943

RESUMO

Viral infections pose significant threats to human health, leading to a diverse spectrum of infectious diseases. The innate immune system serves as the primary barrier against viruses and bacteria in the early stages of infection. A rapid and forceful antiviral innate immune response is triggered by distinguishing between self-nucleic acids and viral nucleic acids. RNA-binding proteins (RBPs) are a diverse group of proteins which contain specific structural motifs or domains for binding RNA molecules. In the last decade, numerous of studies have outlined that RBPs influence viral replication via diverse mechanisms, directly recognizing viral nucleic acids and modulating the activity of pattern recognition receptors (PRRs). In this review, we summarize the functions of RBPs in regulation of host-virus interplay by controlling the activation of PRRs, such as RIG-I, MDA5, cGAS and TLR3. RBPs are instrumental in facilitating the identification of viral RNA or DNA, as well as viral structural proteins within the cellular cytoplasm and nucleus, functioning as co-receptor elements. On the other hand, RBPs are capable of orchestrating the activation of PRRs and facilitating the transmission of antiviral signals to downstream adaptor proteins by post-translational modifications or aggregation. Gaining a deeper comprehension of the interaction between the host and viruses is crucial for the development of novel therapeutics targeting viral infections.


Assuntos
Imunidade Inata , Proteínas de Ligação a RNA , Receptores de Reconhecimento de Padrão , Transdução de Sinais , Receptores de Reconhecimento de Padrão/metabolismo , Receptores de Reconhecimento de Padrão/imunologia , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/genética , Animais , Viroses/imunologia , Viroses/virologia , Interações Hospedeiro-Patógeno/imunologia , RNA Viral/metabolismo , RNA Viral/imunologia , RNA Viral/genética , Vírus/imunologia , Replicação Viral
14.
Int J Biol Sci ; 20(12): 4585-4600, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309436

RESUMO

The zinc-finger antiviral protein (ZAP) is a restriction factor that proficiently impedes the replication of a variety of RNA and DNA viruses. In recent years, the affinity of ZAP's zinc-fingers for single-stranded RNA (ssRNA) rich in CpG dinucleotides was uncovered. High frequencies of CpGs in RNA may suggest a non-self origin, which underscores the importance of ZAP as a potential cellular sensor of (viral) RNA. Upon binding viral RNA, ZAP recruits cellular cofactors to orchestrate a finely tuned antiviral response that limits virus replication via distinct mechanisms. These include promoting degradation of viral RNA, inhibiting RNA translation, and synergizing with other immune pathways. Depending on the viral species and experimental set-up, different isoforms and cellular cofactors have been reported to be dominant in shaping the ZAP-mediated antiviral response. Here we review how ZAP differentially affects viral replication depending on distinct interactions with RNA, cellular cofactors, and viral proteins to discuss how these interactions shape the antiviral mechanisms that have thus far been reported for ZAP. Importantly, we zoom in on the unknown aspects of ZAP's antiviral system and its therapeutic potential to be employed in vaccine design.


Assuntos
Proteínas de Ligação a RNA , Viroses , Replicação Viral , Humanos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Viroses/metabolismo , Viroses/imunologia , RNA Viral/metabolismo , Animais , Dedos de Zinco
15.
Proc Natl Acad Sci U S A ; 121(37): e2403897121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39240972

RESUMO

Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.


Assuntos
Ácidos Nucleicos Livres , Aprendizado de Máquina , Síndrome de Linfonodos Mucocutâneos , Síndrome de Resposta Inflamatória Sistêmica , Humanos , Criança , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , Síndrome de Resposta Inflamatória Sistêmica/sangue , Pré-Escolar , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Masculino , Feminino , Síndrome de Linfonodos Mucocutâneos/diagnóstico , Síndrome de Linfonodos Mucocutâneos/sangue , Síndrome de Linfonodos Mucocutâneos/genética , Diagnóstico Diferencial , Lactente , Inflamação/sangue , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/sangue , Adolescente , Viroses/diagnóstico , Viroses/sangue , Viroses/genética , Biomarcadores/sangue , COVID-19/complicações
16.
J Transl Med ; 22(1): 847, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294611

RESUMO

SCOPE: The underlying medical conditions and gut dysbiosis is known to influence COVID-19 severity in high-risk patients. The current review proposed the optimal usage of nutraceuticals & pharmacological interventions can help regulate the protective immune response and balance the regulatory functionality of gut microbiota. Many studies have revealed that the probiotic interventions viz., Lactobacillus rhamnosus, L. plantarum & other bacterial spp. reduce IFNγ & TNF-α and increase IL-4 & IL-10 secretions to control the immunostimulatory effects in upper respiratory tract infection. Dietary fibres utilized by beneficial microbiota and microbial metabolites can control the NF-kB regulation. Vitamin C halts the propagation of pathogens and vitamin D and A modulate the GM. Selenium and Flavonoids also control the redox regulations. Interferon therapy can antagonize the viral replications, while corticosteroids may reduce the death rates. BCG vaccine reprograms the monocytes to build trained immunity. Bifidobacterium and related microbes were found to increase the vaccine efficacy. Vaccines against COVID-19 and season flu also boost the immunity profile for robust protection. Over all, the collective effects of these therapeutics could help increase the opportunities for faster recovery from infectious diseases. CONCLUSION: The nutraceutical supplements and pharmacological medicines mediate the modulatory functionalities among beneficial microbes of gut, which in turn eliminate pathogens, harmonize the activity of immune cells to secrete essential regulatory molecular receptors and adaptor proteins establishing the homeostasis in the body organs through essential microbiome. Therefore, the implementation of this methodology could control the severity events during clinical sickness and reduce the mortalities.


Assuntos
COVID-19 , Suplementos Nutricionais , Microbioma Gastrointestinal , SARS-CoV-2 , Humanos , COVID-19/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , SARS-CoV-2/imunologia , Tratamento Farmacológico da COVID-19 , Probióticos/uso terapêutico , Viroses/imunologia , Viroses/tratamento farmacológico , Imunidade/efeitos dos fármacos
17.
Curr Opin Infect Dis ; 37(5): 385-391, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39253867

RESUMO

PURPOSE OF REVIEW: Viruses are the most common etiological agents of diarrhea in children. Despite rotavirus vaccine introduction, rotavirus remains as the leading cause of death globally, followed by norovirus, which represents a diagnostic challenge. Here, we describe new advances in the diagnosis and management of viral diarrheas. RECENT FINDINGS: Although immunoassays are widely used for their fast turnaround time and low cost, molecular techniques have become the most reliable diagnostic method due to their high sensitivity and capacity to analyze multiple pathogens in gastrointestinal panels. Isothermal nucleic acid amplification assays (LAMP and RPA) are promising techniques since they do not require sophisticated equipment and can be used as point-of-care testing. CRISPR/Cas nucleic acid detection systems are new diagnostic methods with great potential. Several recent published articles describe the role of human intestinal enteroids to characterize norovirus infection, to test new drugs, and for vaccine development. The interaction between the human gut microbiota and gastrointestinal viral infections has been extensively reviewed and offers some innovative mechanisms for therapeutic and preventive measures. SUMMARY: Although important advances have been made, more research is needed to address remaining challenges and further improve diagnostic capabilities and better management strategies for this critical infectious disease.


Assuntos
Diarreia , Humanos , Diarreia/diagnóstico , Diarreia/virologia , Diarreia/terapia , Técnicas de Diagnóstico Molecular/métodos , Viroses/diagnóstico , Viroses/terapia , Norovirus/genética , Norovirus/isolamento & purificação , Infecções por Caliciviridae/diagnóstico , Infecções por Caliciviridae/terapia , Técnicas de Amplificação de Ácido Nucleico/métodos , Microbioma Gastrointestinal
18.
Rev Med Virol ; 34(5): e2583, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39289528

RESUMO

Autoantibodies are immune system-produced antibodies that wrongly target the body's cells and tissues for attack. The COVID-19 pandemic has made it possible to link autoantibodies to both the severity of pathogenic infection and the emergence of several autoimmune diseases after recovery from the infection. An overview of autoimmune disorders and the function of autoantibodies in COVID-19 and other infectious diseases are discussed in this review article. We also investigated the different categories of autoantibodies found in COVID-19 and other infectious diseases including the potential pathways by which they contribute to the severity of the illness. Additionally, it also highlights the probable connection between vaccine-induced autoantibodies and their adverse outcomes. The review also discusses the therapeutic perspectives of autoantibodies. This paper advances our knowledge about the intricate interaction between autoantibodies and COVID-19 by thoroughly assessing the most recent findings.


Assuntos
Autoanticorpos , Doenças Autoimunes , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , Autoanticorpos/imunologia , SARS-CoV-2/imunologia , Doenças Autoimunes/imunologia , Viroses/imunologia
19.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(9): 1404-1414, 2024 Sep 06.
Artigo em Chinês | MEDLINE | ID: mdl-39290024

RESUMO

Virus-like particles (VLPs) are self-assembled protein nanoparticles with repetitive antigen epitopes, which can stimulate immune response and do not contain viral genetic materials. VLPs has important research value and application potential in vaccine development, targeted drug delivery and bioengineering materials. In this review, the mechanism of VLPs vaccine induced immune responses is discussed. The existing VLPs expression systems are summarized. The research progress of VLPs vaccine in prevention and treatment of virus infection are summarized. This review provides general reference and guidance for the design and development of antiviral VLPs vaccine.


Assuntos
Vacinas de Partículas Semelhantes a Vírus , Vacinas de Partículas Semelhantes a Vírus/imunologia , Humanos , Nanopartículas , Viroses/prevenção & controle , Desenvolvimento de Vacinas , Vacinas Virais
20.
Microb Pathog ; 195: 106901, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218378

RESUMO

Neurotropic viruses, characterized by their capacity to invade the central nervous system, present a considerable challenge to public health and are responsible for a diverse range of neurological disorders. This group includes a diverse array of viruses, such as herpes simplex virus, varicella zoster virus, poliovirus, enterovirus and Japanese encephalitis virus, among others. Some of these viruses exhibit high neuroinvasiveness and neurovirulence, while others demonstrate weaker neuroinvasive and neurovirulent properties. The clinical manifestations of infections caused by neurotropic viruses can vary significantly, ranging from mild symptoms to severe life-threatening conditions. Extracellular vesicles (EVs) have garnered considerable attention due to their pivotal role in intracellular communication, which modulates the biological activity of target cells via the transport of biomolecules in both health and disease. Investigating EVs in the context of virus infection is crucial for elucidating their potential role contribution to viral pathogenesis. This is because EVs derived from virus-infected cells frequently transfer viral components to uninfected cells. Importantly, EVs released by virus-infected cells have the capacity to traverse the blood-brain barrier (BBB), thereby impacting neuronal activity and inducing neuroinflammation. In this review, we explore the roles of EVs during neurotropic virus infections in either enhancing or inhibiting viral pathogenesis. We will delve into our current comprehension of the molecular mechanisms that underpin these roles, the potential implications for the infected host, and the prospective diagnostic applications that could arise from this understanding.


Assuntos
Barreira Hematoencefálica , Vesículas Extracelulares , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , Humanos , Barreira Hematoencefálica/virologia , Animais , Vírus/patogenicidade , Vírus/classificação , Viroses/virologia , Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Herpesvirus Humano 3/patogenicidade , Herpesvirus Humano 3/fisiologia , Enterovirus/patogenicidade , Enterovirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA