Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.042
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1366908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725449

RESUMO

Background: Metagenomic next-generation sequencing (mNGS) is a novel non-invasive and comprehensive technique for etiological diagnosis of infectious diseases. However, its practical significance has been seldom reported in the context of hematological patients with high-risk febrile neutropenia, a unique patient group characterized by neutropenia and compromised immune responses. Methods: This retrospective study evaluated the results of plasma cfDNA sequencing in 164 hematological patients with high-risk febrile neutropenia. We assessed the diagnostic efficacy and clinical impact of mNGS, comparing it with conventional microbiological tests. Results: mNGS identified 68 different pathogens in 111 patients, whereas conventional methods detected only 17 pathogen types in 36 patients. mNGS exhibited a significantly higher positive detection rate than conventional methods (67.7% vs. 22.0%, P < 0.001). This improvement was consistent across bacterial (30.5% vs. 9.1%), fungal (19.5% vs. 4.3%), and viral (37.2% vs. 9.1%) infections (P < 0.001 for all comparisons). The anti-infective treatment strategies were adjusted for 51.2% (84/164) of the patients based on the mNGS results. Conclusions: mNGS of plasma cfDNA offers substantial promise for the early detection of pathogens and the timely optimization of anti-infective therapies in hematological patients with high-risk febrile neutropenia.


Assuntos
Neutropenia Febril , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Humanos , Metagenômica/métodos , Masculino , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Feminino , Pessoa de Meia-Idade , Neutropenia Febril/microbiologia , Neutropenia Febril/sangue , Neutropenia Febril/diagnóstico , Adulto , Idoso , Adulto Jovem , Adolescente , Idoso de 80 Anos ou mais , Infecções Bacterianas/diagnóstico , Infecções Bacterianas/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Micoses/diagnóstico , Micoses/microbiologia , Viroses/diagnóstico , Viroses/virologia
2.
Influenza Other Respir Viruses ; 18(5): e13310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725276

RESUMO

BACKGROUND: A variety of viruses can cause acute respiratory infections (ARIs), resulting in a high disease burden worldwide. To explore the dominant viruses and their prevalence characteristics in children with ARIs, comprehensive surveillance was carried out in the Pudong New Area of Shanghai. METHODS: Between January 2013 and December 2022, the basic and clinical information, and respiratory tract specimens of 0-14 years old children with ARIs were collected in five sentinel hospitals in Shanghai Pudong. Each specimen was tested for eight respiratory viruses, and the positive rates of different age groups, case types (inpatient or outpatient) were analyzed. RESULTS: In our study, 30.67% (1294/4219) children with ARIs were positive for at least one virus. Influenza virus (IFV) was the most commonly detected respiratory virus (349/4219, 8.27%), followed by respiratory syncytial virus (RSV) (217/4219, 5.14%), para-influenza virus (PIV) (215/4219, 5.10%), and human coronavirus (HCoV, including 229E, OC43, NL63, and HKU1) (184/4219, 4.36%). IFV was the leading respiratory virus in outpatients aged 5-14 years (201/1673, 12.01%); RSV was the most prevalent respiratory virus in both inpatients (61/238, 25.63%) and outpatients (4/50, 8.00%) for ARI patients aged <6 months old. For PIV, HMPV, HCoV, and HRV, the risk of infection usually was higher among young children. Co-infection with more than two viruses was seen in 3.25% (137/4219). CONCLUSIONS: IFV and RSV played important roles in ARIs among children, but the risk populations were different. There are needs for targeted diagnosis and treatment and necessary immunization and non-pharmaceutical interventions.


Assuntos
Infecções Respiratórias , Humanos , China/epidemiologia , Pré-Escolar , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Criança , Lactente , Masculino , Adolescente , Feminino , Prevalência , Recém-Nascido , Vírus/isolamento & purificação , Vírus/classificação , Viroses/epidemiologia , Viroses/virologia , Coinfecção/epidemiologia , Coinfecção/virologia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Doença Aguda/epidemiologia
3.
Nucleus ; 15(1): 2350178, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38717150

RESUMO

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Assuntos
Viroses , Humanos , Viroses/metabolismo , Viroses/genética , Viroses/virologia , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética
4.
Clin Exp Med ; 24(1): 91, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38693436

RESUMO

The ubiquitous RNA-processing molecule TDP-43 is involved in neuromuscular diseases such as inclusion body myositis, a late-onset acquired inflammatory myopathy. TDP-43 solubility and function are disrupted in certain viral infections. Certain viruses, high viremia, co-infections, reactivation of latent viruses, and post-acute expansion of cytotoxic T cells may all contribute to inclusion body myositis, mainly in an age-shaped immune landscape. The virally induced senescent, interferon gamma-producing cytotoxic CD8+ T cells with increased inflammatory, and cytotoxic features are involved in the occurrence of inclusion body myositis in most such cases, in a genetically predisposed host. We discuss the putative mechanisms linking inclusion body myositis, TDP-43, and viral infections untangling the links between viruses, interferon, and neuromuscular degeneration could shed a light on the pathogenesis of the inclusion body myositis and other TDP-43-related neuromuscular diseases, with possible therapeutic implications.


Assuntos
Proteínas de Ligação a DNA , Miosite de Corpos de Inclusão , Viroses , Miosite de Corpos de Inclusão/virologia , Humanos , Viroses/imunologia , Viroses/virologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo
5.
New Microbiol ; 47(1): 28-32, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700880

RESUMO

Acute respiratory tract infections (ARI) are common diseases in children and adults and could cause severe infections in high-risk patients, like the immunocompromised and elderly, and are the leading cause of morbidity, hospitalization and mortality. This study aimed to explore the prevalence of respiratory viruses and the clinical impact of single- and multi-infection among hospitalized patients in various age groups. 3578 nasopharyngeal swabs (NPS) were analyzed for pathogen detection of acute respiratory tract infections. 930 out of 3578 NPS were diagnosed positive for at least one respiratory virus. The distribution of viral infections, prevalence and pathogen, differed significantly among age groups. Most RTI are observed in the age group over 65 years (50.6%) with a high SARS-CoV2 prevalence, following by group <5 years (25.6%), where the most frequently detected viruses were RSV, Rhinovirus, FluA-H3, MPV, and AdV. The co-infection rate also varies according to age and, in some cases, especially in older adults, could have severe clinical impact. This study emphasizes that it is important to know and analyze, in all age groups of hospitalized patients, the epidemiology of respiratory viruses, the prevalence of coinfections, and the clinical impact of various pathogens. Furthermore, in a clinical setting, the rapid diagnosis of respiratory infections by means of molecular tests is crucial not only to avoid hospital outbreaks, but also to allow early and optimal treatment to reduce morbidity and mortality.


Assuntos
Coinfecção , Infecções Respiratórias , Humanos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Idoso , Adulto , Pessoa de Meia-Idade , Pré-Escolar , Adolescente , Criança , Masculino , Adulto Jovem , Feminino , Lactente , Coinfecção/epidemiologia , Coinfecção/virologia , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Prevalência , Hospitalização , SARS-CoV-2 , Viroses/epidemiologia , Viroses/virologia , Recém-Nascido , Pandemias , Vírus/isolamento & purificação , Vírus/classificação , Vírus/genética
6.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674036

RESUMO

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Assuntos
Quimiocina CX3CL1 , Viroses , Quimiocina CX3CL1/metabolismo , Humanos , Viroses/metabolismo , Viroses/imunologia , Viroses/virologia , Animais , COVID-19/virologia , COVID-19/metabolismo , COVID-19/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Microglia/metabolismo , Microglia/virologia , Receptor 1 de Quimiocina CX3C/metabolismo , Receptor 1 de Quimiocina CX3C/genética
7.
Vet Res ; 55(1): 54, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671518

RESUMO

This article reviews the avian viruses that infect the skin of domestic farm birds of primary economic importance: chicken, duck, turkey, and goose. Many avian viruses (e.g., poxviruses, herpesviruses, Influenza viruses, retroviruses) leading to pathologies infect the skin and the appendages of these birds. Some of these viruses (e.g., Marek's disease virus, avian influenza viruses) have had and/or still have a devasting impact on the poultry economy. The skin tropism of these viruses is key to the pathology and virus life cycle, in particular for virus entry, shedding, and/or transmission. In addition, for some emergent arboviruses, such as flaviviruses, the skin is often the entry gate of the virus after mosquito bites, whether or not the host develops symptoms (e.g., West Nile virus). Various avian skin models, from primary cells to three-dimensional models, are currently available to better understand virus-skin interactions (such as replication, pathogenesis, cell response, and co-infection). These models may be key to finding solutions to prevent or halt viral infection in poultry.


Assuntos
Doenças das Aves Domésticas , Viroses , Animais , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia , Pele/virologia , Viroses/veterinária , Viroses/virologia
8.
mBio ; 15(5): e0069224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38567955

RESUMO

Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.


Assuntos
Vírus Defeituosos , Genoma Viral , Humanos , Vírus Defeituosos/genética , Replicação Viral , Animais , Vírus de RNA/genética , Imunidade Inata , Viroses/virologia , Viroses/genética , Viroses/imunologia
9.
PLoS Comput Biol ; 20(4): e1011437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626190

RESUMO

Mathematical models of viral infection have been developed, fitted to data, and provide insight into disease pathogenesis for multiple agents that cause chronic infection, including HIV, hepatitis C, and B virus. However, for agents that cause acute infections or during the acute stage of agents that cause chronic infections, viral load data are often collected after symptoms develop, usually around or after the peak viral load. Consequently, we frequently lack data in the initial phase of viral growth, i.e., when pre-symptomatic transmission events occur. Missing data may make estimating the time of infection, the infectious period, and parameters in viral dynamic models, such as the cell infection rate, difficult. However, having extra information, such as the average time to peak viral load, may improve the robustness of the estimation. Here, we evaluated the robustness of estimates of key model parameters when viral load data prior to the viral load peak is missing, when we know the values of some parameters and/or the time from infection to peak viral load. Although estimates of the time of infection are sensitive to the quality and amount of available data, particularly pre-peak, other parameters important in understanding disease pathogenesis, such as the loss rate of infected cells, are less sensitive. Viral infectivity and the viral production rate are key parameters affecting the robustness of data fits. Fixing their values to literature values can help estimate the remaining model parameters when pre-peak data is missing or limited. We find a lack of data in the pre-peak growth phase underestimates the time to peak viral load by several days, leading to a shorter predicted growth phase. On the other hand, knowing the time of infection (e.g., from epidemiological data) and fixing it results in good estimates of dynamical parameters even in the absence of early data. While we provide ways to approximate model parameters in the absence of early viral load data, our results also suggest that these data, when available, are needed to estimate model parameters more precisely.


Assuntos
Modelos Biológicos , Carga Viral , Humanos , Viroses/virologia , Biologia Computacional/métodos , Simulação por Computador
10.
Viruses ; 16(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675854

RESUMO

In this study, we analyzed the potential of viral infections in the species Homo sapiens as environmental causes of orofacial clefts (OFCs). A scoring system was adapted for qualitatively assessing the potential of viruses to cause cleft lip and/or palate (CL/P). This assessment considered factors such as information from the literature, nucleotide and amino acid similarities, and the presence of Endogenous Viral Elements (EVEs). The analysis involved various algorithm packages within Basic Local Alignment Search Tool 2.13.0 software and databases from the National Center for Biotechnology Information and the International Committee on Taxonomy of Viruses. Twenty significant viral species using different biosynthesis strategies were identified: Human coronavirus NL63, Rio Negro virus, Alphatorquevirus homin9, Brisavirus, Cosavirus B, Torque teno mini virus 4, Bocaparvovirus primate2, Human coronavirus HKU1, Monkeypox virus, Mammarenavirus machupoense, Volepox virus, Souris mammarenavirus, Gammapapillomavirus 7, Betainfluenzavirus influenzae, Lymphocytic choriomeningitis mammarenavirus, Ledantevirus kern, Gammainfluenzavirus influenzae, Betapolyomavirus hominis, Vesiculovirus perinet, and Cytomegalovirus humanbeta5. The evident viral etiological potential in relation to CL/P varies depending on the Baltimore class to which the viral species belongs. Given the multifactorial nature of CL/P, this relationship appears to be dynamic.


Assuntos
Fenda Labial , Fissura Palatina , Vírus , Fenda Labial/virologia , Humanos , Fissura Palatina/virologia , Vírus/genética , Vírus/classificação , Vírus/isolamento & purificação , Viroses/virologia , Animais
11.
Viruses ; 16(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675930

RESUMO

Inflammation is a protective host response essential for controlling viral replication and promoting tissue repair [...].


Assuntos
Inflamação , Viroses , Inflamação/virologia , Humanos , Viroses/imunologia , Viroses/virologia , Animais , Vírus/imunologia , Vírus/patogenicidade , Replicação Viral , Interações Hospedeiro-Patógeno/imunologia
12.
Viruses ; 16(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675927

RESUMO

Located 50 miles west of Fort Collins, Colorado, Colorado State University's Mountain Campus in Pingree Park hosted the 23rd annual Rocky Mountain Virology Association meeting in 2023 with 116 participants. The 3-day event at the end of September consisted of 28 talks and 43 posters that covered the topics of viral evolution and surveillance, developments in prion research, arboviruses and vector biology, host-virus interactions, and viral immunity and vaccines. This year's Randall Jay Cohrs keynote presentation covered the topic of One Health and emerging coronaviruses. This timely discussion covered the importance of global disease surveillance, international collaboration, and trans-disciplinary research teams to prevent and control future pandemics. Peak fall colors flanked the campus and glowed along the multiple mountain peaks, allowing for pristine views while discussing science and networking, or engaging in mountain activities like fly fishing and hiking. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations from the 23rd annual meeting.


Assuntos
Virologia , Humanos , Colorado , Animais , Viroses/virologia , Vírus/genética , Vírus/classificação , Príons , Arbovírus , Saúde Única
13.
Viruses ; 16(4)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675942

RESUMO

The epitranscriptomic modification m6A is a prevalent RNA modification that plays a crucial role in the regulation of various aspects of RNA metabolism. It has been found to be involved in a wide range of physiological processes and disease states. Of particular interest is the role of m6A machinery and modifications in viral infections, serving as an evolutionary marker for distinguishing between self and non-self entities. In this review article, we present a comprehensive overview of the epitranscriptomic modification m6A and its implications for the interplay between viruses and their host, focusing on immune responses and viral replication. We outline future research directions that highlight the role of m6A in viral nucleic acid recognition, initiation of antiviral immune responses, and modulation of antiviral signaling pathways. Additionally, we discuss the potential of m6A as a prognostic biomarker and a target for therapeutic interventions in viral infections.


Assuntos
Imunidade Inata , Viroses , Humanos , Viroses/imunologia , Viroses/virologia , Metilação , Replicação Viral , Vírus/imunologia , Vírus/genética , Animais , RNA Viral/genética , RNA Viral/imunologia , Transdução de Sinais , Interações Hospedeiro-Patógeno/imunologia
14.
Exp Mol Med ; 56(4): 799-808, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658699

RESUMO

The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.


Assuntos
Genoma Viral , Humanos , Animais , Interações Hospedeiro-Patógeno , Vírus/metabolismo , Vírus/genética , Cromatina/metabolismo , Viroses/virologia , Viroses/metabolismo
15.
J Infect ; 88(5): 106148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588959

RESUMO

OBJECTIVES: In this study, we investigated the causes of measles-like illnesses (MLI) in the Uganda national surveillance program in order to inform diagnostic assay selection and vaccination strategies. METHODS: We used metagenomic next-generation sequencing (M-NGS) on the Illumina platform to identify viruses associated with MLI (defined as fever and rash in the presence of either cough, coryza or conjunctivitis) in patient samples that had tested IgM negative for measles between 2010 and 2019. RESULTS: Viral genomes were identified in 87/271 (32%) of samples, of which 44/271 (16%) contained 12 known viral pathogens. Expected viruses included rubella, human parvovirus B19, Epstein Barr virus, human herpesvirus 6B, human cytomegalovirus, varicella zoster virus and measles virus (detected within the seronegative window-period of infection) and the blood-borne hepatitis B virus. We also detected Saffold virus, human parvovirus type 4, the human adenovirus C2 and vaccine-associated poliovirus type 1. CONCLUSIONS: The study highlights the presence of undiagnosed viruses causing MLI in Uganda, including vaccine-preventable illnesses. NGS can be used to monitor common viral infections at a population level, especially in regions where such infections are prevalent, including low and middle income countries to guide vaccination policy and optimize diagnostic assays.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sarampo , Humanos , Uganda/epidemiologia , Pré-Escolar , Sarampo/epidemiologia , Sarampo/virologia , Lactente , Criança , Masculino , Feminino , Adolescente , Vírus/isolamento & purificação , Vírus/genética , Vírus/classificação , Genoma Viral , Adulto , Adulto Jovem , Viroses/epidemiologia , Viroses/virologia , Metagenômica , Vírus do Sarampo/genética , Vírus do Sarampo/isolamento & purificação , Vírus do Sarampo/classificação
16.
Acta Trop ; 254: 107182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479469

RESUMO

Organoids have emerged as a powerful tool for understanding the biology of the respiratory, digestive, nervous as well as urinary system, investigating infections, and developing new therapies. This article reviews recent progress in the development of organoid and advancements in virus research. The potential applications of these models in studying virul infections, pathogenesis, and antiviral drug discovery are discussed.


Assuntos
Organoides , Viroses , Organoides/virologia , Humanos , Animais , Viroses/virologia , Viroses/tratamento farmacológico , Vírus/efeitos dos fármacos , Vírus/patogenicidade , Vírus/crescimento & desenvolvimento , Vírus/classificação , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas/métodos
17.
J Clin Microbiol ; 62(5): e0031223, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38436246

RESUMO

The landscape of at-home testing using over-the-counter (OTC) tests has been evolving over the last decade. The United States Food and Drug Administration Emergency Use Authorization rule has been in effect since the early 2000s, and it was widely employed during the severe acute respiratory syndrome coronavirus 2 pandemic to authorize antigen and nucleic acid detection tests for use in central laboratories as well as OTC. During the pandemic, the first at-home tests for respiratory viruses became available for consumer use, which opened the door for additional respiratory virus OTC tests. Concerns may exist regarding the public's ability to properly collect samples, perform testing, interpret results, and report results to public health authorities. However, favorable comparison studies between OTC testing and centralized laboratory test results suggest that OTC testing may have a place in healthcare, and it is likely here to stay. This mini-review of OTC tests for viral respiratory diseases will briefly cover the regulatory and reimbursement environment, current OTC test availability, as well as the advantages and limitations of OTC tests.


Assuntos
COVID-19 , Infecções Respiratórias , Humanos , Infecções Respiratórias/virologia , Infecções Respiratórias/diagnóstico , COVID-19/diagnóstico , Estados Unidos , Vírus/isolamento & purificação , Vírus/classificação , SARS-CoV-2/isolamento & purificação , Teste para COVID-19/métodos , Viroses/diagnóstico , Viroses/virologia
18.
WIREs Mech Dis ; 16(3): e1640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38253964

RESUMO

Liver disease represents a significant global burden, placing individuals at a heightened risk of developing cirrhosis and liver cancer. Viral infections act as a primary cause of liver diseases on a worldwide scale. Infections involving hepatitis viruses, notably hepatitis B, C, and E viruses, stand out as the most prevalent contributors to acute and chronic intrahepatic adverse outcome, although the hepatitis C virus (HCV) can be effectively cured with antiviral drugs, but no preventative vaccination developed. Hepatitis B virus (HBV) and HCV can lead to both acute and chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma (HCC), which are principal causes of worldwide morbidity and mortality. Other viruses, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are capable of causing liver damage. Therefore, it is essential to recognize that virus infections and liver diseases are intricate and interconnected processes. A profound understanding of the underlying relationship between virus infections and liver diseases proves pivotal in the effective prevention, diagnosis, and treatment of these conditions. In this review, we delve into the mechanisms by which virus infections induce liver diseases, as well as explore the pathogenesis, diagnosis, and treatment of liver diseases. This article is categorized under: Infectious Diseases > Biomedical Engineering.


Assuntos
Hepatopatias , Humanos , Hepatopatias/virologia , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Hepatopatias/terapia , Viroses/diagnóstico , Viroses/terapia , Viroses/virologia , Antivirais/uso terapêutico , Animais , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/virologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/terapia
19.
J Mol Biol ; 436(4): 168380, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38061626

RESUMO

Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.


Assuntos
Antivirais , Condensados Biomoleculares , Viroses , Replicação Viral , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Condensados Biomoleculares/efeitos dos fármacos , Viroses/tratamento farmacológico , Viroses/virologia , Replicação Viral/efeitos dos fármacos , Descoberta de Drogas
20.
J Virol ; 98(1): e0117623, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38054609

RESUMO

The ubiquitin-proteasome system is one of the most important protein stability regulation systems. It can precisely regulate host immune responses by targeting signaling proteins. TRAF6 is a crucial E3 ubiquitin ligase in host antiviral signaling pathway. Here, we discovered that EF-hand domain-containing protein D2 (EFHD2) collaborated with the E3 ubiquitin ligase Smurf1 to potentiate the degradation of TRAF6, hence facilitating RNA virus Siniperca chuatsi rhabdovirus infection. The mechanism analysis revealed that EFHD2 interacted with Smurf1 and enhanced its protein stability by impairing K48-linked polyubiquitination of Smurf1, thereby promoting Smurf1-catalyzed degradation of TRAF6. This study initially demonstrated a novel mechanism by which viruses utilize host EFHD2 to achieve immune escape and provided a new perspective on the exploration of mammalian innate immunity.IMPORTANCEViruses induce host cells to activate several antiviral signaling pathways. TNF receptor-associated factor 6 (TRAF6) plays an essential role in these pathways. Numerous studies have been done on the mechanisms of TRAF6-mediated resistance to viral invasion. However, little is known about the strategies that viruses employ to antagonize TRAF6-mediated antiviral signaling pathway. Here, we discovered that EFHD2 functions as a host factor to promote viral replication. Mechanistically, EFHD2 potentiates Smurf1 to catalyze the ubiquitin-proteasomal degradation of TRAF6 by promoting the deubiquitination and stability of Smurf1, which in turn inhibits the production of proinflammatory cytokines and interferons. Our study also provides a new perspective on mammalian resistance to viral invasion.


Assuntos
Proteínas de Ligação ao Cálcio , Doenças dos Peixes , Rhabdoviridae , Fator 6 Associado a Receptor de TNF , Ubiquitina-Proteína Ligases , Viroses , Animais , Antivirais , Mamíferos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Viroses/metabolismo , Viroses/virologia , Rhabdoviridae/metabolismo , Peixes , Doenças dos Peixes/metabolismo , Doenças dos Peixes/virologia , Proteínas de Ligação ao Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA