Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 4699, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680117

RESUMO

Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.


Assuntos
Enterobacteriaceae/isolamento & purificação , Spiroplasma/isolamento & purificação , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Wigglesworthia/isolamento & purificação , Wolbachia/isolamento & purificação , Animais , Animais Selvagens/microbiologia , Animais Selvagens/parasitologia , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/fisiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Tipagem de Sequências Multilocus , Ovário/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Especificidade da Espécie , Spiroplasma/classificação , Spiroplasma/genética , Spiroplasma/fisiologia , Simbiose , Testículo/microbiologia , Distribuição Tecidual , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/crescimento & desenvolvimento , Wigglesworthia/classificação , Wigglesworthia/genética , Wigglesworthia/fisiologia , Wolbachia/classificação , Wolbachia/genética , Wolbachia/fisiologia
2.
Appl Environ Microbiol ; 80(14): 4301-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24814785

RESUMO

The invertebrate microbiome contributes to multiple aspects of host physiology, including nutrient supplementation and immune maturation processes. We identified and compared gut microbial abundance and diversity in natural tsetse flies from Uganda using five genetically distinct populations of Glossina fuscipes fuscipes and multiple tsetse species (Glossina morsitans morsitans, G. f. fuscipes, and Glossina pallidipes) that occur in sympatry in one location. We used multiple approaches, including deep sequencing of the V4 hypervariable region of the 16S rRNA gene, 16S rRNA gene clone libraries, and bacterium-specific quantitative PCR (qPCR), to investigate the levels and patterns of gut microbial diversity from a total of 151 individuals. Our results show extremely limited diversity in field flies of different tsetse species. The obligate endosymbiont Wigglesworthia dominated all samples (>99%), but we also observed wide prevalence of low-density Sodalis (tsetse's commensal endosymbiont) infections (<0.05%). There were also several individuals (22%) with high Sodalis density, which also carried coinfections with Serratia. Albeit in low density, we noted differences in microbiota composition among the genetically distinct G. f. fuscipes flies and between different sympatric species. Interestingly, Wigglesworthia density varied in different species (10(4) to 10(6) normalized genomes), with G. f. fuscipes having the highest levels. We describe the factors that may be responsible for the reduced diversity of tsetse's gut microbiota compared to those of other insects. Additionally, we discuss the implications of Wigglesworthia and Sodalis density variations as they relate to trypanosome transmission dynamics and vector competence variations associated with different tsetse species.


Assuntos
Trato Gastrointestinal/microbiologia , Variação Genética , Microbiota , Moscas Tsé-Tsé/classificação , Moscas Tsé-Tsé/microbiologia , Animais , Clonagem Molecular , DNA Bacteriano/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Filogeografia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Simbiose , Uganda , Wigglesworthia/genética , Wigglesworthia/isolamento & purificação
3.
Infect Genet Evol ; 13: 41-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23107774

RESUMO

The tsetse fly (Diptera: Glossinidae), the vector of trypanosomes causing human and animal trypanosomiasis, harbors symbiotic microorganisms including the primary symbiont Wigglesworthia glossinidia, involved in the fly's nutrition and fertility, and the secondary symbiont Sodalis glossinidius, involved in the trypanosome establishment in the fly's midgut. Both symbionts are maternally transmitted to the intrauterine progeny through the fly's milk gland secretions. In this study, we investigated the population dynamics of these symbionts during fly development. Wigglesworthia and Sodalis densities were estimated using quantitative PCR performed on Glossina palpalis gambiensis at different developmental stages. The results showed that the density of the primary Wigglesworthia symbiont was higher than that of Sodalis for all host developmental stages. Sodalis densities remained constant in pupae, but increased significantly in adult flies. The opposite situation was observed for Wigglesworthia, whose density increased in pupae and remained constant during the female adult stage. Moreover, Wigglesworthia density increased significantly during the transition from the pupal to the teneral stage, while mating had a contradictory effect depending on the age of the fly. Finally, tsetse fly colonization by both symbionts appears as a continuous and adaptive process throughout the insect's development. Last, the study demonstrated both symbionts of G. p. gambiensis, the vector of the chronic form of human African trypanosomiasis, to be permanent inhabitants of the colony flies throughout their life span. This was expected for the primary symbiont, Wigglesworthia, but not necessarily for the secondary symbiont, S. glossinidius, whose permanent presence is not required for the fly's survival. This result is of importance as Sodalis could be involved in the tsetse fly vector competence and may constitute a target in the frame of sleeping sickness fighting strategies.


Assuntos
Enterobacteriaceae/genética , Moscas Tsé-Tsé/crescimento & desenvolvimento , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/genética , Animais , Proteínas de Bactérias/genética , Enterobacteriaceae/isolamento & purificação , Feminino , Humanos , Masculino , Reprodução , Simbiose , Fatores de Tempo , Tripanossomíase Africana , Wigglesworthia/isolamento & purificação
4.
Biol Reprod ; 87(1): 17, 1-10, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22517621

RESUMO

Sphingosine is a structural component of sphingolipids. The metabolism of phosphoethanolamine ceramide (sphingomyelin) by sphingomyelinase (SMase), followed by the breakdown of ceramide by ceramidase (CDase) yields sphingosine. Female tsetse fly is viviparous and generates a single progeny within her uterus during each gonotrophic cycle. The mother provides her offspring with nutrients required for development solely via intrauterine lactation. Quantitative PCR showed that acid smase1 (asmase1) increases in mother's milk gland during lactation. aSMase1 was detected in the milk gland and larval gut, indicating this protein is generated during lactation and consumed by the larva. The higher levels of SMase activity in larval gut contents indicate that this enzyme is activated by the low gut pH. In addition, cdase is expressed at high levels in the larval gut. Breakdown of the resulting ceramide is likely accomplished by the larval gut-secreted CDase, which allows absorption of sphingosine. We used the tsetse system to understand the critical role(s) of SMase and CDase during pregnancy and lactation and their downstream effects on adult progeny fitness. Reduction of asmase1 by short interfering RNA negatively impacted pregnancy and progeny performance, resulting in a 4-5-day extension in pregnancy, 10%-15% reduction in pupal mass, lower pupal hatch rates, impaired heat tolerance, reduced symbiont levels, and reduced fecundity of adult progeny. This study suggests that the SMase activity associated with tsetse lactation and larval digestion is similar in function to that of mammalian lactation and represents a critical process for juvenile development, with important effects on the health of progeny during their adulthood.


Assuntos
Proteínas de Insetos/metabolismo , Leite/enzimologia , Esfingomielina Fosfodiesterase/metabolismo , Moscas Tsé-Tsé/enzimologia , Moscas Tsé-Tsé/crescimento & desenvolvimento , Animais , Sequência de Bases , Ceramidases/antagonistas & inibidores , Ceramidases/genética , Ceramidases/metabolismo , Drosophila/genética , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Concentração de Íons de Hidrogênio , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Lactação/genética , Lactação/metabolismo , Larva/crescimento & desenvolvimento , Modelos Biológicos , Filogenia , Gravidez , RNA Interferente Pequeno/genética , Especificidade da Espécie , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Esfingomielina Fosfodiesterase/genética , Simbiose , Moscas Tsé-Tsé/genética , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/isolamento & purificação
5.
Appl Environ Microbiol ; 77(23): 8400-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948847

RESUMO

Vertical transmission of obligate symbionts generates a predictable evolutionary history of symbionts that reflects that of their hosts. In insects, evolutionary associations between symbionts and their hosts have been investigated primarily among species, leaving population-level processes largely unknown. In this study, we investigated the tsetse (Diptera: Glossinidae) bacterial symbiont, Wigglesworthia glossinidia, to determine whether observed codiversification of symbiont and tsetse host species extends to a single host species (Glossina fuscipes fuscipes) in Uganda. To explore symbiont genetic variation in G. f. fuscipes populations, we screened two variable loci (lon and lepA) from the Wigglesworthia glossinidia bacterium in the host species Glossina fuscipes fuscipes (W. g. fuscipes) and examined phylogeographic and demographic characteristics in multiple host populations. Symbiont genetic variation was apparent within and among populations. We identified two distinct symbiont lineages, in northern and southern Uganda. Incongruence length difference (ILD) tests indicated that the two lineages corresponded exactly to northern and southern G. f. fuscipes mitochondrial DNA (mtDNA) haplogroups (P = 1.0). Analysis of molecular variance (AMOVA) confirmed that most variation was partitioned between the northern and southern lineages defined by host mtDNA (85.44%). However, ILD tests rejected finer-scale congruence within the northern and southern populations (P = 0.009). This incongruence was potentially due to incomplete lineage sorting that resulted in novel combinations of symbiont genetic variants and host background. Identifying these novel combinations may have public health significance, since tsetse is the sole vector of sleeping sickness and Wigglesworthia is known to influence host vector competence. Thus, understanding the adaptive value of these host-symbiont combinations may afford opportunities to develop vector control methods.


Assuntos
Variação Genética , Filogeografia , Simbiose , Moscas Tsé-Tsé/microbiologia , Wigglesworthia/classificação , Wigglesworthia/isolamento & purificação , Animais , DNA Mitocondrial/química , DNA Mitocondrial/genética , Dados de Sequência Molecular , Protease La/genética , Análise de Sequência de DNA , Fatores de Elongação da Transcrição/genética , Moscas Tsé-Tsé/genética , Uganda , Wigglesworthia/genética , Wigglesworthia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA