RESUMO
The increasing spread of mosquito vectors has made mosquito-borne arboviral diseases a global threat to public health, leading to the urgent need for effective population control methods. Strategies based in the intracellular bacterium Wolbachia Hertig, 1936 are considered environmentally friendly, safe for humans, and potentially cost-effective for controlling arboviral diseases. To minimize undesirable side effects, it is relevant to assess whether Wolbachia is present in the area and understand the diversity associated with native infections before implementing these strategies. With this purpose, we investigated Wolbachia infection status, diversity, and prevalence in populations of Aedes albifasciatus (Macquart, 1838), Aedes fluviatilis (Lutz, 1904), and hybrids of the Culex pipiens (Linnaeus, 1758) complex from Argentina. Aedes albifasciatus and C. pipiens complex samples were collected in the province of Buenos Aires, and A. fluviatilis in the province of Misiones. Aedes albifasciatus was found to be uninfected, while infections with strains wFlu and wPip were detected in A. fluviatilis and hybrids of the C. pipiens complex, respectively. All strains were fixed or close to fixation and clustered within supergroup B. These finding provides valuable information on Wolbachia strains found in natural mosquito populations in Argentina that might be used in heterologous infections in the future or be considered when designing control strategies based on Wolbachia infection.
Assuntos
Aedes , Wolbachia , Wolbachia/isolamento & purificação , Wolbachia/genética , Animais , Argentina , Aedes/microbiologia , Aedes/virologia , Culex/microbiologia , Mosquitos Vetores/microbiologia , FemininoRESUMO
Myrmecophilus acervorum, previously considered a parthenogenetic species widely-distributed in Europe, has been observed to have both sexes in populations inhabiting the central part of the distribution range. Specimens from those heterosexual populations have been found being infected with Wolbachia. New mitochondrial data (COI and 16S markers) revealed the well-supported differentiation of M. acervorum populations inhabiting western Polesie (Poland) and southern Europe. In turn, analyses of EF1α marker support the hypothesis on the unfinished lineage sorting at the nuclear DNA level. Interestingly, we found that parthenogenetic populations inhabiting western Polesie are infected with Wolbachia belonging to supergroup A, while endosymbionts occurring in sexual populations of M. acervorum observed in Romania belong to supergroup B. Furthermore, new and potentially diagnostic characteristics in the external structures of the eyes of M. acervorum were identified. The surface of ommatidia in specimens occurring in southern Europe was smooth. In contrast, the ommatidia surface of individuals collected in Poland was visibly sculptured. To sum up, the significant genetic variability found in the present case, and the differentiating morphological character, are almost certainly effects of cryptic species being present within M. acervorum. This is indicative of ongoing speciation within the populations of this insect, and of simultaneous unfinished lineage sorting at the nuclear DNA level.
Assuntos
Variação Genética , Filogenia , Wolbachia , Animais , Wolbachia/genética , Wolbachia/classificação , Wolbachia/isolamento & purificação , Especiação Genética , Masculino , Feminino , Ortópteros/genética , Ortópteros/classificação , DNA Mitocondrial/genética , Polônia , Simbiose , RNA Ribossômico 16S/genética , Europa (Continente) , GryllidaeRESUMO
BACKGROUND: Mosquitoes serve as vectors for numerous pathogens, posing significant health risks to humans and animals. Understanding the complex interactions within mosquito microbiota is crucial for deciphering vector-pathogen dynamics and developing effective disease management strategies. Here, we investigated the nested patterns of Wolbachia endosymbionts and Escherichia-Shigella within the microbiota of laboratory-reared Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes. We hypothesized that Wolbachia would exhibit a structured pattern reflective of its co-evolved relationship with both mosquito species, while Escherichia-Shigella would display a more dynamic pattern influenced by environmental factors. RESULTS: Our analysis revealed different microbial compositions between the two mosquito species, although some microorganisms were common to both. Network analysis revealed distinct community structures and interaction patterns for these bacteria in the microbiota of each mosquito species. Escherichia-Shigella appeared prominently within major network modules in both mosquito species, particularly in module P4 of Cx. pipiens f. molestus, interacting with 93 nodes, and in module Q3 of Cx. quinquefasciatus, interacting with 161 nodes, sharing 55 nodes across both species. On the other hand, Wolbachia appeared in disparate modules: module P3 in Cx. pipiens f. molestus and a distinct module with a single additional taxon in Cx. quinquefasciatus, showing species-specific interactions and no shared taxa. Through computer simulations, we evaluated how the removal of Wolbachia or Escherichia-Shigella affects network robustness. In Cx. pipiens f. molestus, removal of Wolbachia led to a decrease in network connectivity, while Escherichia-Shigella removal had a minimal impact. Conversely, in Cx. quinquefasciatus, removal of Escherichia-Shigella resulted in decreased network stability, whereas Wolbachia removal had minimal effect. CONCLUSIONS: Contrary to our hypothesis, the findings indicate that Wolbachia displays a more dynamic pattern of associations within the microbiota of Culex pipiens f. molestus and Culex quinquefasciatus mosquitoes, than Escherichia-Shigella. The differential effects on network robustness upon Wolbachia or Escherichia-Shigella removal suggest that these bacteria play distinct roles in maintaining community stability within the microbiota of the two mosquito species.
Assuntos
Culex , Microbiota , Mosquitos Vetores , Simbiose , Wolbachia , Animais , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Culex/microbiologia , Wolbachia/fisiologia , Wolbachia/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificaçãoRESUMO
BACKGROUND: Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. RESULTS: A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present. CONCLUSION: This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.
Assuntos
Enterobacteriaceae , Spiroplasma , Simbiose , Trypanosoma , Moscas Tsé-Tsé , Wolbachia , Animais , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , Spiroplasma/isolamento & purificação , Spiroplasma/fisiologia , Spiroplasma/genética , Wolbachia/isolamento & purificação , Wolbachia/genética , Burkina Faso , Trypanosoma/isolamento & purificação , Trypanosoma/genética , Trypanosoma/fisiologia , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Masculino , FemininoRESUMO
The mosquito microbiome significantly influences vector competence, including in Aedes albopictus, a globally invasive vector. Describing the microbiome and Wolbachia strains of Ae. albopictus from different regions can guide area-specific control strategies. Mosquito samples from Spain and São Tomé were analyzed using 16S rRNA gene sequencing and metagenomic sequencing. Wolbachia infection patterns were observed by sex and population. Female mosquitoes were blood-fed, a factor considered in analyzing their microbiota. Results revealed a dominance of dual Wolbachia infections, strains A and B, in the microbiome of both populations of Ae. albopictus, especially among females. Both populations shared a core microbiome, although 5 and 9 other genera were only present in Spain and São Tomé populations, respectively. Genera like Pelomonas and Nevskia were identified for the first time in Aedes mosquitoes. This study is the first to describe the Ae. albopictus bacteriome in Spain and São Tomé, offering insights for the development of targeted mosquito control strategies. Understanding the specific microbiome composition can help in designing more effective interventions, such as microbiome manipulation and Wolbachia-based approaches, to reduce vector competence and transmission potential of these mosquitoes.
Assuntos
Aedes , Microbiota , RNA Ribossômico 16S , Wolbachia , Animais , Aedes/microbiologia , Espanha , Wolbachia/genética , Wolbachia/isolamento & purificação , Wolbachia/fisiologia , Feminino , RNA Ribossômico 16S/genética , Mosquitos Vetores/microbiologia , Ecossistema , MasculinoRESUMO
BACKGROUND: Maternally-inherited symbionts can induce pre-mating and/or post-mating reproductive isolation between sympatric host lineages, and speciation, by modifying host reproductive phenotypes. The large parasitoid wasp genus Cotesia (Braconidae) includes a diversity of cryptic species, each specialized in parasitizing one to few related Lepidoptera host species. Here, we characterized the infection status of an assemblage of 21 Cotesia species from 15 countries by several microbial symbionts, as a first step toward investigating whether symbionts may provide a barrier to gene flow between these parasitoid host lineages. RESULTS: The symbiotic microbes Arsenophonus, Cardinium, Microsporidium and Spiroplasma were not detected in the Cotesia wasps. However, the endosymbiotic bacterium Wolbachia was present in at least eight Cotesia species, and hence we concentrated on it upon screening additional DNA extracts and SRAs from NCBI. Some of the closely related Cotesia species carry similar Wolbachia strains, but most Wolbachia strains showed patterns of horizontal transfer between phylogenetically distant host lineages. CONCLUSIONS: The lack of co-phylogenetic signal between Wolbachia and Cotesia suggests that the symbiont and hosts have not coevolved to an extent that would drive species divergence between the Cotesia host lineages. However, as the most common facultative symbiont of Cotesia species, Wolbachia may still function as a key-player in the biology of the parasitoid wasps. Its precise role in the evolution of this complex clade of cryptic species remains to be experimentally investigated.
Assuntos
Filogenia , Simbiose , Vespas , Wolbachia , Animais , Wolbachia/genética , Wolbachia/classificação , Wolbachia/isolamento & purificação , Vespas/microbiologia , Simpatria , Transferência Genética Horizontal , Variação Genética , Lepidópteros/microbiologia , Lepidópteros/parasitologiaRESUMO
Vector-borne diseases leave a large footprint on global health. Notable culprits include West Nile virus (WNV), St. Louis encephalitis virus (SLEV), and Japanese encephalitis virus (JEV), all transmitted by Culex mosquitoes. Chemical insecticides have been widely used to reduce the spread of mosquito-borne diseases. Still, mosquitoes are becoming more and more resistant to most chemical insecticides which cause particular harm to the ecology. Wolbachia belongs to the family Ehrlichiaceae in the order Rickettsiales and is a matrilineally inherited endosymbiont present in 60% of insects in nature. Wolbachia is capable of inducing a wide range of reproductive abnormalities in its hosts, such as cytoplasmic incompatibility, and can alter mosquito resistance to pathogen infection. Wolbachia has been proposed as a biological alternative to chemical vector control, and specific research progress and effectiveness have been achieved. Despite the importance of Wolbachia, this strategy has not been tested in Culex pipiens pallens, the most prevalent mosquito species in Shandong Province, China. Little is known about how the mass release of Wolbachia-infected mosquitoes may impact the genetic structure of Culex pipiens pallens, and how the symbiotic bacterium Wolbachia interacts with mitochondria during host mosquito transmission. Based on the population genetic structure of Culex pipiens pallens in Shandong Province, this study investigated the infection rate and infection type of Wolbachia in Shandong Province and jointly analysed the evolutionary relationship between the host mosquito and the symbiotic bacterium Wolbachia. Our study showed that Wolbachia naturally infected by Culex pipiens pallens in Shandong Province was less homologous to Wolbachia infected by Aedes albopictus released from mosquito factory in Guangzhou. Our results also show that Culex pipiens pallens is undergoing demographic expansion in Shandong Province. The overall Wolbachia infection rate of Culex pipiens pallens was 92.8%, and a total of 15 WSP haplotypes were detected. We found that the genetic diversity of Wolbachia was low in Culex pipiens pallens from Shandong Province, and the mosquitoes were infected only with type B Wolbachia. Visualizing the relationship between Culex pipiens pallens and Wolbachia using a tanglegram revealed patterns of widespread associations. A specific coevolutionary relationship exists between the host mosquito and Wolbachia. Knowledge of this mosquito-Wolbachia relationship will provide essential scientific information required for Wolbachia-based vector control approaches in Shandong Province and will lead to a better understanding of the diversity and evolution of Wolbachia for its utility as a biocontrol agent.
Assuntos
Culex , Mosquitos Vetores , Wolbachia , Wolbachia/fisiologia , Wolbachia/genética , Animais , Culex/microbiologia , Culex/virologia , Culex/fisiologia , China , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Simbiose , Feminino , Doenças Transmitidas por Vetores/transmissão , Coevolução Biológica , MasculinoRESUMO
The symbiosis between microorganisms and host arthropods can cause biological, physiological, and reproductive changes in the host population. The present study aimed to survey facultative symbionts of the genera Wolbachia, Arsenophonus, Cardinium, Rickettsia, and Nosema in Cotesia flavipes (Cameron) (Hymenoptera: Braconidae) and Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) in the laboratory and evaluate the influence of infection on the fitness of these hosts. For this purpose, 16S rDNA primers were used to detect these facultative symbionts in the host species, and the hosts' biological and morphological features were evaluated for changes resulting from the infection caused by these microorganisms. The bacterial symbionts studied herein were not detected in the D. saccharalis samples analysed, but the endosymbiont Wolbachia was detected in C. flavipes and altered the biological and morphological aspects of this parasitoid insect. The results of this study may help to elucidate the role of Wolbachia in maintaining the quality of populations/lineages of C. flavipes.
Assuntos
Simbiose , Vespas , Wolbachia , Animais , Wolbachia/fisiologia , Wolbachia/genética , Vespas/fisiologia , Vespas/microbiologia , Feminino , Masculino , RNA Ribossômico 16S/análise , Larva/microbiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Características de História de Vida , Mariposas/parasitologia , Mariposas/microbiologiaRESUMO
Wolbachia are common heritable endosymbionts that influence many aspects of ecology and evolution in various insects, yet Wolbachia-mediated intracellular metabolic responses to temperature stress have been largely overlooked. Here, we introduced the Wolbachia strain wLhui from the invasive Liriomyza huidobrensis (Blanchard) into a Drosophila Schneider 2 cell line (S2) and investigated the metabolite profile of wLhui-infected (S2_wLhui) and uninfected cell lines (S2_wu) under short-term exposure to either high (37°C), moderate (27°C), or low (7 and 17°C) temperatures. We find that Wolbachia infection, temperature stress, and their interactions significantly affect cellular metabolic profiles. Most significantly, when comparing the changes in metabolites between S2_wLhui and S2_wu, glycerophospholipids, amino acids, and fatty acids associated with metabolic pathways, microbial metabolism in diverse environments, and other pathways were significantly accumulated at either low or high temperatures. Our findings suggest Wolbachia-induced cellular physiological responses to short-term temperature stress, which may in turn affect the fitness and adaptive ability of its host as an invasive species.
Assuntos
Metaboloma , Estresse Fisiológico , Temperatura , Wolbachia , Wolbachia/metabolismo , Wolbachia/fisiologia , Wolbachia/genética , Animais , Linhagem Celular , Drosophila/microbiologia , Simbiose , Dípteros/microbiologia , Ácidos Graxos/metabolismoRESUMO
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Assuntos
Artrópodes , Evolução Biológica , Reprodução , Simbiose , Wolbachia , Animais , Artrópodes/microbiologia , Artrópodes/fisiologia , Simbiose/fisiologia , Sistemas Toxina-Antitoxina/genética , Wolbachia/fisiologia , Wolbachia/genéticaRESUMO
Wolbachia is an obligate endosymbiont that is maternally inherited and widely distributed in arthropods and nematodes. It remains in the mature eggs of female hosts over generations through multiple strategies and manipulates the reproduction system of the host to enhance its spreading efficiency. However, the transmission of Wolbachia within the host's ovaries and its effects on ovarian cells during oogenesis, have not been extensively studied. We used single-cell RNA sequencing to comparatively analyze cell-typing and gene expression in Drosophila ovaries infected and uninfected with Wolbachia. Our findings indicate that Wolbachia significantly affects the transcription of host genes involved in the extracellular matrix, cytoskeleton organization, and cytomembrane mobility in multiple cell types, which may make host ovarian cells more conducive for the transmission of Wolbachia from extracellular to intracellular. Moreover, the genes nos and orb, which are related to the synthesis of ribonucleoprotein complexes, are specifically upregulated in early germline cells of ovaries infected with Wolbachia, revealing that Wolbachia can increase the possibility of its localization to the host oocytes by enhancing the binding with host ribonucleoprotein-complex processing bodies (P-bodies). All these findings provide novel insights into the maternal transmission of Wolbachia between host ovarian cells.IMPORTANCEWolbachia, an obligate endosymbiont in arthropods, can manipulate the reproduction system of the host to enhance its maternal transmission and reside in the host's eggs for generations. Herein, we performed single-cell RNA sequencing of ovaries from Drosophila melanogaster and observed the effects of Wolbachia (strain wMel) infection on different cell types to discuss the potential mechanism associated with the transmission and retention of Wolbachia within the ovaries of female hosts. It was found that the transcriptions of multiple genes in the ovary samples infected with Wolbachia are significantly altered, which possibly favors the maternal transmission of Wolbachia. Meanwhile, we also discovered that Wolbachia may flexibly regulate the expression level of specific host genes according to their needs rather than rigidly changing the expression level in one direction to achieve a more suitable living environment in the host's ovarian cells. Our findings contribute to a further understanding of the maternal transmission and possible universal effects of Wolbachia within the host.
Assuntos
Ovário , Análise de Célula Única , Wolbachia , Animais , Wolbachia/genética , Wolbachia/fisiologia , Feminino , Ovário/microbiologia , Drosophila melanogaster/microbiologia , Drosophila melanogaster/genética , Transcriptoma , Perfilação da Expressão Gênica , Simbiose , Oogênese/genética , Drosophila/microbiologia , Drosophila/genética , Herança Materna/genéticaRESUMO
There is increasing evidence that host-parasitoid interactions can have a pronounced impact on the microbiome of host insects, but it is unclear to what extent this is caused by the host and/or parasitoid. Here, we compared the internal and external microbiome of caterpillars of Pieris brassicae and Pieris rapae parasitized by Cotesia glomerata or Cotesia rubecula with nonparasitized caterpillars. Additionally, we investigated the internal and external microbiome of the parasitoid larvae. Both internal and external bacterial densities were significantly higher for P. brassicae than P. rapae, while no differences were found between parasitized and nonparasitized caterpillars. In contrast, parasitism significantly affected the composition of the internal and external microbiome of the caterpillars and the parasitoid larvae, but the effects were dependent on the host and parasitoid species. Irrespective of host species, a Wolbachia species was exclusively found inside caterpillars parasitized by C. glomerata, as well as in the corresponding developing parasitoid larvae. Similarly, a Nosema species was abundantly present inside parasitized caterpillars and the parasitoid larvae, but this was independent of the host and the parasitoid species. We conclude that parasitism has pronounced effects on host microbiomes, but the effects depend on both the host and parasitoid species.
Assuntos
Borboletas , Interações Hospedeiro-Parasita , Larva , Microbiota , Animais , Larva/microbiologia , Borboletas/microbiologia , Borboletas/parasitologia , Wolbachia/genética , Especificidade da Espécie , Nosema/patogenicidade , Vespas/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimentoRESUMO
Atypical presentations of filariasis have posed diagnostic challenges due to the complexity of identifying the causative species and the difficulties in both diagnosis and treatment. In this study, we present the integrative histological and molecular analysis of seven atypical filariasis cases observed in regions of nonendemicity of Thailand. All filariasis cases were initially diagnosed based on histological findings. To confirm the causative species, molecular characterization based on both filarial mitochondrial (mt 12S rRNA and COI genes) and nuclear ITS1 markers was performed, together with the identification of associated Wolbachia bacterial endosymbionts. Among the cases studied, Brugia pahangi (N = 3), Brugia malayi (N = 1), Dirofilaria sp. "hongkongensis" (N = 2), and a suspected novel filarial species genetically related to Pelecitus copsychi (N = 1) were identified. By targeting the 16S rRNA gene, Wolbachia was also molecularly amplified in two cases of infection with Dirofilaria sp. "hongkongensis." Phylogenetic analysis further revealed that the detected Wolbachia could be classified into supergroups C and F, indicating the high genetic diversity of this endosymbiont in Dirofilaria sp. "hongkongensis." Furthermore, this study demonstrates the consistency between histological findings and species identification based on mitochondrial loci rather than on the nuclear ITS1. This suggests the utility of mitochondrial markers, particularly COI, as a highly sensitive and reliable diagnostic tool for the detection and differentiation of filarial species in clinical specimens. Precise identification of the causative species will facilitate accurate diagnosis and treatment and is also essential for the development of epidemiological and preventive strategies for filariasis.
Assuntos
Filariose , Filogenia , Simbiose , Wolbachia , Wolbachia/genética , Wolbachia/isolamento & purificação , Humanos , Tailândia/epidemiologia , Animais , Filariose/diagnóstico , Filariose/parasitologia , Masculino , Feminino , Brugia Malayi/genética , RNA Ribossômico 16S/genética , Adulto , Brugia pahangi/genética , Brugia pahangi/isolamento & purificação , Pessoa de Meia-Idade , Dirofilaria/genética , RNA Ribossômico/genética , Filarioidea/genética , Filarioidea/isolamento & purificaçãoRESUMO
Replicated secondary contact zones can provide insights into the barriers to gene flow that are important during speciation and can reveal to which degree secondary contact may result in similar evolutionary outcomes. Here, we studied two secondary contact zones between highly differentiated Alpine butterflies of the genus Erebia using whole-genome resequencing data. We assessed the genomic relationships between populations and species and found hybridization to be rare, with no to little current or historical introgression in either contact zone. There are large similarities between contact zones, consistent with an allopatric origin of interspecific differentiation, with no indications for ongoing reinforcing selection. Consistent with expected reduced effective population size, we further find that scaffolds related to the Z-chromosome show increased differentiation compared to the already high levels across the entire genome, which could also hint towards a contribution of the Z chromosome to species divergence in this system. Finally, we detected the presence of the endosymbiont Wolbachia, which can cause reproductive isolation between its hosts, in all E. cassioides, while it appears to be fully or largely absent in contact zone populations of E. tyndarus. We discuss how this rare pattern may have arisen and how it may have affected the dynamics of speciation upon secondary contact.
Assuntos
Borboletas , Fluxo Gênico , Especiação Genética , Genética Populacional , Hibridização Genética , Isolamento Reprodutivo , Wolbachia , Animais , Borboletas/genética , Wolbachia/genéticaRESUMO
In the terrestrial isopod Armadillidium vulgare, many females produce progenies with female-biased sex ratios due to two feminizing sex ratio distorters (SRD): Wolbachia endosymbionts and a nuclear non-mendelian locus called the f element. To investigate the potential impact of these SRD on the evolution of host sex determination, we analyzed their temporal distribution in six A. vulgare populations sampled between 2003 and 2017, for a total of 29 time points. SRD distribution was heterogeneous among populations despite their close geographic locations, so that when one SRD was frequent in a population, the other SRD was rare. In contrast with spatial heterogeneity, our results overall did not reveal substantial temporal variability in SRD prevalence within populations, suggesting equilibria in SRD evolutionary dynamics may have been reached or nearly so. Temporal stability was also generally reflected in mitochondrial and nuclear variation. Nevertheless, in a population, a Wolbachia strain replacement coincided with changes in mitochondrial composition but no change in nuclear composition, thus constituting a typical example of mitochondrial sweep caused by endosymbiont rise in frequency. Rare incongruence between Wolbachia strains and mitochondrial haplotypes suggested the occurrence of intraspecific horizontal transmission, making it a biologically relevant parameter for Wolbachia evolutionary dynamics in A. vulgare. Overall, our results provide an empirical basis for future studies on SRD evolutionary dynamics in the context of multiple sex determination factors co-existing within a single species, to ultimately evaluate the impact of SRD on the evolution of host sex determination mechanisms and sex chromosomes.
Assuntos
Isópodes , Razão de Masculinidade , Simbiose , Wolbachia , Animais , Isópodes/genética , Isópodes/microbiologia , Wolbachia/genética , Feminino , Masculino , Simbiose/genética , Haplótipos , Processos de Determinação Sexual/genética , Genética Populacional , Evolução BiológicaRESUMO
Cytoplasmic incompatibility (CI), a non-Mendelian genetic phenomenon, involves the manipulation of host reproduction by Wolbachia, a maternally transmitted alphaproteobacterium. The underlying mechanism is centered around the CI Factor (CIF) system governed by two genes, cifA and cifB, where cifB induces embryonic lethality, and cifA counteracts it. Recent investigations have unveiled intriguing facets of this system, including diverse cifB variants, prophage association in specific strains, copy number variation, and rapid component divergence, hinting at a complex evolutionary history. We utilized comparative genomics to systematically classify CIF systems, analyze their locus structure and domain architectures, and reconstruct their diversification and evolutionary trajectories. Our new classification identifies ten distinct CIF types, featuring not just versions present in Wolbachia, but also other intracellular bacteria, and eukaryotic hosts. Significantly, our analysis of CIF loci reveals remarkable variability in gene composition and organization, encompassing an array of diverse endonucleases, variable toxin domains, deubiquitinating peptidases (DUBs), prophages, and transposons. We present compelling evidence that the components within the loci have been diversifying their sequences and domain architectures through extensive, independent lateral transfers and interlocus recombination involving gene conversion. The association with diverse transposons and prophages, coupled with selective pressures from host immunity, likely underpins the emergence of CIF loci as recombination hotspots. Our investigation also posits the origin of CifB-REase domains from mobile elements akin to CR (Crinkler-RHS-type) effectors and Tribolium Medea1 factor, which is linked to another non-Mendelian genetic phenomenon. This comprehensive genomic analysis offers novel insights into the molecular evolution and genomic foundations of Wolbachia-mediated host reproductive control.
Assuntos
Transferência Genética Horizontal , Recombinação Genética , Wolbachia , Wolbachia/genética , Evolução Molecular , Filogenia , Genoma Bacteriano , Citoplasma/genética , Animais , Proteínas de Bactérias/genéticaRESUMO
Wolbachia is an obligate intracellular α-proteobacterium, which commonly infects arthropods and filarial nematodes. Different strains of Wolbachia are capable of a wide range of regulatory manipulations in their diverse hosts, including the modulation of host cellular differentiation to influence host reproduction. The genetic basis for the majority of these phenotypes is unknown. The wWil strain from the neotropical fruit fly, Drosophila willistoni, exhibits a remarkably high affinity for host germline-derived cells relative to the somatic cells. This trait could be leveraged for understanding how Wolbachia influences the host germline and for controlling host populations in the field. To further the use of this strain in biological and biomedical research, we sequenced the genome of the wWil strain isolated from host cell culture cells. Here, we present the first high quality Nanopore assembly of wWil, the Wolbachia endosymbiont of D. willistoni. Our assembly resulted in a circular genome of 1.27 Mb with a BUSCO completeness score of 99.7%. Consistent with other insect-associated Wolbachia strains, comparative genomic analysis revealed that wWil has a highly mosaic genome relative to the closely related wMel and wAu strains from Drosophila melanogaster and Drosophila simulans, respectively.
Assuntos
Drosophila , Genoma Bacteriano , Simbiose , Wolbachia , Wolbachia/genética , Animais , Drosophila/microbiologia , Drosophila/genética , Simbiose/genética , Filogenia , Sequenciamento Completo do Genoma/métodos , Genômica/métodosRESUMO
Objective: Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods: Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results: The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions: These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.
Assuntos
RNA Ribossômico 16S , Simbiose , Vespas , Animais , Vespas/microbiologia , Vespas/fisiologia , China , RNA Ribossômico 16S/genética , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Agentes de Controle Biológico , Besouros/microbiologia , Filogenia , Microbiota , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroides/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Firmicutes/classificação , Wolbachia/genética , Wolbachia/isolamento & purificação , Wolbachia/classificação , Wolbachia/fisiologia , BiodiversidadeRESUMO
Vector-borne parasite infections affect both domestic and wild animals. They are often asymptomatic but can result in fatal outcomes under natural and human-induced stressors. Given the limited availability of molecular data on vector-borne parasites in Rhinoceros unicornis (greater one-horned rhinoceros), this study employed molecular tools to detect and characterize the vector-borne parasites in rescued rhinoceros in Chitwan National Park, Nepal. Whole blood samples were collected from thirty-six R. unicornis during rescue and treatment operations. Piroplasmida infections were first screened using nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA gene. Wolbachia was detected by amplifying 16S rRNA gene, while filarial nematodes were detected through amplification of 28S rRNA, COI, myoHC and hsp70 genes. Our results confirmed the presence of Theileria bicornis with a prevalence of 75% (27/36) having two previously unreported haplotypes (H8 and H9). Wolbachia endosymbionts were detected in 25% (9/36) of tested samples and belonged to either supergroup C or F. Filarial nematodes of the genera Mansonella and Onchocerca were also detected. There were no significant association between T. bicornis infections and the age, sex, or location from which the animals were rescued. The high prevalence of Theileria with novel haplotypes along with filarial parasites has important ecological and conservational implications and highlights the need to implement parasite surveillance programs for wildlife in Nepal. Further studies monitoring vector-borne pathogens and interspecies transmission among wild animals, livestock and human are required.
Assuntos
Perissodáctilos , Simbiose , Wolbachia , Animais , Wolbachia/isolamento & purificação , Wolbachia/genética , Nepal , Perissodáctilos/microbiologia , Perissodáctilos/parasitologia , Masculino , Theileria/isolamento & purificação , Theileria/genética , Feminino , Doenças Transmitidas por Vetores , Filarioidea/isolamento & purificação , Filarioidea/genética , Filarioidea/microbiologia , Filariose/veterinária , Filariose/parasitologia , Filariose/transmissão , Filariose/epidemiologia , RNA Ribossômico 16S/genética , Filogenia , Prevalência , Vetores de DoençasRESUMO
Ticks are blood-sucking ectoparasites that act as vectors for transmission of various pathogens. The purpose of this study was to assess tick-borne bacteria, whether pathogenic or not, in ticks distributed in Korea using 16S rRNA metabarcoding and to confirm the results by PCR. Questing ticks were collected from four provinces in Korea in 2021 using the flagging method. After pooling the DNAs from the 61 tick pools (including 372 ticks), the bacterial 16S rRNA V3-V4 hypervariable region was amplified and sequenced using the MiSeq platform. Rickettsia, Ehrlichia, and the endosymbiont Wolbachia were confirmed by conventional PCR and molecular analysis. In total, 6907 ticks (534 pools) were collected and identified as belonging to five species (Haemaphysalis spp., H. longicornis, H. flava, I. nipponensis, and A. testudinarium). Through 16S rRNA metabarcoding, 240 amplicon sequence variants were identified. The dominant taxa were Rickettsiella and Coxiella. Additionally, pathogenic bacteria such as Rickettsia and Ehrlichia, endosymbiotic bacteria such as Wolbachia and Spiroplasma were identified. Polymerase chain reaction (PCR) was performed to confirm the presence of Rickettsia, Ehrlichia, Bartonella, and Wolbachia in individual ticks. Overall, 352 (65.92%) of 534 pools tested positive for at least one of the screened tick-borne bacteria. Rickettsia was the most prevalent (61.42%), followed by Wolbachia (5.05%). Ehrlichia was detected in 4.86% of tested samples, whereas Bartonella was not detected. In this study, 16S rRNA metabarcoding revealed the presence of Rickettsia, Wolbachia, and Ehrlichia, in that order of abundance, while showing absence of Bartonella. These results were confirmed to exhibit the same trend as that of the conventional PCR. Therefore, large-scale screening studies based on pooling, as applied in this study, will be useful for examining novel or rare pathogens present in various hosts and vectors.