Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Fitoterapia ; 157: 105127, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033607

RESUMO

One new xanthone, griseophenexanthone A (1), one new benzophenone, digriseophene A (2), and 14 previously reported compounds were isolated from the culture of Penicillium sp. ct-28, an endophytic fungus of Corydlis tomentella. The structures of the isolated compounds were identified by an extensive analysis of HRESIMS, 1D and 2D NMR. MTT assay showed that six xanthones (1 and 3-7) significantly inhibited cell proliferation in four cancer cell lines, with IC50 values ranging from 18.12 ± 2.42 to 85.55 ± 7.66 µM. Our results showed that slight structural changes led to obvious activity differences among these compounds. We also investigated the effects of the six xanthones on cell cycle and apoptosis in human hepatoma HepG2 cells. Compound 7 caused cell cycle arrest at G1 phase, compounds 5 and 6 caused cell cycle arrest at S phase, whereas compounds 1, 3 and 4 had no effects on cell cycle distribution. All six xanthones induced apoptosis in dose-dependent manners in HepG2 cells accompanied by degradation of PARP and activation of caspase 3. The structure-activity relationship analysis revealed that the effects of these xanthones on cell cycle and apoptosis in HepG2 cells were closely related to the substituent groups on their skeleton. Our studies provide novel insights for the structural optimization of xanthones in the development of new anticancer drugs.


Assuntos
Benzofenonas/toxicidade , Proliferação de Células/efeitos dos fármacos , Corydalis/microbiologia , Penicillium/química , Xantonas/toxicidade , Apoptose/efeitos dos fármacos , Benzofenonas/química , Benzofenonas/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
2.
J Ethnopharmacol ; 285: 114796, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740771

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sophora flavescens is a traditional Chinese medicine commonly used in clinical practice, which has the effects of clearing away heat and dampness. Unfortunately, it has been reported that Sophora flavescens and its preparation may cause liver damage to a certain extent, but the exact mechanism is not clear. AIM OF THE STUDY: To assess the safety and risk of Sophora flavescens and to elucidate the relationship between Idiosyncratic drug-induced liver injury (IDILI) and the NOD-like receptor family protein 3 (NLRP3) inflammasome. MATERIALS AND METHODS: Western blot, Caspase-Glo® 1 Inflammasome Assay, ELISA kits, Flow cytometry and FLIPRT Tetra system were used to study the effect of isoxanthohumol (IXN) on the activation of NLRP3 inflammasome and its mechanism. Combined with the lipopolysaccharide-mediated susceptibility IDILI model in mice to evaluate the hepatotoxicity of IXN. RESULTS: IXN facilitates the activation of caspase-1 and secretion of interleukin (IL)-1ß triggered by adenosine triphosphate (ATP), nigericin but not those induced by silicon dioxide and poly (I:C). Furthermore, the activation of NLR-family CARD-containing protein 4 (NLRC4) and the absent in melanoma 2 (AIM2) was not affected by IXN. Mechanistically, IXN promotes NLRP3-dependent apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) oligomerization and the generation of mitochondrial reactive oxygen species (mtROS) triggered by ATP. The in vivo data showed that non-hepatotoxic doses of IXN resulted in increased levels of glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, tumor necrosis factor and IL-1ß in the serum and showed increased liver inflammation in the susceptible IDILI model mediated by lipopolysaccharide. CONCLUSIONS: These results show that IXN enhances NLRP3 inflammasome activation by promoting the accumulation of ATP-induced mtROS and ASC oligomerization to cause IDILI, indicating that IXN may be a risk factor for liver injury caused by the clinical use of Sophora flavescens.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sophora/química , Xantonas , Trifosfato de Adenosina/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inflamassomos/metabolismo , Medicina Tradicional Chinesa/métodos , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Xantonas/farmacologia , Xantonas/toxicidade
3.
Fitoterapia ; 156: 105092, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826556

RESUMO

Caged-polyprenylated xanthonoids represent a rare class of natural products. This type of compounds is mainly isolated from Genus Garcinia. Phytochemical studies on the leaves and twigs of Garcinia oligantha led to the isolation of four new caged-polyprenylated xanthonoids, oliganthone CF (1-4), and two new simple xanthones (5-6), oliganthaxanthone D and oliganthaxanthone E. Eight known other polyprenylated xanthones (7-14) including five caged-polyprenylated xanthonoids (7-11) were also isolated. Their structures were elucidated based on the analyses of extensive spectroscopic data. All the isolated compounds except for 5, 6 and 14 showed cell viability reducing effect against human lung cancer A549 cells. Compounds 1-3 were proved to be potential apoptosis inducing agents.


Assuntos
Citotoxinas/toxicidade , Garcinia/química , Extratos Vegetais/toxicidade , Xantonas/toxicidade , Células A549 , Apoptose , Western Blotting , Citotoxinas/química , Citotoxinas/isolamento & purificação , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Xantonas/química , Xantonas/isolamento & purificação
4.
Biomed Pharmacother ; 144: 112333, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34678724

RESUMO

Diabetes mellitus (DM) is concomitant with significant morbidity and mortality and its prevalence is accumulative in worldwide. The conventional antidiabetic agents are known to mitigate the symptoms of diabetes; however, they may also cause side and adverse effects. There is an imperative necessity to conduct preclinical and clinical trials for the discovery of alternative therapeutic agents that can overcome the drawbacks of current synthetic antidiabetic drugs. This study aimed to investigate the efficacy of lowering blood glucose and underlined mechanism of γ-mangostin, mangosteen (Garcinia mangostana) xanthones. The results showed γ-Mangostin had a antihyperglycemic ability in short (2 h)- and long-term (28 days) administrations to diet-induced diabetic mice. The long-term administration of γ-mangostin attenuated fasting blood glucose of diabetic mice and exhibited no hepatotoxicity and nephrotoxicity. Moreover, AMPK, PPARγ, α-amylase, and α-glucosidase were found to be the potential targets for simulating binds with γ-mangostin after molecular docking. To validate the docking results, the inhibitory potency of γ-mangostin againstα-amylase/α-glucosidase was higher than Acarbose via enzymatic assay. Interestingly, an allosteric relationship between γ-mangostin and insulin was also found in the glucose uptake of VSMC, FL83B, C2C12, and 3T3-L1 cells. Taken together, the results showed that γ-mangostin exerts anti-hyperglycemic activity through promoting glucose uptake and reducing saccharide digestion by inhibition of α-amylase/α-glucosidase with insulin sensitization, suggesting that γ-mangostin could be a new clue for drug discovery and development to treat diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Glicemia/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Garcinia mangostana , Inibidores de Glicosídeo Hidrolases/farmacologia , Resistência à Insulina , PPAR gama/metabolismo , Extratos Vegetais/farmacologia , Xantonas/farmacologia , Células 3T3-L1 , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Diabetes Mellitus/sangue , Diabetes Mellitus/enzimologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo , Garcinia mangostana/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos ICR , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Transdução de Sinais , Fatores de Tempo , Xantonas/toxicidade , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
5.
J Biochem Mol Toxicol ; 35(4): e22721, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33533530

RESUMO

Gastric cancer (GC) represents the fifth most human malignant disease and the third-most common cause of cancer-related death. Gambogic acid (GA) is a natural compound with a polyprenylated xanthone structure and possesses remarkable antitumor activity in a variety of cancer cells. However, the mechanism underlying the inhibitory effect of GA in GC is far from being completely understood. The goal of the present study is to investigate whether potential microRNAs are involved in antitumor effect of GA toward GC and to elucidate the possible mechanisms. We identified that miR-26a-5p was significantly increased by GA in GC cell lines and xenograft tumor. Downregulation of miR-26a-5p not only prevented GA-induced inhibition on GC cell growth, but also suppressed GA-induced apoptosis of GC cells. Informatics assay predicted that Wnt5a was regulated by miR-26a-5p and GA-induced downregulation of Wnt5a was prevented by anti-miR-26a-5p. Reporter gene assay showed that miR-26a-5p could negatively regulate Wnt5a through direct binding with 3'-UTR messenger RNA of Wnt5a. Thus, upregulation of Wnt5a exhibited the same action tendency for GA-induced GC cell growth and apoptosis as observed by downregulation of miR-26a-5p. In conclusion, these results indicated that the inhibitory effect of GA on GC was mediated by the upregulation of miR-26a-5p and downregulation of Wnt5a. Our study provided new clues for the potential therapeutic effect of GA against GC and highlighted the importance of miR-26a-5p/Wnt5a pathway in the regulation of GC development.


Assuntos
MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/metabolismo , Neoplasias Gástricas/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a/metabolismo , Xantonas/toxicidade , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Neoplásico/genética , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/genética , Proteína Wnt-5a/genética
6.
Molecules ; 25(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207599

RESUMO

We investigated alpha-mangostin (α-mangostin, α-MG), a xanthone natural product extracted from the pericarp of mangosteen (Garcinia mangostana), for its antifungal activities and possible mechanism against Colletotrichum gloeosporioides, which causes mango anthracnose. The results demonstrated that α-MG had a relatively high in vitro inhibitory activity against C. gloeosporioides among 20 plant pathogenic fungi. The median effective concentration (EC50) values of α-MG against mycelial growth were nearly 10 times higher than those of spore germination inhibition for both strains of C. gloeosporioides, the carbendazim-sensitive (CBD-s) and carbendazim-resistant (CBD-r). The results suggested that α-MG exhibited a better inhibitory effect on spore germination than on the mycelial growth of C. gloeosporioides. Further investigation indicated that the protective effect could be superior to the therapeutic effect for mango leaves for scab development. The morphological observations of mycelium showed that α-MG caused the accumulation of dense bodies. Ultrastructural observation further revealed that α-MG caused a decrease in the quantity and shape of the swelling of mitochondria in the mycelium cells of C. gloeosporioides. In addition, bioassays disclosed that the inhibitory activity of α-MG on spore germination was reduced by adding exogenous adenosine triphosphate (ATP). These results suggested that the mode of action of α-MG could be involved in the destruction of mitochondrial energy metabolism. The current study supports α-MG as a natural antifungal agent in crop protection.


Assuntos
Antifúngicos/farmacologia , Colletotrichum/efeitos dos fármacos , Xantonas/farmacologia , Trifosfato de Adenosina/farmacologia , Antifúngicos/química , Colletotrichum/ultraestrutura , Testes de Sensibilidade Microbiana , Micélio/efeitos dos fármacos , Micélio/crescimento & desenvolvimento , Micélio/ultraestrutura , Folhas de Planta/química , Esporos Fúngicos/efeitos dos fármacos , Xantonas/química , Xantonas/toxicidade
7.
Biomolecules ; 10(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751491

RESUMO

The development of alternative ecological and effective antifouling technologies is still challenging. Synthesis of nature-inspired compounds has been exploited, given the potential to assure commercial supplies of potential ecofriendly antifouling agents. In this direction, the antifouling activity of a series of nineteen synthetic small molecules, with chemical similarities with natural products, were exploited in this work. Six (4, 5, 7, 10, 15 and 17) of the tested xanthones showed in vivo activity toward the settlement of Mytilus galloprovincialis larvae (EC50: 3.53-28.60 µM) and low toxicity to this macrofouling species (LC50 > 500 µM and LC50/EC50: 17.42-141.64), and two of them (7 and 10) showed no general marine ecotoxicity (<10% of Artemia salina mortality) after 48 h of exposure. Regarding the mechanism of action in mussel larvae, the best performance compounds 4 and 5 might be acting by the inhibition of acetylcholinesterase activity (in vitro and in silico studies), while 7 and 10 showed specific targets (proteomic studies) directly related with the mussel adhesive structure (byssal threads), given by the alterations in the expression of Mytilus collagen proteins (PreCols) and proximal thread proteins (TMPs). A quantitative structure-activity relationship (QSAR) model was built with predictive capacity to enable speeding the design of new potential active compounds.


Assuntos
Incrustação Biológica/prevenção & controle , Mytilus/efeitos dos fármacos , Xantonas/química , Xantonas/toxicidade , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Produtos Biológicos/toxicidade , Larva/efeitos dos fármacos , Larva/fisiologia , Mytilus/fisiologia , Xantonas/síntese química
8.
Planta Med ; 86(15): 1073-1079, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32023632

RESUMO

We recently isolated the prenylated xanthones 2-deprenyl-rheediaxanthone B (XB) and 2-deprenyl-7-hydroxy-rheediaxanthone B (OH-XB) from the South American tree fern Metaxya rostrata. This study explores the mechanisms underlying the FoxM1 downregulation induced by both xanthones. Analysis of cell viability and cell-death induction in SW480, HCT116, Caco-2, DLD1 and HT29 exposed to xanthones found cell-loss and activation of caspase in all cell lines except HT29 that do not have high FoxM1 protein levels. To determine the cellular mechanism of xanthone-induced FoxM1 loss, protein stability was analyzed by cycloheximide-chase experiments and showed reduction of FoxM1 stability by XB but not OH-XB. Destabilization was prevented by inhibiting proteasome activity using MG-132 and moderately by the lysosomal inhibitor bafilomycin A1 (baf A1). OH-XB had a stronger impact than XB on FoxM1 mRNA expression by qRT-PCR, and MG-132 positively affected FoxM1 protein level in OH-XB exposed cells even though no decrease in protein abundance had been induced by the xanthone. Additionally, the compound inhibited topoisomerase I causing DNA DSB and early cell cycle arrest. This may reduce FoxM1 gene expression, which may in turn compromise DNA repair and enhance xanthone-induced cell death. With regard to xanthone-induced cell death, MG-132 protected cultures from cell loss induced by both compounds, and baf A1 was active against these XB-induced effects. In summary, both destabilization of FoxM1 protein and topoisomerase I inhibition contribute to both XB and OH-XB cytotoxic activity albeit at different ratios.


Assuntos
DNA Topoisomerases Tipo I , Xantonas , Células CACO-2 , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Gleiquênias/química , Proteína Forkhead Box M1/genética , Humanos , Xantonas/toxicidade
9.
J Appl Toxicol ; 40(2): 234-244, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31633820

RESUMO

Thioxanthone and its analogues, 2- or 4-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-diethylthioxanthone (DETX) and xanthone, are used as photoinitiators of ultraviolet (UV) light-initiated curable inks. As these photoinitiators were found in numerous food/beverage products packaged in cartons printed with UV-cured inks, the cytotoxic effects and mechanisms of these compounds were studied in freshly isolated rat hepatocytes. The toxicity of DETX was greater than that of other compounds. DETX elicited not only concentration (0-2.0 mm)- and time (0-3 hours)-dependent cell death accompanied by the depletion of cellular adenosine triphosphate (ATP), and reduced glutathione (GSH) and protein thiol levels, but also the accumulation of GSH disulfide and malondialdehyde. Pretreatment of hepatocytes with either fructose at a concentration of 10 mm or N-acetyl-l-cysteine (NAC) at a concentration of 5.0 mm ameliorated DETX (1 mm)-induced cytotoxicity. Further, the exposure of hepatocytes to DETX resulted in the induction of reactive oxygen species (ROS) and loss of mitochondrial membrane potential, both of which were partially prevented by the addition of NAC. These results indicate that: (1) DETX-induced cytotoxicity is linked to mitochondrial failure and depletion of cellular GSH; (2) insufficient cellular ATP levels derived from mitochondrial dysfunction were, at least in part, ameliorated by the addition of fructose; and (3) GSH loss and/or ROS formation was prevented by NAC. Taken collectively, these results suggest that the onset of toxic effects caused by DETX may be partially attributable to cellular energy stress as well as oxidative stress.


Assuntos
Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Luz , Tioxantenos/toxicidade , Xantonas/toxicidade , Animais , Ratos , Ratos Endogâmicos F344
10.
Eur J Med Chem ; 177: 362-373, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158750

RESUMO

Inhibiting the decomposition of carbohydrates into glucose or promoting glucose conversion is considered to be an effective treatment for type 2 diabetes. Herein, a series of novel xanthone-triazole derivatives were designed, synthesized, and their α-glucosidase inhibitory activities and glucose uptake in HepG2 cells were investigated. Most of the compounds showed better inhibitory activities than the parental compound a (1,3-dihydroxyxanthone, IC50 = 160.8 µM) and 1-deoxynojirimycin (positive control, IC50 = 59.5 µM) towards α-glucosidase. Compound 5e was the most potent inhibitor, with IC50 value of 2.06 µM. The kinetics of enzyme inhibition showed that compounds 5e, 5g, 5h, 6c, 6d, 6g and 6h were noncompetitive inhibitors, and molecular docking results were consistent with the noncompetitive property that these compounds bind to allosteric sites away from the active site (Asp214, Glu276 and Asp349). On the other hand, the glucose uptake assays exhibited that compounds 5e, 6a, 6c and 7g displayed high activities in promoting the glucose uptake. The cytotoxicity assays showed that most compounds were low-toxic to human normal hepatocyte cell line (LO2). These novel xanthone triazole derivatives exhibited dual therapeutic effects of α-glucosidase inhibition and glucose uptake promotion, thus they could be use as antidiabetic agents for developing novel drugs against type 2 diabetes.


Assuntos
Glucose/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/farmacologia , Triazóis/farmacologia , Xantonas/farmacologia , Sítios de Ligação , Desenho de Fármacos , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/toxicidade , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Hipoglicemiantes/síntese química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/toxicidade , Cinética , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo , Triazóis/toxicidade , Xantonas/síntese química , Xantonas/metabolismo , Xantonas/toxicidade , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo
11.
J Clin Invest ; 129(2): 546-555, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30561388

RESUMO

Innate immune activation contributes to the transition from nonalcoholic fatty liver to nonalcoholic steatohepatitis (NASH). Stimulator of IFN genes (STING, also referred to Tmem173) is a universal receptor that recognizes released DNA and triggers innate immune activation. In this work, we investigated the role of STING in the progression of NASH in mice. Both methionine- and choline-deficient diet (MCD) and high-fat diet (HFD) were used to induce NASH in mice. Strikingly, STING deficiency attenuated steatosis, fibrosis, and inflammation in livers in both murine models of NASH. Additionally, STING deficiency increased fasting glucose levels in mice independently of insulin, but mitigated HFD-induced insulin resistance and weight gain and reduced levels of cholesterol, triglycerides, and LDL in serum; it also enhanced levels of HDL. The mitochondrial DNA (mtDNA) from hepatocytes of HFD-fed mice induced TNF-α and IL-6 expression in cultured Kupffer cells (KCs), which was attenuated by STING deficiency or pretreatment with BAY11-7082 (an NF-κB inhibitor). Finally, chronic exposure to 5,6-dimethylxanthenone-4-acetic acid (DMXAA, a STING agonist) led to hepatic steatosis and inflammation in WT mice, but not in STING-deficient mice. We proposed that STING functions as an mtDNA sensor in the KCs of liver under lipid overload and induces NF-κB-dependent inflammation in NASH.


Assuntos
Gorduras na Dieta/efeitos adversos , Hepatócitos/metabolismo , Resistência à Insulina , Células de Kupffer/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Hepáticas/metabolismo , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Gorduras na Dieta/farmacologia , Feminino , Hepatócitos/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Células de Kupffer/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/deficiência , Camundongos , Camundongos Mutantes , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Nitrilas/farmacologia , Hepatopatia Gordurosa não Alcoólica , Consumo de Oxigênio/genética , Sulfonas/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Xantonas/toxicidade
12.
Drug Deliv Transl Res ; 8(3): 617-632, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29637488

RESUMO

The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.


Assuntos
Micelas , Nanoestruturas/administração & dosagem , Fosfolipídeos/administração & dosagem , Vitamina E/administração & dosagem , Xantonas/administração & dosagem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Humanos , Jejuno/metabolismo , Nanoestruturas/química , Nanoestruturas/toxicidade , Fosfolipídeos/química , Fosfolipídeos/toxicidade , Ratos Sprague-Dawley , Solubilidade , Vitamina E/química , Vitamina E/toxicidade , Xantonas/química , Xantonas/toxicidade
13.
Cell Physiol Biochem ; 46(2): 829-846, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29627822

RESUMO

BACKGROUND/AIMS: Gambogic acid (GA), the main active compound of Gamboge hanburyi, has been reported to be a potential novel antitumor drug. Whether GA inhibits putative cancer stem cells (CSCs), which are considered to be the major cause of cancer treatment failure, remains largely unknown. This study investigated whether GA inhibits the CSCs of colorectal cancer (CRC) and its possible mechanisms. METHODS: We performed CCK8 and tumor sphere formation assays, percentage analysis of both side population and CD133+CD44+ cells, and the detection of stem cells markers, in order to assess the role of GA in inhibiting the stem celllike features of CRC. An mRNA microarray was performed to identify the downstream gene affected by GA and rescue assays were performed to further clarify whether the downstream gene is involved in the GA induced decrease of the stem cell-like CRC population. CRC cells were engineered with a CSC detector vector encoding GFP and luciferase (Luc) under the control of the Nanog promoter, which were utilized to investigate the effect of GA on putative CSC in human tumor xenograft-bearing mice using in vivo bioluminescence imaging. RESULTS: Our results showed that GA significantly reduced tumor sphere formation and the percentages of side population and CD133+CD44+ cells, while also decreasing the expression of stemness and EMT-associated markers in CRC cells in vitro. GA killed stem-like CRC cells by upregulating the expression of ZFP36, which is dependent on the inactivation of the EGFR/ ERK signaling pathway. GFP+ cells harboring the PNanog-GFP-T2A-Luc transgene exhibited CSC characteristics. The in vivo results showed that GA significantly inhibited tumor growth in nude mice, accompanied by a remarkable reduction in the putative CSC number, based on whole-body bioluminescence imaging. CONCLUSION: These findings suggest that GA significantly inhibits putative CSCs of CRC both in vitro and in vivo by inhibiting the activation of the EGFR/ ERK/ZFP36 signaling pathway and may be an effective drug candidate for anticancer therapies.


Assuntos
Apoptose/efeitos dos fármacos , Tristetraprolina/metabolismo , Regulação para Cima/efeitos dos fármacos , Xantonas/toxicidade , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Tristetraprolina/genética , Xantonas/uso terapêutico
14.
Biomed Pharmacother ; 103: 708-718, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29680739

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief and the corresponding author as panels from Figure 2A appear as similar to panels from Figure 3A of the article published by Xiangyang Dou, Meihua Wang, Tao Zhang and Jiapei Yao in The Anatomical Record (2019) https://doi.org/10.1002/ar.24324 and Figure 2A of the article published by Qiang Wang, Yi Yan, Jie Zhang, Peng Guo, Yuqing Xing, Yong Wang, Fawei Qin and Qingyun Zeng in Biomedicine & Pharmacotherapy 104 (2018) 28-35 https://doi.org/10.1016/j.biopha.2018.05.013. Moreover, panels from Figure 2B appear as similar (after vertical mirroring) to panels from Figure 2A of the article published by Ning Wang, Fang Zhou, Jinhui Guo, Huaiyuan Zhu, Shanshui Luo and Jingjing Cao in Life Sciences 209 (2018) 498-506 https://doi.org/10.1016/j.lfs.2018.08.052. Also, panels from Figure 7C appear as similar to panels from Figure 8D of the article published by Zichao Li, Luying Zhang, Mingquan Gao, Mei Han, Kaili Liu, Zhuang Zhang, Zhi Gong, Lifei Xing, Xianzhou Shi, Kui Lu and Hui Gao in the Journal of Experimental & Clinical Cancer Research 38:8 (2019) https://doi.org/10.1186/s13046-018-1012-z. Although this article was published earlier than the other articles, the Editor decided to retract this article given the concerns on the reliability of the data. The corresponding author acknowledged that some of the TUNEL, Flow Cytometry and Immunohistochemistry (IHC) measurements have been provided by third party entities. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Ovarianas/patologia , Xantonas/toxicidade , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Distribuição Aleatória , Xantonas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
15.
Eur J Med Chem ; 148: 268-278, 2018 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-29466776

RESUMO

DNA topoisomerase I (Topo I) is an important anticancer drug target, and xanthone dimers are considered to be a new kind of Topo I inhibitor chemotypes. Based on the characteristics of dimeric xanthone structures, five new dimeric xanthones (1-5) and two known SAD isomers (6 and 7) were isolated from the mangrove-derived fungus Aspergillus vericolor. The absolute configurations of compounds 1-7, entailing both central and axial chirality elements, were established by a combination of ECD comparison, chemical conversions, and biogenetic considerations. Compounds 1-7 possessed high structural diversity and exhibited cytotoxicity at different levels. The selected new compounds 1, 2, and 5 showed Topo I inhibition properties and the most potent compound 1, an atropisomer of compound 2, was confirmed to inhibit Topo I-mediated DNA relaxation by targeting Topo I, thereby, arresting the cell cycle process and inducing necrosis in cancer cells. Molecular docking studies showed that compound 1 could bind DNA by π-π interaction and DNA Topo I by hydrogen bonds to form a ternary complex.


Assuntos
Fungos/química , Inibidores da Topoisomerase I/química , Xantonas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Aspergillus/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dimerização , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Necrose/induzido quimicamente , Xantonas/química , Xantonas/toxicidade
16.
Cell Death Dis ; 9(3): 286, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29459714

RESUMO

Mitochondria are cellular organelles with crucial functions in the generation and distribution of ATP, the buffering of cytosolic Ca2+ and the initiation of apoptosis. Compounds that interfere with these functions are termed mitochondrial toxins, many of which are derived from microbes, such as antimycin A, oligomycin A, and ionomycin. Here, we identify the mycotoxin phomoxanthone A (PXA), derived from the endophytic fungus Phomopsis longicolla, as a mitochondrial toxin. We show that PXA elicits a strong release of Ca2+ from the mitochondria but not from the ER. In addition, PXA depolarises the mitochondria similarly to protonophoric uncouplers such as CCCP, yet unlike these, it does not increase but rather inhibits cellular respiration and electron transport chain activity. The respiration-dependent mitochondrial network structure rapidly collapses into fragments upon PXA treatment. Surprisingly, this fragmentation is independent from the canonical mitochondrial fission and fusion mediators DRP1 and OPA1, and exclusively affects the inner mitochondrial membrane, leading to cristae disruption, release of pro-apoptotic proteins, and apoptosis. Taken together, our results suggest that PXA is a mitochondrial toxin with a novel mode of action that might prove a useful tool for the study of mitochondrial ion homoeostasis and membrane dynamics.


Assuntos
Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Micotoxinas/toxicidade , Xantonas/toxicidade , Animais , Ascomicetos/metabolismo , Cálcio/metabolismo , Linhagem Celular , Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Micotoxinas/metabolismo , Xantonas/metabolismo
17.
Nat Prod Res ; 32(18): 2147-2151, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28826239

RESUMO

Two naturally occurring xanthones, ananixanthone (1) and ß-mangostin (2), were isolated using column chromatographic method from the n-hexane and methanol extracts of Calophyllum teysmannii, respectively. The major constituent, ananixanthone (1), was subjected to structural modifications via acetylation, methylation and benzylation yielding four new xanthone derivatives, ananixanthone monoacetate (3), ananixanthone diacetate (4), 5-methoxyananixanthone (5) and 5-O-benzylananixanthone (6). Compound 1 together with its four new derivatives were subjected to MTT assay against three cancer cell lines; SNU-1, K562 and LS174T. The results indicated that the parent compound has greater cytotoxicity capabilities against SNU-1 and K562 cell lines with IC50 values of 8.97 ± 0.11 and 2.96 ± 0.06 µg/mL, respectively. Compound 5 on the other hand exhibited better cytotoxicity against LS174T cell line with an IC50 value of 5.76 ± 1.07 µg/mL.


Assuntos
Calophyllum/química , Xantonas/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Extratos Vegetais , Xantonas/isolamento & purificação , Xantonas/toxicidade
18.
Cell Physiol Biochem ; 44(4): 1460-1470, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190630

RESUMO

BACKGROUND/AIMS: α-mangostin has anti-carcinogenic effects against several cancers. We investigated the molecular mechanism of this compound on the metastasis of human renal carcinoma cells. METHODS: Cell viability was measured using the MTT assay, and cell cycle distribution using flow cytometry. A Matrigel-based assay was used to measure in vitro cell migration and invasion. MAPK-related proteins and matrix metalloproteinase (MMP)-9 and MMP-2 expression were measured by western blotting, and MMP2/-9 activities were determined by gelatin zymography. RT-qPCR and a luciferase assay were used to examine the transcriptional activity of MMP-9. RESULTS: α-mangostin inhibited the migration and invasion of RCC cells in a dose-dependent manner, but had no evident cytotoxic effects. Treatment of 786-O cells with α-mangostin inhibited activation of MEK and ERK. Treatment with a specific MEK inhibitor (U0126) enhanced the inhibitory effects of α-mangostin on cell migration and invasion, and the phosphorylation of ERK and MEK. Moreover, α-mangostin inhibited the expression of the MMP-9 mRNA levels as well as the activity of MMP-9 promoter, and these suppressive effects were further enhanced by U0126. CONCLUSIONS: Our results suggest that α-mangostin suppresses cell migration and invasion via MEK/ERK/MMP9 pathway, and might be a promising anti-metastatic agent against human renal cell carcinoma.


Assuntos
Anticarcinógenos/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Xantonas/toxicidade , Anticarcinógenos/química , Butadienos/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Nitrilas/farmacologia , Xantonas/química
19.
Cell Physiol Biochem ; 44(4): 1381-1395, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186708

RESUMO

BACKGROUND/AIMS: Glioma is the most devastating cancer in the brain and has a poor prognosis in adults. Therefore, there is a critical need for novel therapeutic strategies for the management of glioma patients. Isogambogenic acid, an active compound extracted from the Chinese herb Garcinia hanburyi, induces autophagic cell death. METHODS: Cell viability was detected with MTT assays. Cell proliferation was assessed using the colony formation assay. Morphological changes associated with autophagy and apoptosis were tested by TEM and Hoechst staining, respectively. The apoptosis rate was measured by flow cytometry. Western blot, immunofluorescence and immunohistochemical analyses were used to detect protein expression. U87-derived xenografts were established for the examination of the effect of isogambogenic acid on glioma growth in vivo. RESULTS: Isogambogenic acid induced autophagic death in U87 and U251 cells, and blocking late-stage autophagy markedly enhanced the antiproliferative activities of isogambogenic acid. Moreover, we observed the activation of AMPK-mTOR signalling in isogambogenic acid-treated glioma cells. Furthermore, the activation of AMPK or the inhibition of mTOR augmented isogambogenic acid-induced autophagy. Inhibition of autophagy attenuated apoptosis in isogambogenic acid-treated glioma cells. Finally, isogambogenic acid inhibited the growth of U87 glioma in vivo. CONCLUSION: Isogambogenic acid inhibits the growth of glioma via activation of the AMPK-mTOR signalling pathway, which may provide evidence for future clinical applications in glioma therapy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/toxicidade , Proliferação de Células/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Xantonas/toxicidade , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo , Xantonas/química , Xantonas/uso terapêutico
20.
Anal Sci ; 33(10): 1169-1173, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28993592

RESUMO

Developing some methods that can simply and effectively detect mercury ions (Hg2+) in the environment and biological systems are very important due to the problems of high toxicity and biological accumulation. Herein, we report a simple rhodol-derived colorimetric and fluorescent probe rhodol-Hg with a recognition receptor of carbonothioate for the specific determination of Hg2+. The color of probe rhodol-Hg solution changed remarkably from colorless to pink in the presence of Hg2+, thus rhodol-Hg could act as a "naked-eye" probe for Hg2+. Additionally, this probe exhibited high selectivity and ultrasensitivity in aqueous solution with the limit of detection (LOD) of 1.4 nM toward Hg2+, and the linear range was 0 - 0.8 µM determined by turn-on fluorescence spectrometry. Importantly, this probe has been successfully used for the detection of Hg2+ in environmental waters and living cells.


Assuntos
Corantes Fluorescentes/química , Mercúrio/análise , Compostos de Sulfidrila/química , Xantonas/química , Animais , Colorimetria , Corantes Fluorescentes/toxicidade , Concentração de Íons de Hidrogênio , Limite de Detecção , Camundongos , Células RAW 264.7 , Água/química , Xantonas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA