Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 858
Filtrar
1.
Molecules ; 29(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39339426

RESUMO

The removal of benzene, toluene, ethylbenzene, and xylene (BTEX) from air was investigated in two similar biotrickling filters (BTFs) packed with polyurethane (PU) foam, differing in terms of inoculation procedure (BTF A was packed with pre-incubated PU discs, and BTF B was inoculated via the continuous recirculation of a liquid inoculum). The effects of white rot fungi enzyme extract addition and system responses to variable VOC loading, liquid trickling patterns, and pH were studied. Positive effects of both packing incubation and enzyme addition on biotrickling filtration performance were identified. BFF A exhibited a shorter start-up period (approximately 20 days) and lower pressure drop (75 ± 6 mm H2O) than BTF B (30 days; 86 ± 5 mm H2O), indicating the superior effects of packing incubation over inoculum circulation during the biotrickling filter start-up. The novel approach of using white rot fungi extracts resulted in fast system recovery and enhanced process performance after the BTF acidification episode. Average BTEX elimination capacities of 28.8 ± 0.4 g/(m3 h) and 23.1 ± 0.4 g/(m3 h) were reached for BTF A and BTF B, respectively. This study presents new strategies for controlling and improving the abatement of BTEX in biotrickling filters.


Assuntos
Derivados de Benzeno , Benzeno , Filtração , Tolueno , Xilenos , Xilenos/química , Xilenos/metabolismo , Benzeno/química , Benzeno/metabolismo , Derivados de Benzeno/química , Filtração/métodos , Filtração/instrumentação , Tolueno/metabolismo , Tolueno/química , Biodegradação Ambiental , Poliuretanos/química , Poluentes Atmosféricos , Fungos/metabolismo , Filtros de Ar/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Concentração de Íons de Hidrogênio
2.
Environ Sci Pollut Res Int ; 31(38): 50733-50745, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102137

RESUMO

In-situ chemical oxidation with persulfate (PS-ISCO) is a preferred approach for the remediation of fuel-contaminated groundwater. Persulfate (PS) can be activated by various methods to produce stronger sulfate radicals for more efficient ISCO. Despite karst aquifers being widespread, there are few reports on PS-ISCO combined with Fe2+-activated PS. To better understand the effects of Fe2+-activated PS for the remediation of gasoline-contaminated aquifers in karst areas, a box-column experiment was conducted under flow conditions, using karst groundwater and limestone particles to simulate an aquifer. Gasoline was used as the source of hydrocarbon contaminants. Dissolved oxygen and nitrate were added to enhance bioremediation (EBR) and ferrous sulfate was used to activate PS. The effect of Fe2+-activated PS combined with biodegradation was compared during the periods of EBR + ISCO and ISCO alone, using the mass flow method for data analysis. The results showed that the initial dissolution of benzene, toluene, and xylene (BTX) from gasoline injection was rapid and variable, with a decaying trend at an average pseudo-first-order degradation rate constant of 0.032 d-1. Enhanced aerobic biodegradation and denitrification played a significant role in limestone-filled environments, with dissolved oxygen and nitrate utilization ratios of 59 ~ 72% and 12-70%, respectively. The efficiency of EBR + ISCO was the best method for BTX removal, compared with EBR or ISCO alone. The pseudo-first-order degradation rate constants of BTX reached 0.022-0.039, 0.034-0.070, and 0.027-0.036 d-1, during the periods of EBR alone, EBR + ISCO, and ISCO alone, respectively. The EBR + ISCO had a higher BTX removal ratio range of 71.0 ~ 84.3% than the ISCO alone with 30.1 ~ 45.1%. The presence of Fe2+-activated PS could increase the degradation rate of BTX with a range of 0.060 ~ 0.070 d-1, otherwise, with a range of 0.034-0.052 d-1. However, Fe2+-activated PS also consumed about 3 times the mass of PS, caused a further decrease in pH with a range of 6.8-7.6, increased 3-4 times the Ca2+ and 1.6-1.8 times the HCO3- levels, and decreased the BTX removal ratio of ISCO + EBR, compared to the case without Fe2+ activation. In addition, the accumulation of ferric hydroxides within a short distance indicated that the range of PS activated by Fe2+ may be limited. Based on this study, it is suggested that the effect of Fe2+-activated PS should be evaluated in the remediation of non-carbonate rock aquifers.


Assuntos
Biodegradação Ambiental , Gasolina , Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Poluentes Químicos da Água/química , Sulfatos/química , Benzeno , Tolueno/química , Ferro/química , Xilenos/química
3.
ACS Sens ; 9(7): 3689-3696, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-38982801

RESUMO

Celiac patients are required to strictly adhere to a gluten-free diet because even trace amounts of gluten can damage their small intestine and leading to serious complications. Despite increased awareness, gluten can still be present in products due to cross-contamination or hidden ingredients, making regular monitoring essential. With the goal of guaranteeing food safety for consuming labeled gluten-free products, a capacitive aptasensor was constructed to target gliadin, the main allergic gluten protein for celiac disease. The success of capacitive aptasensing was primarily realized by coating a Parylene double-layer (1000 nm Parylene C at the bottom with 400 nm Parylene AM on top) on the electrode surface to ensure both high insulation quality and abundant reactive amino functionalities. Under the optimal concentration of aptamer (5 µM) used for immobilization, a strong linear relationship exists between the amount of gliadin (0.01-1.0 mg/mL) and the corresponding ΔC response (total capacitance decrease during a 20 min monitoring period after sample introduction), with an R2 of 0.9843. The detection limit is 0.007 mg/mL (S/N > 5), equivalent to 0.014 mg/mL (14 ppm) of gluten content. Spike recovery tests identified this system is free from interferences in corn and cassava flour matrices. The analytical results of 24 commercial wheat flour samples correlated well with a gliadin ELISA assay (R2 = 0.9754). The proposed label-free and reagentless capacitive aptasensor offers advantages of simplicity, cost-effectiveness, ease of production, and speediness, making it a promising tool for verifying products labeled as gluten-free (gluten content <20 ppm).


Assuntos
Aptâmeros de Nucleotídeos , Eletrodos , Gliadina , Xilenos , Gliadina/análise , Aptâmeros de Nucleotídeos/química , Xilenos/química , Carbono/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Biossensoriais/métodos , Limite de Detecção , Polímeros/química , Capacitância Elétrica , Farinha/análise
4.
Environ Pollut ; 360: 124624, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39069243

RESUMO

Initial volatile concentration (Cs0) is a crucial parameter for the migration and diffusion of volatile organic pollutants (VOCs) from the soil to the atmosphere. The acquisition of Cs0 is, however, time-consuming and labor-intensive. This study developed a prediction model for Cs0 based on theoretical analysis and experimental simulations. The model was established by correlating the molecular kinetic and sorption potential energy. The pore structure and pore size distribution of the soil were analyzed based on the fractal theory of porous media, followed by calculating the sorption potential energy corresponding to each pore size. It was observed that the pore size distribution of soil influenced BTEX (benzene, toluene, ethylbenzene, and xylene) volatilization by impacting sorption potential energy. The soil parameters, such as organic matter and soil moisture content, and the initial concentration and physical properties of BTEX were coupled to the prediction model to ensure its practicability. Red soil was finally used to verify the accuracy and applicability of the model. The experimental and predicted values' maximum relative and root-mean-square errors were determined to be 24.2% and 11.7%, respectively. The model provides a simple, rapid, and accurate assessment of soil vapor emission content due to BTEX contamination. This study offers an economical and practical method for quantifying the amount of volatile BTEX in contaminated sites, providing a reference for its monitoring, control, and subsequent remediation.


Assuntos
Derivados de Benzeno , Benzeno , Poluentes do Solo , Solo , Tolueno , Compostos Orgânicos Voláteis , Xilenos , Poluentes do Solo/análise , Poluentes do Solo/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Tolueno/química , Tolueno/análise , Volatilização , Benzeno/química , Benzeno/análise , Derivados de Benzeno/química , Derivados de Benzeno/análise , Solo/química , Xilenos/química , Xilenos/análise , Adsorção , Modelos Químicos , Monitoramento Ambiental/métodos
5.
Adv Mater ; 36(36): e2403141, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39011796

RESUMO

Silicone-based devices have the potential to achieve an ideal interface with nervous tissue but suffer from scalability, primarily due to the mechanical mismatch between established electronic materials and soft elastomer substrates. This study presents a novel approach using conventional electrode materials through multifunctional nanomesh to achieve reliable elastic microelectrodes directly on polydimethylsiloxane (PDMS) silicone with an unprecedented cellular resolution. This engineered nanomesh features an in-plane nanoscale mesh pattern, physically embodied by a stack of three thin-film materials by design, namely Parylene-C for mechanical buffering, gold (Au) for electrical conduction, and Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) for improved electrochemical interfacing. Nanomesh elastic neuroelectronics are validated using single-unit recording from the small and curvilinear epidural surface of mouse dorsal root ganglia (DRG) with device self-conformed and superior recording quality compared to plastic control devices requiring manual pressing is demonstrated. Electrode scaling studies from in vivo epidural recording further revealed the need for cellular resolution for high-fidelity recording of single-unit activities and compound action potentials. In addition to creating a minimally invasive device to effectively interface with DRG sensory afferents at a single-cell resolution, this study establishes nanomeshing as a practical pathway to leverage traditional electrode materials for a new class of elastic neuroelectronics.


Assuntos
Gânglios Espinais , Ouro , Polímeros , Xilenos , Animais , Camundongos , Gânglios Espinais/citologia , Ouro/química , Polímeros/química , Xilenos/química , Microeletrodos , Poliestirenos/química , Dimetilpolisiloxanos/química , Elasticidade , Nanoestruturas/química , Potenciais de Ação/fisiologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Tiofenos/química
6.
ACS Appl Bio Mater ; 7(8): 5369-5381, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39041651

RESUMO

Additive manufacturing, particularly Vat photopolymerization, presents a promising technique for producing complex, tailor-made structures, making it an attractive option for generating single-use components used in biopharmaceutical manufacturing equipment or cell culture devices. However, the potential leaching of cytotoxic compounds from Vat photopolymer resins poses a significant concern, especially regarding cell growth and viability in cell culture applications. This study explores the potential of parylene C coating to enhance the inertness of a polyurethane-based photopolymer resin, aiming to prevent cytotoxicity and improve biocompatibility. The study includes an analysis of extractables from the resin and photoinitiator to evaluate the resin's composition and to define selected marker compounds for investigating the coating efficiency. The time-dependent accumulation of relevant extractable compounds over a 70-day period are assessed to address the long-term use of the coated components. The impact of irradiation on the material and the coating was evaluated, along with an accelerated aging study to address the long-term performance of the coating. Biocompatibility in terms of in vitro cell growth studies is evaluated using Chinese hamster ovary cells, a standard cell line in biopharmaceutical manufacturing. Results demonstrate that parylene C coating significantly reduces the release of cytotoxic compounds, such as the photoinitiator diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO). Although accelerated aging indicates a reduction in the barrier properties of the coating over time, the parylene C coating still effectively slows the release of extractables and significantly improves cell compatibility of the 3D printed parts. The findings suggest that parylene C-coated components can be safely integrated into biopharmaceutical manufacturing processes, with recommendations to minimize storage times between coating application and use to ensure optimal performance.


Assuntos
Materiais Revestidos Biocompatíveis , Teste de Materiais , Polímeros , Poliuretanos , Impressão Tridimensional , Xilenos , Poliuretanos/química , Poliuretanos/farmacologia , Xilenos/química , Xilenos/farmacologia , Polímeros/química , Polímeros/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Tamanho da Partícula , Cricetulus , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
7.
ACS Sens ; 9(8): 4107-4118, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39046797

RESUMO

A Pt nanoparticle-immobilized WO3 material is a promising candidate for catalytic reactions, and the surface and electronic structure can strongly affect the performance. However, the effect of the intrinsic oxygen vacancy of WO3 on the d-band structure of Pt and the synergistic effect of Pt and the WO3 matrix on reaction performance are still ambiguous, which greatly hinders the design of advanced materials. Herein, Pt-decorated WO3 nanosheets with different electronic metal-support interactions are successfully prepared by finely tuning the oxygen vacancy structure of WO3 nanosheets. Notably, Pt-modified WO3 nanosheets annealed at 400 °C exhibit excellent benzene series (BTEX) sensing performance (S = 377.33, 365.21, 348.45, and 319.23 for 50 ppm ethylbenzene, benzene, toluene, and xylene, respectively, at 140 °C), fast response and recovery dynamics (10/7 s), excellent reliability (σ = 0.14), and sensing stability (φ = 0.08%). Detailed structural characterization and DFT results reveal that interfacial Ptδ+-Ov-W5+ sites are recognized as the active sites, and the oxygen vacancies of the WO3 matrix can significantly affect the d-band structure of Pt nanoparticles. Notably, Pt/WO3-400 with improved surface oxygen mobility and medium electronic metal-support interaction facilitates the activation and desorption of BTEX, which contributes to the highly efficient BTEX sensing performance. Our work provides a new insight for the design of high-performance surface reaction materials for advanced applications.


Assuntos
Derivados de Benzeno , Benzeno , Óxidos , Oxigênio , Platina , Tungstênio , Tungstênio/química , Platina/química , Óxidos/química , Oxigênio/química , Benzeno/química , Derivados de Benzeno/química , Nanoestruturas/química , Xilenos/química , Nanopartículas Metálicas/química , Tolueno/química , Técnicas Eletroquímicas/métodos , Teoria da Densidade Funcional
8.
Chemosphere ; 362: 142707, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38942245

RESUMO

To address the issue of excessive residues of 4-chloro-3,5-dimethylphenol (PCMX) in the water environment. In a one-step solvothermal process, iron-based metal-organic frameworks (Fe-MOFs) material MIL-53(Fe) undergoes a synthetic modification strategy. 2-Nitroterephthalic acid as an organic ligand reacted with Fe3+ in a solvothermal process lasting 18 h to yield the nitro-functionalized MIL-53(Fe)-NO2(18h). The objective was to augment the abundance of Fe central unsaturated coordination sites (Fe CUCs) and expedite the Fe(III)/Fe(II) redox cycle, thereby enhancing the heterogeneous Fenton-like treatment capability of pollutants. MIL-53(Fe)-NO2(18h) has excellent hydrogen peroxide (H2O2) catalytic activity and PCMX degradation across a broad pH spectrum (4.0∼8.0). Almost complete removal of PCMX was achieved within 30 min, while pseudo-first-order kinetic rate constants (kobs) increased 4.37 times over MIL-53(Fe). The confirmation of increased Fe CUCs abundance in MIL-53(Fe)-NO2(18h) was achieved through Lewis acidity, oxygen vacancies (OVs) signals, and Fe-O coordination characterization results. Density functional theory (DFT) calculations revealed that Fe CUCs in MIL-53(Fe)-NO2(18h) exhibits heightened affinity for H2O2 adsorption, showcasing stronger charge transfer and enhanced H2O2 dissociation ability. The Fe(III)/Fe(II) redox cycle, a driving force of Fenton-like reactions, was notably improved in the nitro-modified materials. These enhancements significantly expedited the Fenton-like process, resulting in the generation of increased amounts of reactive oxygen species (ROSs), with hydroxyl radicals (OH·) being pivotal components in degradation. The MIL-53(Fe)-NO2(18h)/H2O2 system has demonstrated versatility in treating a variety of emerging contaminants, achieving removal efficiencies exceeding 99.7% for other antibiotics and endocrine disruptors within 60 min. Furthermore, MIL-53(Fe)-NO2(18h) demonstrated outstanding reusability and adaptability in actual water environments. This study introduces a straightforward and environmentally friendly strategy for remediating environmental pollution using Fe-MOF-catalysed heterogeneous Fenton-like technology.


Assuntos
Peróxido de Hidrogênio , Ferro , Estruturas Metalorgânicas , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Peróxido de Hidrogênio/química , Catálise , Ferro/química , Poluentes Químicos da Água/química , Oxirredução , Cinética , Xilenos/química
9.
PeerJ ; 12: e17452, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903883

RESUMO

Background: Conventional biofilters, which rely on bacterial activity, face challenges in eliminating hydrophobic compounds, such as aromatic compounds. This is due to the low solubility of these compounds in water, which makes them difficult to absorb by bacterial biofilms. Furthermore, biofilter operational stability is often hampered by acidification and drying out of the filter bed. Methods: Two bioreactors, a bacterial biofilter (B-BF) and a fungal-bacterial coupled biofilter (F&B-BF) were inoculated with activated sludge from the secondary sedimentation tank of the Sinopec Yangzi Petrochemical Company wastewater treatment plant located in Nanjing, China. For approximately 6 months of operation, a F&B-BF was more effective than a B-BF in eliminating a gas-phase mixture containing benzene, toluene, ethylbenzene, and para-xylene (BTEp-X). Results: After operating for four months, the F&B-BF showed higher removal efficiencies for toluene (T), ethylbenzene (E), benzene (B), and para-X (p-Xylene), at 96.9%, 92.6%, 83.9%, and 83.8%, respectively, compared to those of the B-BF (90.1%, 78.7%, 64.8%, and 59.3%). The degradation activity order for B-BF and F&B-BF was T > E > B > p-X. Similarly, the rates of mineralization for BTEp-X in the F&B-BF were 74.9%, 66.5%, 55.3%, and 45.1%, respectively, which were higher than those in the B-BF (56.5%, 50.8%, 43.8%, and 30.5%). Additionally, the F&B-BF (2 days) exhibited faster recovery rates than the B-BF (5 days). Conclusions: It was found that a starvation protocol was beneficial for the stable operation of both the B-BF and F&B-BF. Community structure analysis showed that the bacterial genus Pseudomonas and the fungal genus Phialophora were both important in the degradation of BTEp-X. The fungal-bacterial consortia can enhance the biofiltration removal of BTEp-X vapors.


Assuntos
Bactérias , Derivados de Benzeno , Reatores Biológicos , Filtração , Fungos , Xilenos , Xilenos/metabolismo , Xilenos/química , Filtração/métodos , Fungos/metabolismo , Derivados de Benzeno/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Biodegradação Ambiental , Tolueno/metabolismo , Benzeno/metabolismo , China , Biofilmes
10.
J Environ Manage ; 363: 121343, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843727

RESUMO

This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.


Assuntos
Derivados de Benzeno , Benzeno , Ozônio , Poluentes Químicos da Água , Xilenos , Ozônio/química , Xilenos/química , Derivados de Benzeno/química , Benzeno/química , Poluentes Químicos da Água/química , Tolueno/química , Oxirredução , Água/química , Espécies Reativas de Oxigênio/química , Purificação da Água/métodos
11.
ACS Appl Bio Mater ; 7(7): 4442-4453, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38888242

RESUMO

Silicone rubber tissue expanders and breast implants are associated with chronic inflammation, leading to the formation of fibrous capsules. If the inflammation is left untreated, the fibrous capsules can become hard and brittle and lead to formation of capsular contracture. When capsular contracture occurs, implant failure and reoperation is unavoidable. Fibrous capsule formation to medical grade silicone rubber breast implants and polyisobutylene-based electrospun fiber mats attached to silicone rubber with and without an anti-inflammatory therapeutic were compared. A linear polyisobutylene (PIB)-based thermoplastic elastomer is currently applied as a polymer coating for drug release on coronary stents to reduce restenosis. Recent work has created a drug releasing electrospun fiber mat from PIB-based materials. Important to this study, poly(alloocimene-b-isobutylene-b-alloocimene) (AIBA) was electrospun with zafirlukast (ZAF). ZAF is an anti-inflammatory drug that is able to reduce capsule formation and complications to silicone breast implants. Fiber mats are advantageous for local drug delivery because of their high porosity and surface area for drug release. The chief hypothesis was that local release of ZAF from AIBA would lower inflammatory signaling and resulting capsular formation after 90 days in vivo. Electrospun AIBA mats locally released ZAF, lowering inflammation and fibrous capsule development compared to medical grade silicone rubber. Locally and orally released ZAF led to similar results, but the former had much lower concentration that highlights local delivery's therapeutic potential. Released ZAF from AIBA fiber mats mitigated inflammation and serves as an alternative to existing clinical approaches.


Assuntos
Implantes de Mama , Teste de Materiais , Polienos , Implantes de Mama/efeitos adversos , Polienos/química , Compostos de Tosil/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Tamanho da Partícula , Feminino , Polímeros/química , Humanos , Xilenos/química , Indóis , Sulfonamidas , Fenilcarbamatos
12.
Chemosphere ; 362: 142540, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851514

RESUMO

The rate of mass transfer of lower molecular weight hydrocarbons (naphtha) from bitumen drops in mature fine tailings of oil sand tailings ponds (OSTPs) may control their bioavailability and the associated rate of GHG production. Experiments were conducted using bitumen drops spiked with o-xylene and 1-methylnaphthalene to determine the mass transfer rate of these naphtha components from bitumen drops. The results were compared to simulations using a multi-component numerical model that accounted for transport in the drop and across the oil-water interface. The results demonstrate rate-limited mass transfer, with aqueous concentrations after 60 days of dissolution that were different than those in equilibrium with the initial drop composition (less for o-xylene and greater for 1-methylnaphthalene). The simulations suggest that mole fractions were unchanged at the center of the drop, resulting in concentration gradients out to the oil-water interface. Numerical simulations conducted using different drop sizes and bitumen viscosities also suggest the potential for persistent naphtha dissolution, where the time required to deplete 80% of the o-xylene and 1-methylnaphthalene mass from an oil drop was estimated to be on the order of months to years for mm-sized drops, and years to decades for cm-sized drops assuming instantaneous biodegradation in the aqueous phase surrounding the bitumen.


Assuntos
Hidrocarbonetos , Solventes , Hidrocarbonetos/química , Solventes/química , Difusão , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Campos de Petróleo e Gás/química , Xilenos/química , Lagoas/química , Solubilidade
13.
Artigo em Inglês | MEDLINE | ID: mdl-38733115

RESUMO

Large volumes of wastewater are generated during petroleum refining processes. Petroleum refinery wastewater (PRW) can contain highly toxic compounds that can harm the environment. These toxic compounds can be a challenge in biological treatment technologies due to the effects of these compounds on microorganisms. These challenges can be overcome by using ozone (O3) as a standalone or as a pretreatment to the biological treatment. Ozone was used in this study to degrade the organic pollutants in the heavily contaminated PRW from a refinery in Mpumalanga province of South Africa. The objective was achieved by treating the raw PRW using ozone at different ozone treatment times (15, 30, 45, and 60 min) at a fixed ozone concentration of 3.53 mg/dm3. The ozone treatment was carried out in a 2-liter custom-designed plexiglass cylindrical reactor. Ozone was generated from an Eco-Lab-24 corona discharge ozone generator using clean, dry air from the Afrox air cylinder as feed. The chemical oxygen demand, gas chromatograph characterization, and pH analysis were performed on the pretreated and post-treated PRW samples to ascertain the impact of the ozone treatment. The ozone treatment was effective in reducing the benzene, toluene, ethylbenzene, and xylenes (BTEX) compounds in the PRW. The 60-min ozone treatment of different BTEX pollutants in the PRW resulted in the following percentage reduction: benzene 95%, toluene 77%, m + p-xylene 70%, ethylbenzene 69%, and o-xylene 65%. This study has shown the success of using ozone in reducing the toxic BTEX compounds in a heavily contaminated PRW.


Assuntos
Ozônio , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Ozônio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos/métodos , Xilenos/química , Xilenos/análise , Petróleo/análise , África do Sul , Análise da Demanda Biológica de Oxigênio , Indústria de Petróleo e Gás , Derivados de Benzeno/análise , Tolueno/análise , Resíduos Industriais/análise
14.
J Histochem Cytochem ; 72(4): 233-243, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38553997

RESUMO

Xylene is the commonest clearing agent even though it is hazardous and costly. This study evaluated the clearing properties of coconut oil as an alternative cost-effective clearing agent for histological processes. Ten (10) prostate samples fixed in formalin were taken and each one was cut into 4 before randomly separating them into four groups (A, B, C and D). Tissues were subjected to ascending grades of alcohol for dehydration. Group A was cleared in xylene and Groups B, C, and D were cleared at varying times of 1hr 30mins, 3hrs, and 4hrs in coconut oil respectively before embedding, sectioning, and staining were carried out. Gross and histological features were compared. Results indicated a significant shrinkage in coconut oil-treated specimen compared with the xylene-treated specimen and only the tissues cleared in coconut oil for 4hrs were as rigid as the tissues cleared in xylene (p > 0.05). No significant difference was found in either of the sections when checked for cellular details and staining quality (p > 0.999). Coconut oil is an efficient substitute for xylene in prostate tissues with a minimum clearing time of 4hrs, as it is environmentally friendly and less expensive, but causes significant shrinkage to prostate tissue.


Assuntos
Formaldeído , Xilenos , Óleo de Coco , Xilenos/química , Coloração e Rotulagem , Indicadores e Reagentes
15.
Appl Microbiol Biotechnol ; 108(1): 266, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498184

RESUMO

Lipoxygenases (LOXs) catalyze dioxygenation of polyunsaturated fatty acids (PUFAs) into fatty acid hydroperoxides (FAHPs), which can be further transformed into a number of value-added compounds. LOXs have garnered interest as biocatalysts for various industrial applications. Therefore, a high-throughput LOX activity assay is essential to evaluate their performance under different conditions. This study aimed to enhance the suitability of the ferrous-oxidized xylenol orange (FOX) assay for screening LOX activity across a wide pH range with different PUFAs. The narrow linear detection range of the standard FOX assay restricts its utility in screening LOX activity. To address this, the concentration of perchloric acid in the xylenol orange reagent was adjusted. The modified assay exhibited a fivefold expansion in the linear detection range for hydroperoxides and accommodated samples with pH values ranging from 3 to 10. The assay could quantify various hydroperoxide species, indicating its applicability in assessing LOX substrate preferences. Due to sensitivity to pH, buffer types, and hydroperoxide species, the assay required calibration using the respective standard compound diluted in the same buffer as the measured sample. The use of correction factors is suggested when financial constraints limit the use of FAHP standard compounds in routine LOX substrate preference analysis. FAHP quantification by the modified FOX assay aligned well with results obtained using the commonly used conjugated diene method, while offering a quicker and broader sample pH range assessment. Thus, the modified FOX assay can be used as a reliable high-throughput screening method for determining LOX activity. KEY POINTS: • Modifying perchloric acid level in FOX reagent expands its linear detection range • The modified FOX assay is applicable for screening LOX activity in a wide pH range • The modified FOX assay effectively assesses substrate specificity of LOX.


Assuntos
Peróxido de Hidrogênio , Percloratos , Fenóis , Sulfóxidos , Ensaios de Triagem em Larga Escala , Xilenos/química , Lipoxigenases
16.
Environ Pollut ; 347: 123778, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38499171

RESUMO

This study reports the synthesis and characterization of a supramolecular composite comprised of carbon dots (CDots) embedded within net-poly[(α-cyclodextrin)-ν-(citric acid)] (α-CD/CA/CDots) for the removal and detection of toluene and xylene from aqueous media. The remarkable stability of CDots within the composite enables the preservation of photoluminescence properties for prolonged storage and extended UV-light irradiation. As demonstrated, following the adsorption of both organic compounds, the composite detected them in the aqueous medium due to a fluorescence quenching mechanism. Spectroscopic analyses reveal that the accessible Stern-Volmer quenching constants for toluene and xylene are KSVa = 15.4 M-1 and KSVa = 10.3 M-1, respectively. As a result, the α-CD/CA/CDots composite were sensitive to the tested volatile organic compounds (LODtoluene = 3.7 mg/L and LODxylene = 4.9 mg/L). Optimal conditions for toluene and xylene adsorption were found, allowing to achieve noticeable adsorption capabilities (qe(toluene) = 68.9 and qe(xylene) = 48.2 mg/g) and removal efficiencies exceeding 70%. Different characterization techniques confirmed the successful synthesis of the composite and elucidated the interaction mechanisms between the adsorbent and the tested compounds. In summary, the multifunctionality demonstrated by the α-CD/CA/CDots composite ranks it as an efficient and promising adsorbent and detection probe for this class of water contaminants.


Assuntos
Pontos Quânticos , alfa-Ciclodextrinas , Tolueno , Xilenos/química , Carbono/química , Água , Corantes
17.
Med Phys ; 51(5): 3734-3745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224326

RESUMO

BACKGROUND: Cherenkov luminescence imaging has shown potential for relative dose distribution and field verification in radiation therapy. However, to date, limited research utilizing Cherenkov luminescence for absolute dose calibration has been conducted owing to uncertainties arising from camera positioning and tissue surface optical properties. PURPOSE: This paper introduces a novel approach to multispectral Cherenkov luminescence imaging combined with Fricke-xylenol orange gel (FXG) film, termed MCIFF, which can enable online full-field absolute dose measurement. By integrating these two approaches, MCIFF allows for calibration of the ratio between two spectral intensities with absorbed dose, thereby enabling absolute dose measurement. METHODS: All experiments are conducted on a Varian Clinac 23EX, utilizing an electron multiplying charge-coupled device (EMCCD) camera and a two-way image splitter for simultaneous capture of two-spectral Cherenkov imaging. In the first part of this study, the absorbance curves of the prepared FXG film, which receives different doses, are measured using a fluorescence spectrophotometer to verify the correlation between absorbance and dose. In the second part, the FXG film is positioned directly under the radiation beam to corroborate the dose measurement capacity of MCIFF across various beams. In the third part, the feasibility of MCIFF is tested in actual radiotherapy settings via a humanoid model, demonstrating its versatility with various radiotherapy materials. RESULTS: The results of this study indicate that the logarithmic ratios of spectral intensities at wavelengths of 550 ± 50 and 700 ± 100 nm accurately reflect variations in radiation dose (R2 > 0.96) across different radiation beams, particle energies, and dose rates. The slopes of the fitting lines remain consistent under varying beam conditions, with discrepancies of less than 8%. The optical profiles obtained using the MCIFF exhibit a satisfactory level of agreement with the measured results derived from the treatment planning system (TPS) and EBT3 films. Specifically, for photon beams, the lateral distances between the 80% and 20% isodose lines, referred to as the penumbra (P80-20) values, obtained through TPS, EBT3 films, and MCIFF, are determined as 0.537, 0.664, and 0.848 cm, respectively. Similarly, for electron beams, the P80-20 values obtained through TPS, EBT3 films, and MCIFF are found to be 0.432, 0.561, and 0.634 cm, respectively. Furthermore, imaging of the anthropomorphic phantom demonstrates the practical application of MCIFF in real radiotherapy environments. CONCLUSION: By combining an FXG film with Cherenkov luminescence imaging, MCIFF can calibrate Cherenkov luminescence to absorbed dose, filling the gap in online 2D absolute dose measurement methods in clinical practice, and providing a new direction for the clinical application of optical imaging to radiation therapy.


Assuntos
Dosimetria Fotográfica , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Calibragem , Géis , Xilenos/química , Doses de Radiação , Sulfóxidos , Fenóis , Imagem Óptica/instrumentação
18.
Chemosphere ; 351: 141197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244866

RESUMO

One of the main gaseous pollutants released by chemical production industries are benzene, toluene and xylene (BTX). These dangerous gases require immediate technology to combat them, as they put the health of living organisms at risk. The development of heterogeneous photocatalytic oxidation technology offers several viewpoints, particularly in gaseous-phase decontamination without an additional supply of oxidants in air at atmospheric pressure. However, difficulties such as low quantum efficiency, ability to absorb visible light, affinity towards CO2 and H2O synthesis, and low stability continue to limit its practical use. This review presents recent advances in dry-phase heterogeneous photodegradation as an advanced technology for the practical removal of BTX molecules. This review also examines the impact of low-cost light sources, the roles of the active sites of photocatalysts, and the feasible concentration range of BTX molecules. Numerous studies have demonstrated a significant improvement in the efficiency of the photodegradation of volatile organic compounds by enhancing the photocatalytic reactor system and other factors, such as humidity, temperature, and flow rate. The mechanism for BTX photodegradation based on density functional theory (DFT), electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations is also discussed. Finally, the present research complications and anticipated future developments in the field of heterogeneous photocatalytic oxidation technology are discussed.


Assuntos
Benzeno , Xilenos , Benzeno/química , Xilenos/química , Tolueno/química , Catálise , Luz , Gases
19.
Indian J Pathol Microbiol ; 66(4): 775-779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38084531

RESUMO

Background: Microscopic examination of cells and tissues requires the preparation of very thin and good-quality sections mounted on glass slides and appropriately stained to demonstrate normal and abnormal structures. Before this step, the tissue must undergo preparatory treatment known as tissue processing. The various stages of tissue processing are dehydration, clearing, impregnation, and embedding, each with a particular duration for proper completion of the process. Xylene is the most frequently used clearing agent whose carcinogenic potential is well documented. Hence, attempts were made to substitute xylene with a biosafe clearing agent. The present study aimed to evaluate and compare the efficacy of hematoxylin and eosin stain (H and E stain) when xylene is completely replaced by turpentine or kerosene oil. Materials and Methods: A total number of 50 tissue samples were taken in the study, which included 40 study samples and 10 controls. All the samples were randomly separated into three groups and routine tissue processing and H and E staining were performed. The result was further subjected to statistical analysis by using Fisher's exact test. Group-1: Ten tissue samples were processed and H and E staining was done in xylene. Group-2: Twenty tissue samples were processed and H and E staining was done in turpentine oil. Group-3: Twenty tissue samples were processed and H and E staining was done in kerosene oil. Results: Nuclear staining, cell morphology, and uniformity of staining were better in kerosene sections, while cytoplasmic and clarity of staining of turpentine sections were comparable with xylene sections. Conclusion: Turpentine and kerosene as clearing agents can be used in the future with certain modifications in their concentration and routine staining protocol.


Assuntos
Terebintina , Xilenos , Humanos , Amarelo de Eosina-(YS) , Hematoxilina , Querosene , Coloração e Rotulagem , Xilenos/química
20.
Ann Diagn Pathol ; 66: 152163, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37301104

RESUMO

After the discovery of the hazardous effects of xylene, less toxic substitutes were proposed for routine histology in the last years. However, the introduction of new xylene-free substitutes in histological processes requires a careful evaluation of their performance in terms of morphological and microscopic details to permit a solid diagnosis as well as good quality immunohistochemical and biomolecular analyses. In this study, we analyzed the performance of a new commercially available xylene-free Tissue-Tek® Tissue-Clear® agent in comparison with another routine xylene-free solvent yet available and employed in routine histological process. Serial histological tissue samples (n = 300) were selected and processed with the two clearing agents. Comparison and evaluation were also performed on slides obtained 6 months after paraffin embedding and archive storage. Blinded semiquantitative analysis of technical performance and morphological details, including tissue architecture and nuclear and cytoplasmic details, was performed on Haematoxylin-Eosin stained sections by two technicians and two pathologists, respectively. Evaluation of tissue slides documented a good overall histological performance in slides obtained after processing with the two different clearing agents. Slides obtained with Tissue-Tek® Tissue-Clear® displayed a higher score in some quality parameters, further supporting its use as a valid alternative to the other commercial routine xylene-free solvents.


Assuntos
Xilenos , Humanos , Xilenos/química , Indicadores e Reagentes , Amarelo de Eosina-(YS)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA