Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 938
Filtrar
1.
PLoS One ; 19(7): e0305034, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38954719

RESUMO

Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 µg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.


Assuntos
Anticorpos Antibacterianos , Peste , Yersinia pestis , Animais , Humanos , Camundongos , Yersinia pestis/imunologia , Peste/imunologia , Peste/prevenção & controle , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Feminino , Afinidade de Anticorpos , Contramedidas Médicas , Antígenos de Bactérias/imunologia , Modelos Animais de Doenças
2.
Vet Med Sci ; 10(4): e1532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952277

RESUMO

BACKGROUND: Antibodies have been proven effective as diagnostic agents for detecting zoonotic diseases. The variable domain of camel heavy chain antibody (VHH), as an antibody derivative, may be used as an alternative for traditional antibodies in existing immunodiagnostic reagents for detecting rapidly spreading infectious diseases. OBJECTIVES: To expedite the isolation of specific antibodies for diagnostic purposes, we constructed a semi-synthetic camel single domain antibody library based on the phage display technique platform (PDT) and verified the validity of this study. METHODS: The semi-synthetic single domain antibody sequences consist of two parts: one is the FR1-FR3 region amplified by RT-PCR from healthy camel peripheral blood lymphocytes (PBLs), and the other part is the CDR3-FR4 region synthesised as an oligonucleotide containing CDR3 randomised region. The two parts were fused by overlapping PCR, resulting in the rearranged variable domain of heavy-chain antibodies (VHHs). Y. pestis low-calcium response V protein (LcrV) is an optional biomarker to detect the Y. pestis infection. The semi-synthetic library herein was screened using recombinant (LcrV) as a target antigen. RESULTS: After four cycles of panning the library, four VHH binders targeting 1-270 aa residues of LcrV were isolated. The four VHH genes with unique sequences were recloned into an expression vector and expressed as VHH-hFc chimeric antibodies. The purified antibodies were identified and used to develop a lateral flow immunoassay (LFA) test strip using latex microspheres (LM) for the rapid and visual detection of Y. pestis infection. CONCLUSIONS: These data demonstrate the great potential of the semi-synthetic library for use in isolation of antigen-specific nanobodies and the isolated specific VHHs can be used in antigen-capture immunoassays.


Assuntos
Antígenos de Bactérias , Camelus , Anticorpos de Domínio Único , Yersinia pestis , Animais , Yersinia pestis/imunologia , Anticorpos de Domínio Único/imunologia , Antígenos de Bactérias/imunologia , Peste/diagnóstico , Peste/veterinária , Peste/imunologia , Imunoensaio/métodos , Imunoensaio/veterinária , Anticorpos Antibacterianos/imunologia
3.
Front Immunol ; 15: 1397579, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835755

RESUMO

Background: Yersinia pestis is the etiological agent of plague, which can manifest as bubonic, septicemic, and/or pneumonic disease. Plague is a severe and rapidly progressing illness that can only be successfully treated with antibiotics initiated early after infection. There are no FDA-approved vaccines for plague, and some vaccine candidates may be less effective against pneumonic plague than bubonic plague. Y. pestis is not known to impact males and females differently in mechanisms of pathogenesis or severity of infection. However, one previous study reported sex-biased vaccine effectiveness after intranasal Y. pestis challenge. As part of developing a safe and effective vaccine, it is essential that potential sex differences are characterized. Methods: In this study we evaluated novel vaccines in male and female BALB/c mice using a heterologous prime-boost approach and monitored survival, bacterial load in organs, and immunological correlates. Our vaccine strategy consisted of two subcutaneous immunizations, followed by challenge with aerosolized virulent nonencapsulated Y. pestis. Mice were immunized with a combination of live Y. pestis pgm- pPst-Δcaf1, live Y. pestis pgm- pPst-Δcaf1/ΔyopD, or recombinant F1-V (rF1-V) combined with adjuvants. Results: The most effective vaccine regimen was initial priming with rF1-V, followed by boost with either of the live attenuated strains. However, this and other strategies were more protective in female mice. Males had higher bacterial burden and differing patterns of cytokine expression and serum antibody titers. Male mice did not demonstrate synergy between vaccination and antibiotic treatment as repeatedly observed in female mice. Conclusions: This study provides new knowledge about heterologous vaccine strategies, sex differences in plague-vaccine efficacy, and the immunological factors that differ between male and female mice.


Assuntos
Camundongos Endogâmicos BALB C , Vacina contra a Peste , Peste , Yersinia pestis , Animais , Feminino , Peste/prevenção & controle , Peste/imunologia , Masculino , Yersinia pestis/imunologia , Vacina contra a Peste/imunologia , Vacina contra a Peste/administração & dosagem , Camundongos , Anticorpos Antibacterianos/sangue , Caracteres Sexuais , Fatores Sexuais , Modelos Animais de Doenças , Eficácia de Vacinas
4.
Int Immunopharmacol ; 132: 111952, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38555818

RESUMO

Yersinia pestis, the causative agent of plague, is a gram-negative bacterium that can be fatal if not treated properly. Three types of plague are currently known: bubonic, septicemic, and pneumonic plague, among which the fatality rate of septicemic and pneumonic plague is very high. Bubonic plague can be treated, but only if antibiotics are used at the initial stage of the infection. But unfortunately, Y. pestis has also shown resistance to certain antibiotics such as kanamycin, minocycline, tetracycline, streptomycin, sulfonamides, spectinomycin, and chloramphenicol. Despite tremendous progress in vaccine development against Y. pestis, there is no proper FDA-approved vaccine available to protect people from its infections. Therefore, effective broad-spectrum vaccine development against Y. pestis is indispensable. In this study, vaccinomics-assisted immunoinformatics techniques were used to find possible vaccine candidates by utilizing the core proteome prepared from 58 complete genomes of Y. pestis. Human non-homologous, pathogen-essential, virulent, and extracellular and membrane proteins are potential vaccine targets. Two antigenic proteins were prioritized for the prediction of lead epitopes by utilizing reverse vaccinology approaches. Four vaccine designs were formulated using the selected B- and T-cell epitopes coupled with appropriate linkers and adjuvant sequences capable of inducing potent immune responses. The HLA allele population coverage of the T-cell epitopes selected for vaccine construction was also analyzed. The V2 constructs were top-ranked and selected for further analysis on the basis of immunological, physicochemical, and immune-receptor docking interactions and scores. Docking and molecular dynamic simulations confirmed the stability of construct V2 interactions with the host immune receptors. Immune simulation analysis anticipated the strong immune profile of the prioritized construct. In silico restriction cloning ensured the feasible cloning ability of the V2 construct in the expression system of E. coli strain K12. It is anticipated that the designed vaccine construct may be safe, effective, and able to elicit strong immune responses against Y. pestis infections and may, therefore, merit investigation using in vitro and in vivo assays.


Assuntos
Peste , Yersinia pestis , Yersinia pestis/imunologia , Yersinia pestis/genética , Humanos , Peste/prevenção & controle , Peste/imunologia , Vacina contra a Peste/imunologia , Vacina contra a Peste/genética , Genoma Bacteriano , Desenvolvimento de Vacinas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Vacinas Sintéticas/imunologia , Animais
5.
Nature ; 611(7935): 312-319, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36261521

RESUMO

Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.


Assuntos
DNA Antigo , Predisposição Genética para Doença , Imunidade , Peste , Seleção Genética , Yersinia pestis , Humanos , Aminopeptidases/genética , Aminopeptidases/imunologia , Peste/genética , Peste/imunologia , Peste/microbiologia , Peste/mortalidade , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Seleção Genética/imunologia , Europa (Continente)/epidemiologia , Europa (Continente)/etnologia , Imunidade/genética , Conjuntos de Dados como Assunto , Londres/epidemiologia , Dinamarca/epidemiologia
6.
Front Immunol ; 13: 793382, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154110

RESUMO

Pneumonic plague, caused by Yersinia pestis, is an infectious disease with high mortality rates unless treated early with antibiotics. Currently, no FDA-approved vaccine against plague is available for human use. The capsular antigen F1, the low-calcium-response V antigen (LcrV), and the recombinant fusion protein (rF1-LcrV) of Y. pestis are leading subunit vaccine candidates under intense investigation; however, the inability of recombinant antigens to provide complete protection against pneumonic plague in animal models remains a significant concern. In this study, we compared immunoprotection against pneumonic plague provided by rF1, rV10 (a truncation of LcrV), and rF1-V10, and vaccinations delivered via aerosolized intratracheal (i.t.) inoculation or subcutaneous (s.c.) injection. We further considered three vaccine formulations: conventional liquid, dry powder produced by spray freeze drying, or dry powder reconstituted in PBS. The main findings are: (i) rF1-V10 immunization with any formulation via i.t. or s.c. routes conferred 100% protection against Y. pestis i.t. infection; (ii) rF1 or rV10 immunization using i.t. delivery provided significantly stronger protection than rF1 or rV10 immunization via s.c. delivery; and (iii) powder formulations of subunit vaccines induced immune responses and provided protection equivalent to those elicited by unprocessed liquid formulations of vaccines. Our data indicate that immunization with a powder formulation of rF1-V10 vaccines via an i.t. route may be a promising vaccination strategy for providing protective immunity against pneumonic plague.


Assuntos
Vacina contra a Peste/imunologia , Peste/prevenção & controle , Vacinas de Subunidades Antigênicas/imunologia , Yersinia pestis/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Modelos Animais de Doenças , Composição de Medicamentos , Ensaio de Imunoadsorção Enzimática , Feminino , Imunidade nas Mucosas , Imunização/métodos , Camundongos , Camundongos Endogâmicos BALB C , Especificidade de Órgãos , Peste/imunologia , Peste/mortalidade , Vacina contra a Peste/administração & dosagem , Vacina contra a Peste/química , Proteínas Recombinantes/imunologia , Aerossóis e Gotículas Respiratórios , Mucosa Respiratória/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química
7.
mBio ; 12(6): e0322321, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34872353

RESUMO

Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF-) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF- mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response. IMPORTANCE Yersinia pestis, the causative agent of plague, is a Tier-1 select agent and a reemerging human pathogen. A 2017 outbreak in Madagascar with >75% of cases being pneumonic and 8.6% causalities emphasized the importance of the disease. The World Health Organization has indicated an urgent need to develop new-generation subunit and live-attenuated plague vaccines. We have developed a subunit vaccine, including three components (YscF, F1, and LcrV) using an adenovirus platform (Ad5-YFV). In addition, we have deleted virulence genes of Y. pestis (e.g., lpp, msbB, and ail) to develop a live-attenuated vaccine (LMA). Both of these vaccines generated robust humoral and cellular immunity and were highly efficacious in several animal models. We hypothesized the use of a heterologous prime-boost strategy or administrating both vaccines simultaneously could provide an adjuvant- and/or a needle-free vaccine(s) that has attributes of both vaccines for use in regions of endemicity and during an emergency situation.


Assuntos
Adenoviridae/imunologia , Antígenos de Bactérias/administração & dosagem , Vacina contra a Peste/administração & dosagem , Peste/prevenção & controle , Pneumonia/prevenção & controle , Vacinas Atenuadas/administração & dosagem , Yersinia pestis/imunologia , Adenoviridae/genética , Adjuvantes Imunológicos/administração & dosagem , Administração Intranasal , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Camundongos , Peste/imunologia , Peste/microbiologia , Vacina contra a Peste/genética , Vacina contra a Peste/imunologia , Pneumonia/imunologia , Pneumonia/microbiologia , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Yersinia pestis/genética
8.
Bull Exp Biol Med ; 171(5): 651-655, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34618261

RESUMO

We studied the effect of an experimental synthetic organoselenium compound 2,6-dipyridinium- 9-selenabicyclo[3.3.1]nonane dibromide (974zh) on the cell composition of the red bone marrow and peripheral blood in white mice. The study drug co-administered with Yersinia pestis EV vaccine strain (103 CFU) potentiated maturation and migration of mature neutrophils from the bone marrow into the circulation. Reducing the dose of the live vaccine and the anti-inflammatory properties of the study drug made it possible to reduce the allergic reaction during the vaccination process.


Assuntos
Linfopoese/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Vacinação , Vacinas Atenuadas/farmacologia , Yersinia pestis/imunologia , Animais , Animais não Endogâmicos , Contagem de Células Sanguíneas , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/imunologia , Células Sanguíneas/patologia , Medula Óssea/efeitos dos fármacos , Medula Óssea/imunologia , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/uso terapêutico
9.
Front Immunol ; 12: 726416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512658

RESUMO

Relatively recent advances in plague vaccinology have produced the recombinant fusion protein F1-V plague vaccine. This vaccine has been shown to readily protect mice from both bubonic and pneumonic plague. The protection afforded by this vaccine is solely based upon the immune response elicited by the F1 or V epitopes expressed on the F1-V fusion protein. Accordingly, questions remain surrounding its efficacy against infection with non-encapsulated (F1-negative) strains. In an attempt to further optimize the F1-V elicited immune response and address efficacy concerns, we examined the inclusion of multiple toll-like receptor agonists into vaccine regimens. We examined the resulting immune responses and also any protection afforded to mice that were exposed to aerosolized Yersinia pestis. Our data demonstrate that it is possible to further augment the F1-V vaccine strategy in order to optimize and augment vaccine efficacy.


Assuntos
Adjuvantes Imunológicos , Antígenos de Bactérias/imunologia , Vacina contra a Peste/imunologia , Peste/prevenção & controle , Receptores Toll-Like/fisiologia , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Peste/imunologia , Vacinação , Eficácia de Vacinas , Vacinas Sintéticas/imunologia , Yersinia pestis/imunologia
10.
Sci Adv ; 7(32)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348905

RESUMO

Host antibody responses are pivotal for providing protection against infectious agents. We have pioneered a new class of self-assembling micelles based on pentablock copolymers that enhance antibody responses while providing a low inflammatory environment compared to traditional adjuvants. This type of "just-right" immune response is critical in the rational design of vaccines for older adults. Here, we report on the mechanism of enhancement of antibody responses by pentablock copolymer micelles, which act as scaffolds for antigen presentation to B cells and cross-link B cell receptors, unlike other micelle-forming synthetic block copolymers. We exploited this unique mechanism and developed these scaffolds as a platform technology to produce antibodies in vitro. We show that this novel approach can be used to generate laboratory-scale quantities of therapeutic antibodies against multiple antigens, including those associated with SARS-CoV-2 and Yersinia pestis, further expanding the value of these nanomaterials to rapidly develop countermeasures against infectious diseases.


Assuntos
Formação de Anticorpos , Apresentação de Antígeno/imunologia , Reagentes de Ligações Cruzadas/química , Receptores de Antígenos de Linfócitos B/química , Proteínas Recombinantes de Fusão/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Yersinia pestis/imunologia , Adjuvantes Imunológicos , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polímeros/química , Receptores de Antígenos de Linfócitos B/metabolismo
11.
Biomolecules ; 11(5)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065940

RESUMO

Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and ß-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.


Assuntos
Antibacterianos/uso terapêutico , Imunoterapia/métodos , Peste/tratamento farmacológico , Vacinas/uso terapêutico , Yersinia pestis/efeitos dos fármacos , Animais , Interações entre Hospedeiro e Microrganismos , Humanos , Peste/imunologia , Peste/microbiologia , Peste/prevenção & controle , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade
12.
Pathog Dis ; 79(4)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33734371

RESUMO

The human pulmonary environment is complex, containing a matrix of cells, including fibroblasts, epithelial cells, interstitial macrophages, alveolar macrophages and neutrophils. When confronted with foreign material or invading pathogens, these cells mount a robust response. Nevertheless, many bacterial pathogens with an intracellular lifecycle stage exploit this environment for replication and survival. These include, but are not limited to, Coxiella burnetii, Legionella pneumophila, Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Currently, few human disease-relevant model systems exist for studying host-pathogen interactions during these bacterial infections in the lung. Here, we present two novel infection platforms, human alveolar macrophages (hAMs) and human precision-cut lung slices (hPCLS), along with an up-to-date synopsis of research using said models. Additionally, alternative uses for these systems in the absence of pathogen involvement are presented, such as tissue banking and further characterization of the human lung environment. Overall, hAMs and hPCLS allow novel human disease-relevant investigations that other models, such as cell lines and animal models, cannot completely provide.


Assuntos
Infecções Bacterianas/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Pneumopatias/microbiologia , Pulmão/microbiologia , Macrófagos Alveolares/microbiologia , Modelos Biológicos , Infecções Bacterianas/imunologia , Infecções Bacterianas/patologia , Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/imunologia , Coxiella burnetii/patogenicidade , Humanos , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/imunologia , Legionella pneumophila/patogenicidade , Pulmão/imunologia , Pulmão/patologia , Pneumopatias/imunologia , Pneumopatias/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/patologia , Microtomia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Cultura Primária de Células , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade , Bancos de Tecidos , Técnicas de Cultura de Tecidos , Yersinia pestis/crescimento & desenvolvimento , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade
13.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33257531

RESUMO

Yersinia pestis is a highly virulent pathogen and the causative agent of bubonic, septicemic, and pneumonic plague. Primary pneumonic plague caused by inhalation of respiratory droplets contaminated with Y. pestis is nearly 100% lethal within 4 to 7 days without antibiotic intervention. Pneumonic plague progresses in two phases, beginning with extensive bacterial replication in the lung with minimal host responsiveness, followed by the abrupt onset of a lethal proinflammatory response. The precise mechanisms by which Y. pestis is able to colonize the lung and survive two very distinct disease phases remain largely unknown. To date, a few bacterial virulence factors, including the Ysc type 3 secretion system, are known to contribute to the pathogenesis of primary pneumonic plague. The bacterial GTPase BipA has been shown to regulate expression of virulence factors in a number of Gram-negative bacteria, including Pseudomonas aeruginosa, Escherichia coli, and Salmonella enterica serovar Typhi. However, the role of BipA in Y. pestis has yet to be investigated. Here, we show that BipA is a Y. pestis virulence factor that promotes defense against early neutrophil-mediated bacterial killing in the lung. This work identifies a novel Y. pestis virulence factor and highlights the importance of early bacterial/neutrophil interactions in the lung during primary pneumonic plague.


Assuntos
Proteínas de Bactérias/fisiologia , GTP Fosfo-Hidrolases/fisiologia , Peste/imunologia , Peste/fisiopatologia , Fatores de Virulência/fisiologia , Yersinia pestis/imunologia , Yersinia pestis/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
14.
Biomolecules ; 10(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353123

RESUMO

Despite the relatively low incidence of plague, its etiological agent, Yersinia pestis, is an exceptional epidemic danger due to the high infectivity and mortality of this infectious disease. Reports on the isolation of drug-resistant Y. pestis strains indicate the advisability of using asymmetric responses, such as phage therapy and vaccine prophylaxis in the fight against this problem. The current relatively effective live plague vaccine is not approved for use in most countries because of its ability to cause heavy local and system reactions and even a generalized infectious process in people with a repressed immune status or metabolic disorders, as well as lethal infection in some species of nonhuman primates. Therefore, developing alternative vaccines is of high priority and importance. However, until now, work on the development of plague vaccines has mainly focused on screening for the potential immunogens. Several investigators have identified the protective potency of bacterial outer membrane vesicles (OMVs) as a promising basis for bacterial vaccine candidates. This review is aimed at presenting these candidates of plague vaccine and the results of their analysis in animal models.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Peste/prevenção & controle , Vacinas , Yersinia pestis/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias , Humanos , Sistema Imunitário , Imunoglobulina G , Camundongos , Vacina contra a Peste/imunologia , Yersinia pestis/imunologia
15.
BMC Infect Dis ; 20(1): 822, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172393

RESUMO

BACKGROUND: Plague, a fatal disease caused by the bacillus, Yersinia pestis, still affects resources-limited countries. Information on antibody response to plague infection in human is scarce. Anti-F1 Ig G are among the known protective antibodies against Y. pestis infection. As a vaccine preventable disease, knowledge on antibody response is valuable for the development of an effective vaccine to reduce infection rate among exposed population in plague-endemic regions. In this study, we aim to describe short and long-term humoral immune responses against Y. pestis in plague-confirmed patients from Madagascar, the most affected country in the world. METHODS: Bubonic (BP) and pneumonic plague (PP) patients were recruited from plague- endemic foci in the central highlands of Madagascar between 2005 and 2017. For short-term follow-up, 6 suspected patients were enrolled and prospectively investigated for kinetics of the anti-F1 IgG response, whereas the persistence of antibodies was retrospectively studied in 71 confirmed convalescent patients, using an ELISA which was validated for the detection of plague in human blood samples in Madagascar. RESULTS: Similarly to previous findings, anti-F1 IgG rose quickly during the first week after disease onset and increased up to day 30. In the long-term study, 56% of confirmed cases remained seropositive, amongst which 60 and 40% could be considered as high- and low-antibody responders, respectively. Antibodies persisted for several years and up to 14.8 years for one individual. Antibody titers decreased over time but there was no correlation between titer and time elapsed between the disease onset and serum sampling. In addition, the seroprevalence rate was not significantly different between gender (P = 0.65) nor age (P = 0.096). CONCLUSION: Our study highlighted that the circulating antibody response to F1 antigen, which is specific to Y. pestis, may be attributable to individual immune responsiveness. The finding that a circulating anti-F1 antibody titer could persist for more than a decade in both BP and PP recovered patients, suggests its probable involvement in patients' protection. However, complementary studies including analyses of the cellular immune response to Y. pestis are required for the better understanding of long-lasting protection and development of a potential vaccine against plague.


Assuntos
Imunidade Humoral , Peste/imunologia , Yersinia pestis/imunologia , Adolescente , Adulto , Animais , Anticorpos Antibacterianos/sangue , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Criança , Feminino , Seguimentos , Humanos , Imunoglobulina G/sangue , Madagáscar/epidemiologia , Masculino , Peste/epidemiologia , Peste/microbiologia , Estudos Prospectivos , Estudos Retrospectivos , Estudos Soroepidemiológicos , Adulto Jovem
16.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077628

RESUMO

Bubonic plague results when Yersinia pestis is deposited in the skin via the bite of an infected flea. Bacteria then traffic to the draining lymph node (dLN) where they replicate to large numbers. Without treatment, this infection can result in highly fatal septicemia. Several plague vaccine candidates are currently at various stages of development, but no licensed vaccine is available in the United States. Though polyclonal and monoclonal antibodies (Ab) can provide complete protection against bubonic plague in animal models, the mechanisms responsible for this antibody-mediated immunity (AMI) to Y. pestis remain poorly understood. Here, we examine the effects of Ab opsonization on Y. pestis interactions with phagocytes in vitro and in vivo Opsonization of Y. pestis with polyclonal antiserum modestly increased phagocytosis/killing by an oxidative burst of murine neutrophils in vitro Intravital microscopy (IVM) showed increased association of Ab-opsonized Y. pestis with neutrophils in the dermis in a mouse model of bubonic plague. IVM of popliteal LNs after intradermal (i.d.) injection of bacteria in the footpad revealed increased Y. pestis-neutrophil interactions and increased neutrophil crawling and extravasation in response to Ab-opsonized bacteria. Thus, despite only having a modest effect in in vitro assays, opsonizing Ab had a dramatic effect in vivo on Y. pestis-neutrophil interactions in the dermis and dLN very early after infection. These data shed new light on the importance of neutrophils in AMI to Y. pestis and may provide a new correlate of protection for evaluation of plague vaccine candidates.


Assuntos
Anticorpos Antibacterianos/imunologia , Interações Hospedeiro-Patógeno/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peste/etiologia , Peste/patologia , Yersinia pestis/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Imunidade Inata , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/patologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Pele/imunologia , Pele/metabolismo , Pele/microbiologia , Pele/patologia , Sistemas de Secreção Tipo III/imunologia , Sistemas de Secreção Tipo III/metabolismo
17.
Proc Natl Acad Sci U S A ; 117(37): 22984-22991, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868431

RESUMO

Immune evasion through membrane remodeling is a hallmark of Yersinia pestis pathogenesis. Yersinia remodels its membrane during its life cycle as it alternates between mammalian hosts (37 °C) and ambient (21 °C to 26 °C) temperatures of the arthropod transmission vector or external environment. This shift in growth temperature induces changes in number and length of acyl groups on the lipid A portion of lipopolysaccharide (LPS) for the enteric pathogens Yersinia pseudotuberculosis (Ypt) and Yersinia enterocolitica (Ye), as well as the causative agent of plague, Yersinia pestis (Yp). Addition of a C16 fatty acid (palmitate) to lipid A by the outer membrane acyltransferase enzyme PagP occurs in immunostimulatory Ypt and Ye strains, but not in immune-evasive Yp Analysis of Yp pagP gene sequences identified a single-nucleotide polymorphism that results in a premature stop in translation, yielding a truncated, nonfunctional enzyme. Upon repair of this polymorphism to the sequence present in Ypt and Ye, lipid A isolated from a Yp pagP+ strain synthesized two structures with the C16 fatty acids located in acyloxyacyl linkage at the 2' and 3' positions of the diglucosamine backbone. Structural modifications were confirmed by mass spectrometry and gas chromatography. With the genotypic restoration of PagP enzymatic activity in Yp, a significant increase in lipid A endotoxicity mediated through the MyD88 and TRIF/TRAM arms of the TLR4-signaling pathway was observed. Discovery and repair of an evolutionarily lost lipid A modifying enzyme provides evidence of lipid A as a crucial determinant in Yp infectivity, pathogenesis, and host innate immune evasion.


Assuntos
Aciltransferases/imunologia , Evasão da Resposta Imune/imunologia , Imunidade Inata/imunologia , Lipídeo A/imunologia , Yersinia pestis/imunologia , Animais , Evolução Biológica , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Humanos , Leucócitos Mononucleares/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único/imunologia , Células THP-1/imunologia , Células U937 , Yersinia pseudotuberculosis/imunologia
18.
Bull Exp Biol Med ; 169(1): 40-42, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32488779
19.
Cochrane Database Syst Rev ; 6: CD013459, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32597510

RESUMO

BACKGROUND: Plague is a severe disease associated with high mortality. Late diagnosis leads to advance stage of the disease with worse outcomes and higher risk of spread of the disease. A rapid diagnostic test (RDT) could help in establishing a prompt diagnosis of plague. This would improve patient care and help appropriate public health response. OBJECTIVES: To determine the diagnostic accuracy of the RDT based on the antigen F1 (F1RDT) for detecting plague in people with suspected disease. SEARCH METHODS: We searched the CENTRAL, Embase, Science Citation Index, Google Scholar, the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov up to 15 May 2019, and PubMed (MEDLINE) up to 27 August 2019, regardless of language, publication status, or publication date. We handsearched the reference lists of relevant papers and contacted researchers working in the field. SELECTION CRITERIA: We included cross-sectional studies that assessed the accuracy of the F1RDT for diagnosing plague, where participants were tested with both the F1RDT and at least one reference standard. The reference standards were bacterial isolation by culture, polymerase chain reaction (PCR), and paired serology (this is a four-fold difference in F1 antibody titres between two samples from acute and convalescent phases). DATA COLLECTION AND ANALYSIS: Two review authors independently selected studies and extracted data. We appraised the methodological quality of each selected studies and applicability by using the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. When meta-analysis was appropriate, we used the bivariate model to obtain pooled estimates of sensitivity and specificity. We stratified all analyses by the reference standard used and presented disaggregated data for forms of plague. We assessed the certainty of the evidence using GRADE. MAIN RESULTS: We included eight manuscripts reporting seven studies. Studies were conducted in three countries in Africa among adults and children with any form of plague. All studies except one assessed the F1RDT produced at the Institut Pasteur of Madagascar (F1RDT-IPM) and one study assessed a F1RDT produced by New Horizons (F1RDT-NH), utilized by the US Centers for Disease Control and Prevention. We could not pool the findings from the F1RDT-NH in meta-analyses due to a lack of raw data and a threshold of the test for positivity different from the F1RDT-IPM. Risk of bias was high for participant selection (retrospective studies, recruitment of participants not consecutive or random, unclear exclusion criteria), low or unclear for index test (blinding of F1RDT interpretation unknown), low for reference standards, and high or unclear for flow and timing (time of sample transportation was longer than seven days, which can lead to decreased viability of the pathogen and overgrowth of contaminating bacteria, with subsequent false-negative results and misclassification of the target condition). F1RDT for diagnosing all forms of plague F1RDT-IPM pooled sensitivity against culture was 100% (95% confidence interval (CI) 82 to 100; 4 studies, 1692 participants; very low certainty evidence) and pooled specificity was 70.3% (95% CI 65 to 75; 4 studies, 2004 participants; very low-certainty evidence). The performance of F1RDT-IPM against PCR was calculated from a single study in participants with bubonic plague (see below). There were limited data on the performance of F1RDT against paired serology. F1RDT for diagnosing pneumonic plague Performed in sputum, F1RDT-IPM pooled sensitivity against culture was 100% (95% CI 0 to 100; 2 studies, 56 participants; very low-certainty evidence) and pooled specificity was 71% (95% CI 59 to 80; 2 studies, 297 participants; very low-certainty evidence). There were limited data on the performance of F1RDT against PCR or against paired serology for diagnosing pneumonic plague. F1RDT for diagnosing bubonic plague Performed in bubo aspirate, F1RDT-IPM pooled sensitivity against culture was 100% (95% CI not calculable; 2 studies, 1454 participants; low-certainty evidence) and pooled specificity was 67% (95% CI 65 to 70; 2 studies, 1198 participants; very low-certainty evidence). Performed in bubo aspirate, F1RDT-IPM pooled sensitivity against PCR for the caf1 gene was 95% (95% CI 89 to 99; 1 study, 88 participants; very low-certainty evidence) and pooled specificity was 93% (95% CI 84 to 98; 1 study, 61 participants; very low-certainty evidence). There were no data providing data on both F1RDT and paired serology for diagnosing bubonic plague. AUTHORS' CONCLUSIONS: Against culture, the F1RDT appeared highly sensitive for diagnosing either pneumonic or bubonic plague, and can help detect plague in remote areas to assure management and enable a public health response. False positive results mean culture or PCR confirmation may be needed. F1RDT does not replace culture, which provides additional information on resistance to antibiotics and bacterial strains.


Assuntos
Antígenos de Bactérias/análise , Peste/diagnóstico , Yersinia pestis/imunologia , Adulto , Criança , Intervalos de Confiança , Estudos Transversais , Reações Falso-Negativas , Reações Falso-Positivas , Humanos , Peste/imunologia , Sensibilidade e Especificidade , Fatores de Tempo
20.
Mol Microbiol ; 114(3): 510-520, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32462782

RESUMO

The outer membrane is a key virulence determinant of gram-negative bacteria. In Yersinia pestis, the deadly agent that causes plague, the protein Ail and lipopolysaccharide (LPS)6 enhance lethality by promoting resistance to human innate immunity and antibiotics, enabling bacteria to proliferate in the human host. Their functions are highly coordinated. Here we describe how they cooperate to promote pathogenesis. Using a multidisciplinary approach, we identify mutually constructive interactions between Ail and LPS that produce an extended conformation of Ail at the membrane surface, cause thickening and rigidification of the LPS membrane, and collectively promote Y. pestis survival in human serum, antibiotic resistance, and cell envelope integrity. The results highlight the importance of the Ail-LPS assembly as an organized whole, rather than its individual components, and provide a handle for targeting Y. pestis pathogenesis.


Assuntos
Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/metabolismo , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo , Yersinia pestis/imunologia , Yersinia pestis/metabolismo , Motivos de Aminoácidos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Humanos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Mutação , Peste/imunologia , Peste/microbiologia , Ligação Proteica , Conformação Proteica , Yersinia pestis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA