Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.329
Filtrar
1.
BMC Plant Biol ; 24(1): 434, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773357

RESUMO

Intercropping, a widely adopted agricultural practice worldwide, aims to increase crop yield, enhance plant nutrient uptake, and optimize the utilization of natural resources, contributing to sustainable farming practices on a global scale. However, the underlying changes in soil physio-chemical characteristics and enzymatic activities, which contribute to crop yield and nutrient uptake in the intercropping systems are largely unknown. Consequently, a two-year (2021-2022) field experiment was conducted on the maize/soybean intercropping practices with/without nitrogen (N) fertilization (i.e., N0; 0 N kg ha-1 and N1; 225 N kg ha-1 for maize and 100 N kg ha-1 for soybean ) to know whether such cropping system can improve the nutrients uptake and crop yields, soil physio-chemical characteristics, and soil enzymes, which ultimately results in enhanced crop yield. The results revealed that maize intercropping treatments (i.e., N0MI and N1MI) had higher crop yield, biomass dry matter, and 1000-grain weight of maize than mono-cropping treatments (i.e., N0MM, and N1MM). Nonetheless, these parameters were optimized in N1MI treatments in both years. For instance, N1MI produced the maximum grain yield (10,105 and 11,705 kg ha-1), biomass dry matter (13,893 and 14,093 kg ha-1), and 1000-grain weight (420 and 449 g) of maize in the year 2021 and 2022, respectively. Conversely, soybean intercropping treatments (i.e., N0SI and N1SI) reduced such yield parameters for soybean. Also, the land equivalent ratio (LER) and land equivalent ratio for N fertilization (LERN) values were always greater than 1, showing the intercropping system's benefits in terms of yield and improved resource usage. Moreover, maize intercropping treatments (i.e., N0MI and N1MI) and soybean intercropping treatments (i.e., N0SI and N1SI) significantly (p < 0.05) enhanced the nutrient uptake (i.e., N, P, K, Ca, Fe, and Zn) of maize and soybean, however, these nutrients uptakes were more prominent in N1MI and N1SI treatments of maize and soybean, respectively in both years (2021 and 2022) compared with their mono-cropping treatments. Similarly, maize-soybean intercropping treatments (i.e., N0MSI and N1MSI) significantly (p < 0.05) improved the soil-based N, P, K, NH4, NO3, and soil organic matter, but, reduced the soil pH. Such maize-soybean intercropping treatments also improved the soil enzymatic activities such as protease (PT), sucrose (SC), acid phosphatase (AP), urease (UE), and catalase (CT) activities. This indicates that maize-soybean intercropping could potentially contribute to higher and better crop yield, enhanced plant nutrient uptake, improved soil nutrient pool, physio-chemical characteristics, and related soil enzymatic activities. Thus, preferring intercropping to mono-cropping could be a preferable choice for ecologically viable agricultural development.


Assuntos
Produção Agrícola , Glycine max , Nitrogênio , Solo , Zea mays , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Solo/química , China , Produção Agrícola/métodos , Nitrogênio/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Agricultura/métodos , Fertilizantes , Nutrientes/metabolismo , Biomassa
2.
PLoS One ; 19(5): e0293786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718010

RESUMO

α-zeins are amphiphilic maize seed storage proteins with material properties suitable for a multitude of applications e.g., in renewable plastics, foods, therapeutics and additive manufacturing (3D-printing). To exploit their full potential, molecular-level insights are essential. The difficulties in experimental atomic-resolution characterization of α-zeins have resulted in a diversity of published molecular models. However, deep-learning α-zein models are largely unexplored. Therefore, this work studies an AlphaFold2 (AF2) model of a highly expressed α-zein using molecular dynamics (MD) simulations. The sequence of the α-zein cZ19C2 gave a loosely packed AF2 model with 7 α-helical segments connected by turns/loops. Compact tertiary structure was limited to a C-terminal bundle of three α-helices, each showing notable agreement with a published consensus sequence. Aiming to chart possible α-zein conformations in practically relevant solvents, rather than the native solid-state, the AF2 model was subjected to MD simulations in water/ethanol mixtures with varying ethanol concentrations. Despite giving structurally diverse endpoints, the simulations showed several patterns: In water and low ethanol concentrations, the model rapidly formed compact globular structures, largely preserving the C-terminal bundle. At ≥ 50 mol% ethanol, extended conformations prevailed, consistent with previous SAXS studies. Tertiary structure was partially stabilized in water and low ethanol concentrations, but was disrupted in ≥ 50 mol% ethanol. Aggregated results indicated minor increases in helicity with ethanol concentration. ß-sheet content was consistently low (∼1%) across all conditions. Beyond structural dynamics, the rapid formation of branched α-zein aggregates in aqueous environments was highlighted. Furthermore, aqueous simulations revealed favorable interactions between the protein and the crosslinking agent glycidyl methacrylate (GMA). The proximity of GMA epoxide carbons and side chain hydroxyl oxygens simultaneously suggested accessible reactive sites in compact α-zein conformations and pre-reaction geometries for methacrylation. The findings may assist in expanding the applications of these technologically significant proteins, e.g., by guiding chemical modifications.


Assuntos
Simulação de Dinâmica Molecular , Zeína , Zeína/química , Conformação Proteica , Zea mays/química , Zea mays/metabolismo , Sequência de Aminoácidos , Água/química
3.
J Mass Spectrom ; 59(6): e5035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726730

RESUMO

Bupleuri Radix is an important medicinal plant, which has been used in China and other Asian countries for thousands of years. Cultivated Bupleurum chinense DC. (B. chinense) is the main commodity of Bupleuri Radix. The benefits of intercropping with various crops for B. chinense have been recognized; however, the influence of intercropping on the chemical composition of B. chinense is still unclear yet. In this study, intercropping with sorghum and maize exhibited little effect on the root length, root diameter, and single root mass of B. chinense. Only the intercropping with sorghum increased the root length of B. chinense slightly compared to the monocropping. In addition, 200 compounds were identified by UHPLC-Q-TOF-MS, and metabolomic combined with the Venn diagram and heatmap analysis showed apparent separation between the intercropped and monocropped B. chinense samples. Intercropping with sorghum and maize could both increase the saikosaponins, fatty acyls, and organic acids in B. chinense while decreasing the phospholipids. The influence of intercropping on the saikosaponin biosynthesis was probably related with the light intensity and hormone levels in B. chinense. Moreover, we found intercropping increased the anti-inflammatory activity of B. chinense. This study provides a scientific reference for the beneficial effect of intercropping mode of B. chinense.


Assuntos
Bupleurum , Metabolômica , Ácido Oleanólico , Raízes de Plantas , Saponinas , Sorghum , Zea mays , Sorghum/metabolismo , Sorghum/química , Bupleurum/química , Bupleurum/metabolismo , Zea mays/metabolismo , Zea mays/química , Saponinas/análise , Saponinas/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/análise , Ácido Oleanólico/metabolismo , Metabolômica/métodos , Cromatografia Líquida de Alta Pressão/métodos , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Espectrometria de Massas/métodos , Agricultura/métodos , Espectrometria de Massa com Cromatografia Líquida
4.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739785

RESUMO

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Assuntos
Meiose , RNA de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiose/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
5.
Int J Mol Sci ; 25(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38732175

RESUMO

Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Resistência à Seca
6.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731804

RESUMO

The mesocotyl is of great significance in seedling emergence and in responding to biotic and abiotic stress in maize. The NAM, ATAF, and CUC2 (NAC) transcription factor family plays an important role in maize growth and development; however, its function in the elongation of the maize mesocotyl is still unclear. In this study, we found that the mesocotyl length in zmnac17 loss-of-function mutants was lower than that in the B73 wild type. By using transcriptomic sequencing technology, we identified 444 differentially expressed genes (DEGs) between zmnac17-1 and B73, which were mainly enriched in the "tryptophan metabolism" and "antioxidant activity" pathways. Compared with the control, the zmnac17-1 mutants exhibited a decrease in the content of indole acetic acid (IAA) and an increase in the content of reactive oxygen species (ROS). Our results provide preliminary evidence that ZmNAC17 regulates the elongation of the maize mesocotyl.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Espécies Reativas de Oxigênio , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Vias Biossintéticas , Perfilação da Expressão Gênica , Mutação , Transcriptoma
7.
Microbiol Res ; 284: 127738, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692035

RESUMO

This study aimed to (i) investigate the potential for enhanced phytoremediation to remove contaminants from soil historically co-contaminated with petroleum hydrocarbons (PHs) and heavy metals (HMs) and (ii) analyze the expression of crucial bacterial genes and whole metatranscriptomics profiles for better understanding of soil processes during applied treatment. Phytoremediation was performed using Zea mays and supported by the Pseudomonas qingdaonensis ZCR6 strain and a natural biofertilizer: meat and bone meal (MBM). In previous investigations, mechanisms supporting plant growth and PH degradation were described in the ZCR6 strain. Here, ZCR6 survived in the soil throughout the experiment, but the efficacy of PH removal from all soils fertilized with MBM reached 32 % regardless of the bacterial inoculation. All experimental groups contained 2 % (w/w) MBM. The toxic effect of this amendment on plants was detected 30 days after germination, irrespective of ZCR6 inoculation. Among the 17 genes tested using the qPCR method, only expression of the acdS gene, encoding 1-aminocyclopropane-1-carboxylic acid deaminase, and the CYP153 gene, encoding cytochrome P450-type alkane hydroxylase, was detected in soils. Metatranscriptomic analysis of soils indicated increased expression of methane particulated ammonia monooxygenase subunit A (pmoA-amoA) by Nitrosomonadales bacteria in all soils enriched with MBM compared to the non-fertilized control. We suggest that the addition of 2 % (w/w) MBM caused the toxic effect on plants via the rapid release of ammonia, and this led to high pmoA-amoA expression. In parallel, due to its wide substrate specificity, enhanced bacterial hydrocarbon removal in MBM-treated soils was observed. The metatranscriptomic results indicate that MBM application should be considered to improve bioremediation of soils polluted with PHs rather than phytoremediation. However, lower concentrations of MBM could be considered for phytoremediation enhancement. From a broader perspective, these results indicated the superior capability of metatranscriptomics to investigate the microbial mechanisms driving various bioremediation techniques.


Assuntos
Biodegradação Ambiental , Pseudomonas , Microbiologia do Solo , Poluentes do Solo , Zea mays , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/isolamento & purificação , Metais Pesados/metabolismo , Petróleo/metabolismo , Solo/química , Hidrocarbonetos/metabolismo , Perfilação da Expressão Gênica , Carbono-Carbono Liases/metabolismo , Carbono-Carbono Liases/genética , Transcriptoma
8.
Planta ; 259(6): 146, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713242

RESUMO

MAIN CONCLUSION: The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas , RNA Longo não Codificante , Zea mays , Zea mays/genética , Zea mays/metabolismo , Giberelinas/metabolismo , RNA Longo não Codificante/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo
9.
Sci Rep ; 14(1): 11389, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762518

RESUMO

Phosphorus (P) use efficiency in alkaline/calcareous soils is only 20% due to precipitation of P2O5 with calcium and magnesium. However, coating Diammonium Phosphate (DAP) with phosphorus solubilizing bacteria (PSB) is more appropriate to increase fertilizer use efficiency. Therefore, with the aim to use inorganic fertilizers more effectively present study was conducted to investigate comparative effect of coated DAP with PSB strains Bacillus subtilis ZE15 (MN003400), Bacillus subtilis ZR3 (MN007185), Bacillus megaterium ZE32 (MN003401) and Bacillus megaterium ZR19 (MN007186) and their extracted metabolites with uncoated DAP under axenic conditions. Gene sequencing was done against various sources of phosphorus to analyze genes responsible for phosphatase activity. Alkaline phosphatase (ALP) gene amplicon of 380bp from all tested strains was showed in 1% w/v gel. Release pattern of P was also improved with coated fertilizer. The results showed that coated phosphatic fertilizer enhanced shoot dry weight by 43 and 46% under bacterial and metabolites coating respectively. Shoot and root length up to 44 and 42% with metabolites coated DAP and 41% with bacterial coated DAP. Physiological attributes also showed significant improvement with coated DAP over conventional. The results supported the application of coated DAP as a useful medium to raise crop yield even at lower application rates i.e., 50 and 75% DAP than non-coated 100% DAP application which advocated this coating technique a promising approach for advancing circular economy and sustainable development in modern agriculture.


Assuntos
Bacillus megaterium , Fertilizantes , Fosfatos , Fósforo , Microbiologia do Solo , Solo , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Fósforo/metabolismo , Solo/química , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Bacillus megaterium/crescimento & desenvolvimento , Fosfatos/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética
10.
BMC Genomics ; 25(1): 476, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745122

RESUMO

BACKGROUND: Heterosis has successfully enhanced maize productivity and quality. Although significant progress has been made in delineating the genetic basis of heterosis, the molecular mechanisms underlying its genetic components remain less explored. Allele-specific expression (ASE), the imbalanced expression between two parental alleles in hybrids, is increasingly being recognized as a factor contributing to heterosis. ASE is a complex process regulated by both epigenetic and genetic variations in response to developmental and environmental conditions. RESULTS: In this study, we explored the differential characteristics of ASE by analyzing the transcriptome data of two maize hybrids and their parents under four light conditions. On the basis of allele expression patterns in different hybrids under various conditions, ASE genes were divided into three categories: bias-consistent genes involved in basal metabolic processes in a functionally complementary manner, bias-reversal genes adapting to the light environment, and bias-specific genes maintaining cell homeostasis. We observed that 758 ASE genes (ASEGs) were significantly overlapped with heterosis quantitative trait loci (QTLs), and high-frequency variations in the promoter regions of heterosis-related ASEGs were identified between parents. In addition, 10 heterosis-related ASEGs participating in yield heterosis were selected during domestication. CONCLUSIONS: The comprehensive analysis of ASEGs offers a distinctive perspective on how light quality influences gene expression patterns and gene-environment interactions, with implications for the identification of heterosis-related ASEGs to enhance maize yield.


Assuntos
Alelos , Regulação da Expressão Gênica de Plantas , Vigor Híbrido , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Vigor Híbrido/genética , Perfilação da Expressão Gênica , Variação Genética , Transcriptoma
11.
J Plant Physiol ; 297: 154261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705078

RESUMO

Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.


Assuntos
Clorofila A , Clorofila , Genótipo , Nitrogênio , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Nitrogênio/metabolismo , Nitrogênio/deficiência , Clorofila/metabolismo , Clorofila A/metabolismo , Fotossíntese
12.
J Nanobiotechnology ; 22(1): 262, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760823

RESUMO

BACKGROUND: Nanoplastics, are emerging pollutants, present a potential hazard to food security and human health. Titanium dioxide nanoparticles (Nano-TiO2), serving as nano-fertilizer in agriculture, may be important in alleviating polystyrene nanoplastics (PSNPs) toxicity. RESULTS: Here, we performed transcriptomic, metabolomic and physiological analyzes to identify the role of Nano-TiO2 in regulating the metabolic processes in PSNPs-stressed maize seedlings (Zea mays L.). The growth inhibition by PSNPs stress was partially relieved by Nano-TiO2. Furthermore, when considering the outcomes obtained from RNA-seq, enzyme activity, and metabolite content analyses, it becomes evident that Nano-TiO2 significantly enhance carbon and nitrogen metabolism levels in plants. In comparison to plants that were not subjected to Nano-TiO2, plants exposed to Nano-TiO2 exhibited enhanced capabilities in maintaining higher rates of photosynthesis, sucrose synthesis, nitrogen assimilation, and protein synthesis under stressful conditions. Meanwhile, Nano-TiO2 alleviated the oxidative damage by modulating the antioxidant systems. Interestingly, we also found that Nano-TiO2 significantly enhanced the endogenous melatonin levels in maize seedlings. P-chlorophenylalanine (p-CPA, a melatonin synthesis inhibitor) declined Nano-TiO2-induced PSNPs tolerance. CONCLUSIONS: Taken together, our data show that melatonin is involved in Nano-TiO2-induced growth promotion in maize through the regulation of carbon and nitrogen metabolism.


Assuntos
Carbono , Melatonina , Nitrogênio , Poliestirenos , Titânio , Zea mays , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Titânio/farmacologia , Nitrogênio/metabolismo , Carbono/metabolismo , Melatonina/farmacologia , Poliestirenos/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
13.
BMC Genomics ; 25(1): 479, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750515

RESUMO

BACKGROUND: In the context of early sowing of maize as a promising adaptation strategy that could significantly reduce the negative effects of climate change, an in-depth understanding of mechanisms underlying plant response to low-temperature stress is demanded. Although microRNAs (miRNAs) have been recognized as key regulators of plant stress response, research on their role in chilling tolerance of maize during early seedling stages is scarce. Therefore, it is of great significance to explore chilling-responsive miRNAs, reveal their expression patterns and associated target genes, as well as to examine the possible functions of the conserved and novel miRNAs. In this study, the role of miRNAs was examined in 5d-old maize seedlings of one tolerant and one sensitive inbred line exposed to chilling (10/8 °C) stress for 6 h and 24 h, by applying high throughput sequencing. RESULTS: A total of 145 annotated known miRNAs belonging to 30 families and 876 potentially novel miRNAs were identified. Differential expression (DE) analysis between control and stress conditions identified 98 common miRNAs for both genotypes at one time point and eight miRNAs at both time points. Target prediction and enrichment analysis showed that the DE zma-miR396, zma-miR156, zma-miR319, and zma-miR159 miRNAs modulate growth and development. Furthermore, it was found that several other DE miRNAs were involved in abiotic stress response: antioxidative mechanisms (zma-miR398), signal transduction (zma-miR156, zma-miR167, zma-miR169) and regulation of water content (zma-miR164, zma-miR394, zma-miR396). The results underline the zma-miRNAs involvement in the modulation of their target genes expression as an important aspect of the plant's survival strategy and acclimation to chilling stress conditions. CONCLUSIONS: To our understanding, this is the first study on miRNAs in 5-d old seedlings' response to chilling stress, providing data on the role of known and novel miRNAs post-transcriptional regulation of expressed genes and contributing a possible platform for further network and functional analysis.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , MicroRNAs , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Plântula/genética , Estresse Fisiológico/genética , Resposta ao Choque Frio/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Perfilação da Expressão Gênica
14.
BMC Genomics ; 25(1): 465, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741087

RESUMO

BACKGROUND: The early 2 factor (E2F) family is characterized as a kind of transcription factor that plays an important role in cell division, DNA damage repair, and cell size regulation. However, its stress response has not been well revealed. RESULTS: In this study, ZmE2F members were comprehensively identified in the maize genome, and 21 ZmE2F genes were identified, including eight E2F subclade members, seven DEL subfamily genes, and six DP genes. All ZmE2F proteins possessed the DNA-binding domain (DBD) characterized by conserved motif 1 with the RRIYD sequence. The ZmE2F genes were unevenly distributed on eight maize chromosomes, showed diversity in gene structure, expanded by gene duplication, and contained abundant stress-responsive elements in their promoter regions. Subsequently, the ZmE2F6 gene was cloned and functionally verified in drought response. The results showed that the ZmE2F6 protein interacted with ZmPP2C26, localized in the nucleus, and responded to drought treatment. The overexpression of ZmE2F6 enhanced drought tolerance in transgenic Arabidopsis with longer root length, higher survival rate, and biomass by upregulating stress-related gene transcription. CONCLUSIONS: This study provides novel insights into a greater understanding and functional study of the E2F family in the stress response.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Arabidopsis/genética , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética
15.
BMC Plant Biol ; 24(1): 246, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575869

RESUMO

BACKGROUND: Molecular mechanisms in response to drought stress are important for the genetic improvement of maize. In our previous study, nine ZmLAZ1 members were identified in the maize genome, but the function of ZmLAZ1 was largely unknown. RESULTS: The ZmLAZ1-3 gene was cloned from B73, and its drought-tolerant function was elucidated by expression analysis in transgenic Arabidopsis. The expression of ZmLAZ1-3 was upregulated by drought stress in different maize inbred lines. The driving activity of the ZmLAZ1-3 promoter was induced by drought stress and related to the abiotic stress-responsive elements such as MYB, MBS, and MYC. The results of subcellular localization indicated that the ZmLAZ1-3 protein localized on the plasma membrane and chloroplast. The ectopic expression of the ZmLAZ1-3 gene in Arabidopsis significantly reduced germination ratio and root length, decreased biomass, and relative water content, but increased relative electrical conductivity and malondialdehyde content under drought stress. Moreover, transcriptomics analysis showed that the differentially expressed genes between the transgenic lines and wild-type were mainly associated with response to abiotic stress and biotic stimulus, and related to pathways of hormone signal transduction, phenylpropanoid biosynthesis, mitogen-activated protein kinase signaling, and plant-pathogen interaction. CONCLUSION: The study suggests that the ZmLAZ1-3 gene is a negative regulator in regulating drought tolerance and can be used to improve maize drought tolerance via its silencing or knockout.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Resistência à Seca , Zea mays/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
16.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632534

RESUMO

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Abelhas , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Antocianinas , Zea mays/metabolismo , Linhagem Celular Tumoral , Morte Celular , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
17.
PLoS One ; 19(4): e0300864, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635849

RESUMO

Chia (Salvia hispanica L.) seed (CS) and Pumpkin (Cucurbita moschata) seed (PS) are used in ruminant diets as energy sources. The current experiment studied the impact of dietary inclusion of CS and PS on nutrient intake and digestibility, milk yield, and milk composition of dairy sheep. Twelve primiparous Texel × Suffolk ewes [70 ± 5 days in milk (DIM); 0.320 ± 0.029 kg milk yield] were distributed in a 4 × 3 Latin square design and fed either a butter-based control diet [CON; 13 g/kg dry matter] or two diets with 61 g/kg DM of either CS or PS. Dietary inclusion of CS and PS did not alter live weight (p >0.1) and DM intake (p >0.1). However, compared to the CON, dietary inclusion of both CS and PS increased the digestibility of neutral detergent fiber (p <0.001) and acid detergent lignin (p < 0.001). Milk production (p = 0.001), fat-corrected milk (p < 0.001), and feed efficiency (p < 0.001) were enhanced with PS, while the highest milk protein yield (p < 0.05) and lactose yield (p < 0.001) were for CS-fed ewes. Compared to the CON diet, the ingestion of either CS and/or PS decreased (p < 0.001) the C16:0 in milk. Moreover, both CS and PS tended to enhance the content of C18:3n6 (p > 0.05) and C18:3n3 (p > 0.05). Overall short-term feeding of CS and/or PS (up to 6.1% DM of diet) not only maintains the production performance and digestibility of nutrients but also positively modifies the milk FA composition.


Assuntos
Cucurbita , Animais , Feminino , Ovinos , Cucurbita/metabolismo , Lactação , Salvia hispanica , Detergentes , Fibras na Dieta/metabolismo , Dieta/veterinária , Sementes/metabolismo , Digestão , Ração Animal/análise , Zea mays/metabolismo , Suplementos Nutricionais/análise , Rúmen/metabolismo
18.
Sci Rep ; 14(1): 9151, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644368

RESUMO

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , África Austral , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , África Oriental , Genótipo , Cruzamentos Genéticos , Endogamia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673792

RESUMO

Arbuscular mycorrhizal fungi symbiosis plays important roles in enhancing plant tolerance to biotic and abiotic stresses. Aquaporins have also been linked to improved drought tolerance in plants and the regulation of water transport. However, the mechanisms that underlie this association remain to be further explored. In this study, we found that arbuscular mycorrhiza fungi symbiosis could induce the gene expression of the aquaporin ZmTIP2;3 in maize roots. Moreover, compared with the wild-type plants, the maize zmtip2;3 mutant also showed a lower total biomass, colonization rate, relative water content, and POD and SOD activities after arbuscular mycorrhiza fungi symbiosis under drought stress. qRT-PCR assays revealed reduced expression levels of stress genes including LEA3, P5CS4, and NECD1 in the maize zmtip2;3 mutant. Taken together, these data suggest that ZmTIP2;3 plays an important role in promoting maize tolerance to drought stress during arbuscular mycorrhiza fungi symbiosis.


Assuntos
Aquaporinas , Secas , Regulação da Expressão Gênica de Plantas , Micorrizas , Proteínas de Plantas , Simbiose , Zea mays , Zea mays/microbiologia , Zea mays/genética , Zea mays/metabolismo , Micorrizas/fisiologia , Simbiose/genética , Aquaporinas/metabolismo , Aquaporinas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Resistência à Seca
20.
Genes (Basel) ; 15(4)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38674406

RESUMO

Tocopherols are secondary metabolites synthesized through the shikimate biosynthetic pathway in the plastids of most plants. It is well known that α-Tocopherol (vitamin E) has many health benefits for humans and animals; therefore, it is highly used in human and animal diets. Tocopherols vary considerably in most crop (and plant) species and within cultivars of the same species depending on environmental and growth conditions; tocopherol content is a polygenic, complex traits, and its inheritance is poorly understood. The objective of this review paper was to summarize all identified quantitative trait loci (QTL) that control seed tocopherols and related contents identified in maize (Zea mays) during the past two decades (2002-2022). Candidate genes identified within these QTL regions are also discussed. The QTL described here, and candidate genes identified within these genomic regions could be used in breeding programs to develop maize cultivars with high, beneficial levels of seed tocopherol contents.


Assuntos
Locos de Características Quantitativas , Sementes , Tocoferóis , Zea mays , Zea mays/genética , Zea mays/metabolismo , Sementes/genética , Sementes/metabolismo , Tocoferóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA