Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Angew Chem Int Ed Engl ; 60(43): 23419-23426, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34387025

RESUMO

Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.


Assuntos
Proteínas de Bactérias/metabolismo , Pentosiltransferases/metabolismo , Quinazolinonas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Simulação por Computador , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Mutação , Pentosiltransferases/química , Pentosiltransferases/genética , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Quinazolinonas/química , Zymomonas/enzimologia
2.
Sci Rep ; 11(1): 13731, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215768

RESUMO

Bioethanol produced by fermentative microorganisms is regarded as an alternative to fossil fuel. Bioethanol to be used as a viable energy source must be produced cost-effectively by removing expense-intensive steps such as the enzymatic hydrolysis of substrate. Consolidated bioprocessing (CBP) is believed to be a practical solution combining saccharification and fermentation in a single step catalyzed by a microorganism. Bacillus subtills with innate ability to grow on a diversity of carbohydrates seems promising for affordable CBP bioethanol production using renewable plant biomass and wastes. In this study, the genes encoding alcohol dehydrogenase from Z. mobilis (adhZ) and S. cerevisiae (adhS) were each used with Z. mobilis pyruvate decarboxylase gene (pdcZ) to create ethanologenic operons in a lactate-deficient (Δldh) B. subtilis resulting in NZ and NZS strains, respectively. The S. cerevisiae adhS caused significantly more ethanol production by NZS and therefore was used to make two other operons including one with double copies of both pdcZ and adhS and the other with a single pdcZ but double adhS genes expressed in N(ZS)2 and NZS2 strains, respectively. In addition, two fusion genes were constructed with pdcZ and adhS in alternate orientations and used for ethanol production by the harboring strains namely NZ:S and NS:Z, respectively. While the increase of gene dosage was not associated with elevated carbon flow for ethanol production, the fusion gene adhS:pdcZ resulted in a more than two times increase of productivity by strain NS:Z as compared with NZS during 48 h fermentation. The CBP ethanol production by NZS and NS:Z using potatoes resulted in 16.3 g/L and 21.5 g/L ethanol during 96 h fermentation, respectively. For the first time in this study, B. subtilis was successfully used for CBP ethanol production with S. cerevisiae alcohol dehydrogenase. The results of the study provide insights on the potentials of B. subtilis for affordable bioethanol production from inexpensive plant biomass and wastes. However, the potentials need to be improved by metabolic and process engineering for higher yields of ethanol production and plant biomass utilization.


Assuntos
Álcool Desidrogenase/genética , Bacillus subtilis/genética , Etanol/metabolismo , Engenharia Metabólica , Piruvato Descarboxilase/genética , Bacillus subtilis/metabolismo , Biomassa , Etanol/química , Fermentação/genética , Hidrólise , Ácido Láctico/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Zymomonas/enzimologia , Zymomonas/genética
3.
ACS Chem Biol ; 16(6): 1090-1098, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34081441

RESUMO

Interference with protein-protein interfaces represents an attractive as well as challenging option for therapeutic intervention and drug design. The enzyme tRNA-guanine transglycosylase, a target to fight Shigellosis, is only functional as a homodimer. Although we previously produced monomeric variants by site-directed mutagenesis, we only crystallized the functional dimer, simply because upon crystallization the local protein concentration increases and favors formation of the dimer interface, which represents an optimal and highly stable packing of the protein in the solid state. Unfortunately, this prevents access to structural information about the interface geometry in its monomeric state and complicates the development of modulators that can interfere with and prevent dimer formation. Here, we report on a cysteine-containing protein variant in which, under oxidizing conditions, a disulfide linkage is formed. This reinforces a novel packing geometry of the enzyme. In this captured quasi-monomeric state, the monomer units arrange in a completely different way and, thus, expose a loop-helix motif, originally embedded into the old interface, now to the surface. The motif adopts a geometry incompatible with the original dimer formation. Via the soaking of fragments into the crystals, we identified several hits accommodating a cryptic binding site next to the loop-helix motif and modulated its structural features. Our study demonstrates the druggability of the interface by breaking up the homodimeric protein using an introduced disulfide cross-link. By rational concepts, we increased the potency of these fragments to a level where we confirmed their binding by NMR to a nondisulfide-linked TGT variant. The idea of intermediately introducing a disulfide linkage may serve as a general concept of how to transform a homodimer interface into a quasi-monomeric state and give access to essential structural and design information.


Assuntos
Dissulfetos/química , Pentosiltransferases/química , Bibliotecas de Moléculas Pequenas/farmacologia , Zymomonas/enzimologia , Sítios de Ligação/efeitos dos fármacos , Ligantes , Modelos Moleculares , Multimerização Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Zymomonas/química
4.
J Am Chem Soc ; 143(25): 9622-9629, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34114803

RESUMO

The development of non-natural reaction mechanisms is an attractive strategy for expanding the synthetic capabilities of substrate promiscuous enzymes. Here, we report an "ene"-reductase catalyzed asymmetric hydroalkylation of olefins using α-bromoketones as radical precursors. Radical initiation occurs via ground-state electron transfer from the flavin cofactor located within the enzyme active site, an underrepresented mechanism in flavin biocatalysis. Four rounds of site saturation mutagenesis were used to access a variant of the "ene"-reductase nicotinamide-dependent cyclohexanone reductase (NCR) from Zymomonas mobiles capable of catalyzing a cyclization to furnish ß-chiral cyclopentanones with high levels of enantioselectivity. Additionally, wild-type NCR can catalyze intermolecular couplings with precise stereochemical control over the radical termination step. This report highlights the utility for ground-state electron transfers to enable non-natural biocatalytic C-C bond forming reactions.


Assuntos
Ciclopentanos/síntese química , Elétrons , Cetonas/síntese química , Oxirredutases/química , Alcenos/química , Alquilação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biocatálise , Ciclização , Dinitrocresóis/química , Evolução Molecular Direcionada , Hidrocarbonetos Halogenados/química , Mutação , Oxirredutases/genética , Engenharia de Proteínas , Estereoisomerismo , Zymomonas/enzimologia
5.
Appl Biochem Biotechnol ; 193(9): 3017-3027, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33826067

RESUMO

NADH-dependent reductase enzyme catalyzes the phenolic aldehyde conversion and correspondingly improves the ethanol fermentability of the ethanologenic Zymomonas mobilis. This study constructed the transcriptional landscape of mono/dioxygenase genes in Z. mobilis ZM4 under the stress of the toxic phenolic aldehyde inhibitors of 4-hydroxybenzaldehyde, syringaldehyde, and vanillin. One specific dioxygenase encoding gene ZMO1721 was differentially expressed by 3.07-folds under the stress of 4-hydroxybenzaldehyde among the eleven mono/dioxygenase genes. The purified ZMO1721 shared 99.9% confidence and 48.0% identity with the oxidoreductase in Rhodoferax ferrireducens T118 was assayed and the NADH-dependent reduction activity was confirmed for phenolic aldehyde vanillin conversion. The ZMO1721 gene was then overexpressed in Z. mobilis ZM4 and the 4-hydroxybenzaldehyde conversion rate was accelerated. The cell growth, glucose consumption, and ethanol productivity of Z. mobilis ZM4 were also improved by ZMO1721 overexpression. The genes identified on improving phenolic aldehyde tolerance and ethanol fermentability in this study could be used as the synthetic biology tools for modification of ethanologenic strains.


Assuntos
Aldeídos/metabolismo , Proteínas de Bactérias , Dioxigenases , Etanol/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Zymomonas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Dioxigenases/biossíntese , Dioxigenases/genética , Zymomonas/enzimologia , Zymomonas/genética
6.
J Biol Chem ; 296: 100398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571525

RESUMO

Glycoside hydrolase family 68 (GH68) enzymes catalyze ß-fructosyltransfer from sucrose to another sucrose, the so-called transfructosylation. Although regioselectivity of transfructosylation is divergent in GH68 enzymes, there is insufficient information available on the structural factor(s) involved in the selectivity. Here, we found two GH68 enzymes, ß-fructofuranosidase (FFZm) and levansucrase (LSZm), encoded tandemly in the genome of Zymomonas mobilis, displayed different selectivity: FFZm catalyzed the ß-(2→1)-transfructosylation (1-TF), whereas LSZm did both of 1-TF and ß-(2→6)-transfructosylation (6-TF). We identified His79FFZm and Ala343FFZm and their corresponding Asn84LSZm and Ser345LSZm respectively as the structural factors for those regioselectivities. LSZm with the respective substitution of FFZm-type His and Ala for its Asn84LSZm and Ser345LSZm (N84H/S345A-LSZm) lost 6-TF and enhanced 1-TF. Conversely, the LSZm-type replacement of His79FFZm and Ala343FFZm in FFZm (H79N/A343S-FFZm) almost lost 1-TF and acquired 6-TF. H79N/A343S-FFZm exhibited the selectivity like LSZm but did not produce the ß-(2→6)-fructoside-linked levan and/or long levanooligosaccharides that LSZm did. We assumed Phe189LSZm to be a responsible residue for the elongation of levan chain in LSZm and mutated the corresponding Leu187FFZm in FFZm to Phe. An H79N/L187F/A343S-FFZm produced a higher quantity of long levanooligosaccharides than H79N/A343S-FFZm (or H79N-FFZm), although without levan formation, suggesting that LSZm has another structural factor for levan production. We also found that FFZm generated a sucrose analog, ß-D-fructofuranosyl α-D-mannopyranoside, by ß-fructosyltransfer to d-mannose and regarded His79FFZm and Ala343FFZm as key residues for this acceptor specificity. In summary, this study provides insight into the structural factors of regioselectivity and acceptor specificity in transfructosylation of GH68 enzymes.


Assuntos
Proteínas de Bactérias/metabolismo , Hexosiltransferases/metabolismo , Sacarose/química , Sacarose/metabolismo , Zymomonas/enzimologia , beta-Frutofuranosidase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Catálise , Domínio Catalítico , Hexosiltransferases/química , Hexosiltransferases/genética , Mutagênese Sítio-Dirigida , Estereoisomerismo , Relação Estrutura-Atividade , Zymomonas/isolamento & purificação , Zymomonas/metabolismo , beta-Frutofuranosidase/química , beta-Frutofuranosidase/genética
7.
ACS Chem Biol ; 15(11): 3021-3029, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33166460

RESUMO

Bacterial tRNA-guanine transglycosylase (Tgt) is involved in the biosynthesis of the modified tRNA nucleoside queuosine present in the anticodon wobble position of tRNAs specific for aspartate, asparagine, histidine, and tyrosine. Inactivation of the tgt gene leads to decreased pathogenicity of Shigella bacteria. Therefore, Tgt constitutes a putative target for Shigellosis drug therapy. Since it is only active as homodimer, interference with dimer-interface formation may, in addition to active-site inhibition, provide further means to disable this protein. A cluster of four aromatic residues seems important to stabilize the homodimer. We mutated residues of this aromatic cluster and analyzed each mutated variant with respect to the dimer and thermal stability or enzyme activity by applying native mass spectrometry, a thermal shift assay, enzyme kinetics, and X-ray crystallography. Our structural studies indicate a strong influence of pH on the homodimer stability. Apparently, protonation of a histidine within the aromatic cluster supports the collapse of an essential structural motif within the dimer interface at slightly acidic pH.


Assuntos
Pentosiltransferases/química , Zymomonas/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Mutação , Pentosiltransferases/genética , Conformação Proteica , Multimerização Proteica , Zymomonas/química , Zymomonas/genética
8.
J Biol Chem ; 295(31): 10709-10725, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32518167

RESUMO

Bacterial glycosphingolipids such as glucuronosylceramide and galactosylceramide have been identified as ligands for invariant natural killer T cells and play important roles in host defense. However, the glycosphingolipid synthases required for production of these ceramides have not been well-characterized. Here, we report the identification and characterization of glucuronosylceramide synthase (ceramide UDP-glucuronosyltransferase [Cer-GlcAT]) in Zymomonas mobilis, a Gram-negative bacterium whose cellular membranes contain glucuronosylceramide. On comparing the gene sequences that encode the diacylglycerol GlcAT in bacteria and plants, we found a homologous gene that is widely distributed in the order Sphingomonadales in the Z. mobilis genome. We first cloned the gene and expressed it in Escherichia coli, followed by protein purification using nickel-Sepharose affinity and gel filtration chromatography. Using the highly enriched enzyme, we observed that it has high glycosyltransferase activity with UDP-glucuronic acid and ceramide as sugar donor and acceptor substrate, respectively. Cer-GlcAT deletion resulted in a loss of glucuronosylceramide and increased the levels of ceramide phosphoglycerol, which was expressed in WT cells only at very low levels. Furthermore, we found sequences homologous to Cer-GlcAT in Sphingobium yanoikuyae and Bacteroides fragilis, which have been reported to produce glucuronosylceramide and α-galactosylceramide, respectively. We expressed the two homologs of the cer-glcat gene in E. coli and found that each gene encodes Cer-GlcAT and Cer-galactosyltransferase, respectively. These results contribute to the understanding of the roles of bacterial glycosphingolipids in host-bacteria interactions and the function of bacterial glycosphingolipids in bacterial physiology.


Assuntos
Proteínas de Bactérias/metabolismo , Galactosilceramidas/biossíntese , Galactosiltransferases/metabolismo , Glucuronosiltransferase/metabolismo , Glicoesfingolipídeos/biossíntese , Zymomonas/enzimologia , Proteínas de Bactérias/genética , Bacteroides fragilis/enzimologia , Bacteroides fragilis/genética , Galactosilceramidas/genética , Galactosiltransferases/genética , Glucuronosiltransferase/genética , Glicoesfingolipídeos/genética , Zymomonas/genética
9.
ChemMedChem ; 15(3): 324-337, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31808981

RESUMO

Crystallography provides structural information crucial for fragment optimization, however several criteria must be met to screen directly on protein crystals as soakable, well-diffracting specimen must be available. We screened a 96-fragment library against the tRNA-modifying enzyme TGT using crystallography. Eight hits, some with surprising binding poses, were detected. However, the amount of data collection, reduction and refinement is assumed substantial. Therefore, having a reliable cascade of fast and cost-efficient methods available for pre-screening before embarking to elaborate crystallographic screening appears beneficial. This allows filtering of compounds to the most promising hits, available to rapidly progress from hit-to-lead. But how to ensure that this workflow is reliable? To answer this question, we also applied SPR and NMR to the same screening sample to study whether identical hits are retrieved. Upon hit-list comparisons, crystallography shows with NMR and SPR, only one overlapping hit and all three methods shared no common hits. This questions a cascade-type screening protocol at least in the current example. Compared to crystallography, SPR and NMR detected higher percentages of non-active-site binders suggesting the importance of running reporter ligand-based competitive screens in SPR and NMR, a requirement not needed in crystallography. Although not specific, NMR proved a more sensitive method relative to SPR and crystallography, as it picked up the highest numbers of binders.


Assuntos
Inibidores Enzimáticos/farmacologia , Pentosiltransferases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Modelos Moleculares , Estrutura Molecular , Pentosiltransferases/isolamento & purificação , Pentosiltransferases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Zymomonas/enzimologia
10.
Appl Environ Microbiol ; 85(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31492664

RESUMO

p-Benzoquinone (BQ) is a lignin-derived inhibitor of biorefinery fermentation strains produced during pretreatment of lignocellulose. Unlike the well-studied inhibitors furan aldehydes, weak acids, and phenolics, the inhibitory properties of BQ, the microbial tolerance mechanism, and the detoxification strategy for this inhibitor have not been clearly elucidated. Here, BQ was identified as a by-product generated during acid pretreatment of various lignocellulose feedstocks, including corn stover, wheat straw, rice straw, tobacco stem, sunflower stem, and corncob residue. BQ at 20 to 200 mg/liter severely inhibited the cell growth and fermentability of various bacteria and yeast strains used in biorefinery fermentations. The BQ tolerance of the strains was found to be closely related to their capacity to convert BQ to nontoxic hydroquinone (HQ). To identify the key genes responsible for BQ tolerance, transcription levels of 20 genes potentially involved in the degradation of BQ in Zymomonas mobilis were investigated using real-time quantitative PCR in BQ-treated cells. One oxidoreductase gene, one hydroxylase gene, three reductase genes, and three dehydrogenase genes were found to be responsible for the conversion of BQ to HQ. Overexpression of the five key genes in Z. mobilis (ZMO1696, ZMO1949, ZMO1576, ZMO1984, and ZMO1399) accelerated its cell growth and cellulosic ethanol production in BQ-containing medium and lignocellulose hydrolysates.IMPORTANCE This study advances our understanding of BQ inhibition behavior and the mechanism of microbial tolerance to this inhibitor and identifies the key genes responsible for BQ detoxification. The insights here into BQ toxicity and tolerance provide the basis for future synthetic biology to engineer industrial fermentation strains with enhanced BQ tolerance.


Assuntos
Benzoquinonas/análise , Fermentação , Lignina/metabolismo , Zymomonas/enzimologia , Zymomonas/genética , Etanol/metabolismo , Microbiologia Industrial , Zea mays/química
11.
Sci Rep ; 9(1): 11576, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399628

RESUMO

In this work, we describe the construction of a synthetic metabolic pathway enabling direct biosynthesis of 1,3-propanediol (PDO) from glucose via the Krebs cycle intermediate malate. This non-natural pathway extends a previously published synthetic pathway for the synthesis of (L)-2,4-dihydroxybutyrate (L-DHB) from malate by three additional reaction steps catalyzed respectively, by a DHB dehydrogenase, a 2-keto-4-hydroxybutyrate (OHB) dehydrogenase and a PDO oxidoreductase. Screening and structure-guided protein engineering provided a (L)-DHB dehydrogenase from the membrane-associated (L)-lactate dehydrogenase of E. coli and OHB decarboxylase variants derived from the branched-chain keto-acid decarboxylase encoded by kdcA from Lactococcus lactis or pyruvate decarboxylase from Zymomonas mobilis. The simultaneous overexpression of the genes encoding these enzymes together with the endogenous ydhD-encoded aldehyde reductase enabled PDO biosynthesis from (L)-DHB. While the simultaneous expression of the six enzymatic activities in a single engineered E. coli strain resulted in a low production of 0.1 mM PDO from 110 mM glucose, a 40-fold increased PDO titer was obtained by co-cultivation of an E. coli strain expressing the malate-DHB pathway with another strain harboring the DHB-to-PDO pathway.


Assuntos
Escherichia coli/metabolismo , Glucose/metabolismo , Lactococcus lactis/metabolismo , Engenharia Metabólica , Propilenoglicóis/metabolismo , Zymomonas/metabolismo , Vias Biossintéticas , Ciclo do Ácido Cítrico , Escherichia coli/enzimologia , Escherichia coli/genética , Glucose/genética , Microbiologia Industrial/métodos , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Engenharia Metabólica/métodos , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia , Zymomonas/genética
12.
J Biotechnol ; 303: 1-7, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31310781

RESUMO

Phenolic aldehydes from lignocellulose pretreatment harshly inhibit the viability and metabolism of ethanol fermenting strains. Direct conversion of phenolic aldehydes is usually incomplete due to their low water solubility and recalcitrance to bioconversion. Here we consolidated phenolic aldehydes bioconversion and ethanol fermentation in a typical ethanologenic bacterium Zymomonas mobilis by constructing an intracellular oxidative pathway. The gene PP_2680 encoding NAD+-dependent aldehyde dehydrogenase from Pseudomonas putida KT2440 was expressed in Z. mobilis ZM4. The expression significantly improved both aldehyde inhibitor conversion and ethanol fermentability in corn stover hydrolysate. The purified PP_2680 aldehyde dehydrogenase showed strong in vitro oxidative capacity on phenolic aldehydes and its in vivo expression significantly up-regulated the key genes in the ED pathway and the oxidative phosphorylation. This study provided an important concept of simultaneous biodetoxification and fermentation in ethanologenic strains for the improvement of ethanol fermentability.


Assuntos
Aldeído Desidrogenase/metabolismo , Etanol/metabolismo , Zymomonas/crescimento & desenvolvimento , Aldeído Desidrogenase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Celulose , Fermentação , Regulação Bacteriana da Expressão Gênica , Fosforilação Oxidativa , Pseudomonas putida/enzimologia , Zea mays/química , Zymomonas/enzimologia , Zymomonas/genética
13.
Food Chem ; 297: 124897, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31253291

RESUMO

Fructooligosaccharides have important potential use in the food industry due to their properties such as solubility in water, stability in acidity of fruit juices and during storage, low-calorie value and prebiotic effects. In this study, for the first time, Zymomonas mobilis levansucrase was used for in situ 6-kestose production in carob molasses. The produced kestose was stable during storage at 20 °C for 4 months. The product was evaluated for color, non-enzymatic browning index and titratable acidity during storage and the quality of the product was found comparable to that of control. Furthermore, the decreased amount of sucrose resulted in the prevention of 5-hydroxymethylfurfural (5-HMF) formation during storage. As a result, carob molasses was converted into a high-quality prebiotic product with decreased sucrose content and reduced 5-HMF quantities, and a new method was developed to prevent 5-HMF formation in fruit juices and molasses.


Assuntos
Galactanos/metabolismo , Hexosiltransferases/metabolismo , Mananas/metabolismo , Gomas Vegetais/metabolismo , Prebióticos/análise , Trissacarídeos/metabolismo , Zymomonas/enzimologia , Armazenamento de Alimentos , Sucos de Frutas e Vegetais/análise , Furaldeído/análogos & derivados , Furaldeído/química , Furaldeído/metabolismo , Melaço/análise
14.
Microbiologyopen ; 8(8): e00809, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30770675

RESUMO

Acetaldehyde, a valuable commodity chemical, is a volatile inhibitory byproduct of aerobic fermentation in Zymomonas mobilis and in several other microorganisms. Attempting to improve acetaldehyde production by minimizing its contact with the cell interior and facilitating its removal from the culture, we engineered a Z. mobilis strain with acetaldehyde synthesis reaction localized in periplasm. For that, the pyruvate decarboxylase (PDC) was transferred from the cell interior to the periplasmic compartment. This was achieved by the construction of a Z. mobilis Zm6 PDC-deficient mutant, fusion of PDC with the periplasmic signal sequence of Z. mobilis gluconolactonase, and the following expression of this fusion protein in the PDC-deficient mutant. The obtained recombinant strain PeriAc, with most of its PDC localized in periplasm, showed a twofold higher acetaldehyde yield, than the parent strain, and will be used for further improvement by directed evolution.


Assuntos
Acetaldeído/metabolismo , Periplasma/enzimologia , Periplasma/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Zymomonas/enzimologia , Zymomonas/metabolismo , Aerobiose , Fermentação , Engenharia Metabólica , Transporte Proteico , Piruvato Descarboxilase/genética , Proteínas Recombinantes de Fusão/genética , Zymomonas/genética
15.
Appl Biochem Biotechnol ; 187(1): 239-252, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29923149

RESUMO

Recombinant Zymomonas mobilis (pGEX-4T-3 BI 120-2) was constructed to encode endo-glucanase (CelA) and endo-xylanase (Xyn11) from Z. mobilis ZM4 (ATCC 31821) and an uncultured bacterium. The recombinant was genetically engineered with the N-terminus of a predicted SecB-dependent (type II) secretion signal from phoC of Z. mobilis to translocate the enzymes extracellularly. Both the enzymes were characterized regarding their functional optimum pH and temperature, with the highest multi-enzyme activities at pH 6.0 and a temperature of 30 °C, which approximates the optimum conditions for ethanol production by Z. mobilis. The crude intracellular and extracellular fractions of the recombinant were characterized in terms of substrate specificity using carboxymethyl cellulose (CMC), beechwood xylan, filter paper, Avicel, and pretreated rice straw. The crude extracellular and intracellular enzymes with cellulolytic and xylanolytic activities were more robustly produced and secreted from the recombinant strain compared to the wild-type and ampicillin-sensitive strains, using CMC and beechwood xylan as the substrates. Ethanol production by the recombinant strain was greater than the production by the wild-type strain when pretreated rice straw was used as a sole carbon source.


Assuntos
Proteínas de Bactérias , Celulase , Endo-1,4-beta-Xilanases , Zymomonas , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Celulase/biossíntese , Celulase/genética , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Zymomonas/enzimologia , Zymomonas/genética
16.
Biotechnol Bioeng ; 115(11): 2714-2725, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30063083

RESUMO

Due to the unique Entner-Doudoroff pathway, Zymomonas mobilis has been acknowledged as a potential host to be engineered for biorefinery to produce biofuels and biobased chemicals. The self-flocculation of Z. mobilis can make the bacterial cells self-immobilized within bioreactors for high density to improve product productivities, and in the meantime enhance their tolerance to stresses, particularly product inhibition and the toxicity of byproducts released during the pretreatment of lignocellulosic biomass. In this work, we explored mechanism underlying such a phenotype with the self-flocculating strain ZM401 developed from the regular non-flocculating strain ZM4. Cellulase de-flocculation and the restoration of the self-flocculating phenotype for the de-flocculated bacterial cells subjected to culture confirmed the essential role of cellulose biosynthesis in the self-flocculation of ZM401. Furthermore, the deactivation of both Type I and Type IV restriction-modification systems was performed for ZM4 and ZM401 to improve their transformation efficiencies. Comparative genome analysis detected the deletion of a thymine from ZMO1082 in ZM401, leading to a frame-shift mutation for the putative gene to be integrated into the neighboring downstream gene ZMO1083 encoding the catalytic subunit A of cellulose synthase, and consequently created a new gene to encode a larger transmembrane protein BcsA_401 for more efficient synthesis of cellulose as well as the development of cellulose fibrils and their entanglement for the self-flocculation of the mutant. These speculations were confirmed by the morphological observation of the bacterial cells under scanning electron microscopy, the impact of the gene deletion on the self-flocculation of ZM401, and the restoration of the self-flocculating phenotype of ZM401 ΔbcsA by the gene complementation. The progress will lay a foundation not only for fundamental research in deciphering molecular mechanisms underlying the self-flocculation of Z. mobilis and stress tolerance associated with the morphological change but also for technological innovations in engineering non-flocculating Z. mobilis and other bacterial species with the self-flocculating phenotype.


Assuntos
Aderência Bacteriana , Células Imobilizadas/enzimologia , Células Imobilizadas/metabolismo , Celulose/metabolismo , Glucosiltransferases/metabolismo , Zymomonas/enzimologia , Zymomonas/metabolismo , Células Imobilizadas/fisiologia , Enzimas de Restrição-Modificação do DNA , Floculação , Deleção de Genes , Genômica , Glucosiltransferases/genética , Lignina/metabolismo , Engenharia Metabólica , Microscopia Eletrônica de Varredura , Transformação Bacteriana , Zymomonas/citologia , Zymomonas/genética
17.
J Microbiol Biotechnol ; 28(8): 1339-1345, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-29943554

RESUMO

2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase, which catalyzes aldol cleavage and condensation reactions, has two distinct substrate-binding sites. The substrate-binding mode at the catalytic site and Schiff-base formation have been well studied. However, structural information on the phosphate-binding loop (P-loop) is limited. Zymomonas mobilis KDPG aldolase is one of the aldolases with a wide substrate spectrum. Its structure in complex with the substrate-mimicking 3-phosphoglycerate (3PG) shows that the phosphate moiety of 3PG interacts with the P-loop and a nearby conserved serine residue. 3PG-binding to the P-loop replaces water molecules aligned from the P-loop to the catalytic site, as observed in the apo-structure. The extra electron density near the P-loop and comparison with other aldolases suggest the diversity and flexibility of the serine-containing loop among KDPG aldolases. These structural data may help to understand the substrate-binding mode and the broad substrate specificity of the Zymomonas KDPG aldolase.


Assuntos
Domínio AAA , Aldeído Liases/química , Conformação Proteica , Zymomonas/enzimologia , Aldeído Liases/genética , Aldeído Liases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Ácidos Glicéricos/metabolismo , Modelos Moleculares , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
18.
Molecules ; 23(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799483

RESUMO

Currently, the power and usefulness of biocatalysis in organic synthesis is undeniable, mainly due to the very high enantiomeric excess reached using enzymes, in an attempt to emulate natural processes. However, the use of isolated enzymes has some significant drawbacks, the most important of which is cost. The use of whole cells has emerged as a useful strategy with several advantages over isolated enzymes; for this reason, modern research in this field is increasing, and various reports have been published recently. This review surveys the most recent developments in the enantioselective reduction of carbon-carbon double bonds and prochiral ketones and the oxidation of prochiral sulfides using whole cells as biocatalytic systems.


Assuntos
Álcoois/química , Cetonas/química , Penicillium/química , Saccharomyces cerevisiae/química , Sulfetos/química , Zymomonas/química , Álcoois/metabolismo , Biocatálise , Biotransformação , Cetonas/metabolismo , Oxirredução , Penicillium/enzimologia , Saccharomyces cerevisiae/enzimologia , Estereoisomerismo , Sulfetos/metabolismo , Zymomonas/enzimologia
19.
ACS Synth Biol ; 7(1): 187-199, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29017319

RESUMO

When aiming to produce a target chemical at high yield, titer, and productivity, various combinations of genetic parts available to build the target pathway can generate a large number of strains for characterization. This engineering approach will become increasingly laborious and expensive when seeking to develop desirable strains for optimal production of a large space of biochemicals due to extensive screening. Our recent theoretical development of modular cell (MODCELL) design principles can offer a promising solution for rapid generation of optimal strains by coupling a modular cell with exchangeable production modules in a plug-and-play fashion. In this study, we experimentally validated some design properties of MODCELL by demonstrating the following: (i) a modular (chassis) cell is required to couple with a production module, a heterologous ethanol pathway, as a testbed, (ii) degree of coupling between the modular cell and production modules can be modulated to enhance growth and product synthesis, (iii) a modular cell can be used as a host to select an optimal pyruvate decarboxylase (PDC) of the ethanol production module and to help identify a hypothetical PDC protein, and (iv) adaptive laboratory evolution based on growth selection of the modular cell can enhance growth and product synthesis rates. We envision that the MODCELL design provides a powerful prototype for modular cell engineering to rapidly create optimal strains for synthesis of a large space of biochemicals.


Assuntos
Engenharia Celular/métodos , Modelos Biológicos , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Escherichia coli/metabolismo , Etanol/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Análise de Componente Principal , Piruvato Descarboxilase/genética , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia
20.
Enzyme Microb Technol ; 109: 58-65, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29224627

RESUMO

For the sustainable production of acetaldehyde, a key raw-material for a large number of chemical products, microbial production is a promising alternative. We have engineered an Escherichia coli strain for acetaldehyde production from glucose by introducing the pyruvate decarboxylase (Pdc) from Zymomonas mobilis and NADH oxidase (Nox) from Lactococcus lactis. Acetaldehyde production was systematically improved by knocking out the competing metabolic pathways. Multiple knockout strains were created and a final acetaldehyde titre of 0.73g/L was achieved using a quadruple knockout strain E. coli MC4100 ΔadhE ΔldhA ΔfrdC ΔackA-pta. In addition to acetaldehyde, about 0.37g/L acetoin was produced by these strains due to the additional carboligase activity exhibited by pyruvate decarboxylase resulting in a total carbon yield of 0.27g/g glucose.


Assuntos
Acetaldeído/metabolismo , Escherichia coli/metabolismo , Piruvato Descarboxilase/metabolismo , Zymomonas/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Glucose/metabolismo , Lactococcus lactis/enzimologia , Engenharia Metabólica , Redes e Vias Metabólicas , Complexos Multienzimáticos/metabolismo , Mutação , NADH NADPH Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA