Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Neurobiol Aging ; 106: 12-25, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34225000

RESUMO

Synucleinopathies are neurodegenerative disorders involving pathological alpha-synuclein (αSyn) protein, including dementia with Lewy bodies, multiple system atrophy and Parkinson's disease (PD). Current in vivo models of synucleinopathy include transgenic mice overexpressing αSyn variants and methods based on administration of aggregated, exogenous αSyn. Combining these techniques offers the ability to study consequences of introducing pathological αSyn into primed neuronal environments likely to develop synucleinopathy. Herein, we characterize the impacts pre-formed fibrils (PFFs) of recombinant, human αSyn have in mice overexpressing human A30P αSyn, a mutation associated with autosomal dominant PD. A30P mouse brain contains detergent insoluble αSyn biochemically similar to PD brain, and these mice develop Lewy-like synucleinopathy with age. Administration of PFFs in A30P mice resulted in regionally-specific accumulations of phosphorylated synuclein, microglial induction and a motor phenotype that differed from PFF-induced effects in wildtype mice. Surprisingly, PFF-induced losses of tyrosine hydroxylase were similar in A30P and wildtype mice. Thus, the PFF-A30P model recapitulates key aspects of synucleinopathy with induction of microglia, creating an appropriate system for evaluating neurodegenerative therapeutics.


Assuntos
Microglia/patologia , Sinucleinopatias/etiologia , Sinucleinopatias/patologia , alfa-Sinucleína/efeitos adversos , Animais , Modelos Animais de Doenças , Expressão Gênica , Camundongos Transgênicos , Doença de Parkinson/etiologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Sinucleinopatias/genética , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494388

RESUMO

Epidemiological studies associate milk consumption with an increased risk of Parkinson's disease (PD) and type 2 diabetes mellitus (T2D). PD is an α-synucleinopathy associated with mitochondrial dysfunction, oxidative stress, deficient lysosomal clearance of α-synuclein (α-syn) and aggregation of misfolded α-syn. In T2D, α-syn promotes co-aggregation with islet amyloid polypeptide in pancreatic ß-cells. Prion-like vagal nerve-mediated propagation of exosomal α-syn from the gut to the brain and pancreatic islets apparently link both pathologies. Exosomes are critical transmitters of α-syn from cell to cell especially under conditions of compromised autophagy. This review provides translational evidence that milk exosomes (MEX) disturb α-syn homeostasis. MEX are taken up by intestinal epithelial cells and accumulate in the brain after oral administration to mice. The potential uptake of MEX miRNA-148a and miRNA-21 by enteroendocrine cells in the gut, dopaminergic neurons in substantia nigra and pancreatic ß-cells may enhance miRNA-148a/DNMT1-dependent overexpression of α-syn and impair miRNA-148a/PPARGC1A- and miRNA-21/LAMP2A-dependent autophagy driving both diseases. MiRNA-148a- and galactose-induced mitochondrial oxidative stress activate c-Abl-mediated aggregation of α-syn which is exported by exosome release. Via the vagal nerve and/or systemic exosomes, toxic α-syn may spread to dopaminergic neurons and pancreatic ß-cells linking the pathogenesis of PD and T2D.


Assuntos
Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Exossomos/metabolismo , Galactose/metabolismo , Leite/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia , Transporte Biológico , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Galactose/farmacologia , Humanos , Lisossomos/metabolismo , MicroRNAs/genética , Estresse Oxidativo , Doença de Parkinson/patologia , Transdução de Sinais , alfa-Sinucleína/efeitos adversos
3.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210174

RESUMO

Oligomerization and/or aggregation of α-synuclein (α-Syn) triggers α-synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. It is known that α-Syn can spread in the brain like prions; however, the mechanism remains unclear. We demonstrated that fatty acid binding protein 3 (FABP3) promotes propagation of α-Syn in mouse brain. Animals were injected with mouse or human α-Syn pre-formed fibrils (PFF) into the bilateral substantia nigra pars compacta (SNpc). Two weeks after injection of mouse α-Syn PFF, wild-type (WT) mice exhibited motor and cognitive deficits, whereas FABP3 knock-out (Fabp3-/-) mice did not. The number of phosphorylated α-Syn (Ser-129)-positive cells was significantly decreased in Fabp3-/- mouse brain compared to that in WT mice. The SNpc was unilaterally infected with AAV-GFP/FABP3 in Fabp3-/- mice to confirm the involvement of FABP3 in the development of α-Syn PFF toxicity. The number of tyrosine hydroxylase (TH)- and phosphorylated α-Syn (Ser-129)-positive cells following α-Syn PFF injection significantly decreased in Fabp3-/- mice and markedly increased by AAV-GFP/FABP3 infection. Finally, we confirmed that the novel FABP3 inhibitor MF1 significantly antagonized motor and cognitive impairments by preventing α-Syn spreading following α-Syn PFF injection. Overall, FABP3 enhances α-Syn spreading in the brain following α-Syn PFF injection, and the FABP3 ligand MF1 represents an attractive therapeutic candidate for α-synucleinopathy.


Assuntos
Encéfalo/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Cognição , Modelos Animais de Doenças , Proteína 3 Ligante de Ácido Graxo/antagonistas & inibidores , Proteína 3 Ligante de Ácido Graxo/genética , Imunofluorescência , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fosforilação , Sinucleinopatias/etiologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Sinucleinopatias/psicologia , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/efeitos adversos
4.
Ann Neurol ; 86(4): 593-606, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31343083

RESUMO

OBJECTIVE: Excessive inflammation in the central nervous system (CNS) and the periphery can result in neurodegeneration and parkinsonism. Recent evidence suggests that immune responses in Parkinson disease patients are dysregulated, leading to an increased inflammatory reaction to unspecific triggers. Although α-synuclein pathology is the hallmark of Parkinson disease, it has not been investigated whether pathologic α-synuclein is a specific trigger for excessive inflammatory responses in Parkinson disease. METHODS: We investigated the immune response of primary human monocytes and a microglial cell line to pathologic forms of α-synuclein by assessing cytokine release upon exposure. RESULTS: We show that pathologic α-synuclein (mutations, aggregation) results in a robust inflammatory activation of human monocytes and microglial BV2 cells. The activation is conformation- dependent, with increasing fibrillation and early onset mutations having the strongest effect on immune activation. We also found that activation of immune cells by extracellular α-synuclein is potentiated by extracellular vesicles, possibly by facilitating the uptake of α-synuclein. Blood extracellular vesicles from Parkinson disease patients induce a stronger activation of monocytes than blood extracellular vesicles from healthy controls. Most importantly, monocytes from Parkinson disease patients are dysregulated and hyperactive in response to stimulation with pathologic α-synuclein. Furthermore, we demonstrate that α-synuclein pathology in the CNS is sufficient to induce the monocyte dysregulation in the periphery of a mouse model. INTERPRETATION: Taken together, our data suggest that α-synuclein pathology and dysregulation of monocytes in Parkinson disease can act together to induce excessive inflammatory responses to α-synuclein. ANN NEUROL 2019;86:593-606.


Assuntos
Citocinas/metabolismo , Inflamação/metabolismo , Doença de Parkinson/imunologia , alfa-Sinucleína/efeitos adversos , Animais , Células Cultivadas , Vesículas Extracelulares/imunologia , Humanos , Inflamação/complicações , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Monócitos/metabolismo , Mutação , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética
6.
Cell Death Dis ; 10(2): 80, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692508

RESUMO

Progressive accumulation of α-synuclein (α-syn) and exposure to environmental toxins are risk factors that may both concur to Parkinson's disease (PD) pathogenesis. Electrophysiological recordings of field postsynaptic potentials (fEPSPs) and Ca2+ measures in striatal brain slices and differentiated SH-SY5Y cells showed that co-application of α-syn and the neurotoxic pesticide rotenone (Rot) induced Ca2+ dysregulation and alteration of both synaptic transmission and cell function. Interestingly, the presence of the mitochondrial NCX inhibitor CGP-37157 prevented these alterations. The specific involvement of the mitochondrial NCX was confirmed by the inability of the plasma membrane inhibitor SN-6 to counteract such phenomenon. Of note, using a siRNA approach, we found that NCX1 was the isoform specifically involved. These findings suggested that NCX1, operating on the mitochondrial membrane, may have a critical role in the maintenance of ionic Ca2+ homeostasis in PD and that its inhibition most likely exerts a protective effect in the toxicity induced by α-syn and Rot.


Assuntos
Corpo Estriado/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Rotenona/efeitos adversos , Trocador de Sódio e Cálcio/metabolismo , alfa-Sinucleína/efeitos adversos , Animais , Modelos Animais de Doenças , Humanos , Doença de Parkinson , Ratos , Ratos Wistar
7.
Eur J Neurosci ; 49(3): 339-363, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30269383

RESUMO

Our understanding of the mechanisms underlying Parkinson's disease, the once archetypical nongenetic neurogenerative disorder, has dramatically increased with the identification of α-synuclein and LRRK2 pathogenic mutations. While α-synuclein protein composes the aggregates that can spread through much of the brain in disease, LRRK2 encodes a multidomain dual-enzyme distinct from any other protein linked to neurodegeneration. In this review, we discuss emergent datasets from multiple model systems that suggest these unlikely partners do interact in important ways in disease, both within cells that express both LRRK2 and α-synuclein as well as through more indirect pathways that might involve neuroinflammation. Although the link between LRRK2 and disease can be understood in part through LRRK2 kinase activity (phosphotransferase activity), α-synuclein toxicity is multilayered and plausibly interacts with LRRK2 kinase activity in several ways. We discuss common protein interactors like 14-3-3s that may regulate α-synuclein and LRRK2 in disease. Finally, we examine cellular pathways and outcomes common to both mutant α-synuclein expression and LRRK2 activity and points of intersection. Understanding the interplay between these two unlikely partners in disease may provide new therapeutic avenues for PD.


Assuntos
Encéfalo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos adversos , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/efeitos adversos , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Autophagy ; 14(11): 1898-1910, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29989488

RESUMO

The autophagy-lysosome pathway plays a fundamental role in the clearance of aggregated proteins and protection against cellular stress and neurodegenerative conditions. Alterations in autophagy processes, including macroautophagy and chaperone-mediated autophagy (CMA), have been described in Parkinson disease (PD). CMA is a selective autophagic process that depends on LAMP2A (lysosomal-associated membrane protein 2A), a mammal and bird-specific membrane glycoprotein that translocates cytosolic proteins containing a KFERQ-like peptide motif across the lysosomal membrane. Drosophila reportedly lack CMA and use endosomal microautophagy (eMI) as an alternative selective autophagic process. Here we report that neuronal expression of human LAMP2A protected Drosophila against starvation and oxidative stress, and delayed locomotor decline in aging flies without extending their lifespan. LAMP2A also prevented the progressive locomotor and oxidative defects induced by neuronal expression of PD-associated human SNCA (synuclein alpha) with alanine-to-proline mutation at position 30 (SNCAA30P). Using KFERQ-tagged fluorescent biosensors, we observed that LAMP2A expression stimulated selective autophagy in the adult brain and not in the larval fat body, but did not increase this process under starvation conditions. Noteworthy, we found that neurally expressed LAMP2A markedly upregulated levels of Drosophila Atg5, a key macroautophagy initiation protein, and that it increased the density of Atg8a/LC3-positive puncta, which reflects the formation of autophagosomes. Furthermore, LAMP2A efficiently prevented accumulation of the autophagy defect marker Ref(2)P/p62 in the adult brain under acute oxidative stress. These results indicate that LAMP2A can potentiate autophagic flux in the Drosophila brain, leading to enhanced stress resistance and neuroprotection. ABBREVIATIONS: Act5C: actin 5C; a.E.: after eclosion; Atg5: autophagy-related 5; Atg8a/LC3: autophagy-related 8a; CMA: chaperone-mediated autophagy; DHE: dihydroethidium; elav: embryonic lethal abnormal vision; eMI: endosomal microautophagy; ESCRT: endosomal sorting complexes required for transport; GABARAP: GABA typeA receptor-associated protein; Hsc70-4: heat shock protein cognate 4; HSPA8/Hsc70: heat shock protein family A (Hsp70) member 8; LAMP2: lysosomal associated membrane protein 2; MDA: malondialdehyde; PA-mCherry: photoactivable mCherry; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PD: Parkinson disease; Ref(2)P/p62: refractory to sigma P; ROS: reactive oxygen species; RpL32/rp49: ribosomal protein L32; RT-PCR: reverse transcription polymerase chain reaction; SING: startle-induced negative geotaxis; SNCA/α-synuclein: synuclein alpha; SQSTM1/p62: sequestosome 1; TBS: Tris-buffered saline; UAS: upstream activating sequence.


Assuntos
Autofagia/genética , Drosophila , Proteína 2 de Membrana Associada ao Lisossomo/fisiologia , Neuroproteção/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , alfa-Sinucleína/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Drosophila/genética , Drosophila/metabolismo , Humanos , Locomoção/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Estresse Oxidativo/genética , Doença de Parkinson/genética , Fenótipo , Transdução de Sinais/genética , alfa-Sinucleína/efeitos adversos
9.
Neurobiol Aging ; 65: 60-68, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29407467

RESUMO

Parkinson's disease (PD) is no longer primarily classified as a motor disorder due to increasing recognition of the impact on patients of several nonmotor PD symptoms, including cognitive dysfunction. These nonmotor symptoms are highly prevalent and greatly affect the quality of life of patients with PD, and so, therapeutic interventions to alleviate these symptoms are urgently needed. The aim of this study was to investigate the potential neuroprotective effects of voluntary running on cognitive dysfunction in an adeno-associated virus-α-synuclein rat model of PD. Bilateral intranigral administration of adeno-associated virus-α-synuclein was found to induce motor dysfunction and a significant loss of nigral dopaminergic neurons, neither of which were rescued by voluntary running. Overexpression of α-synuclein also resulted in significant impairment on hippocampal neurogenesis-dependent pattern separation, a cognitive task; this was rescued by voluntary running. This was substantiated by an effect of running on neurogenesis levels in the dorsal dentate gyrus, suggesting that the functional effects of running on pattern separation were mediated via increased neurogenesis.


Assuntos
Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Doença de Parkinson/complicações , Corrida/fisiologia , alfa-Sinucleína/efeitos adversos , Animais , Disfunção Cognitiva/patologia , Dependovirus , Modelos Animais de Doenças , Hipocampo/patologia , Masculino , Neurogênese , Ratos Sprague-Dawley
10.
Acta Neuropathol ; 135(1): 49-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28849371

RESUMO

In multiple system atrophy (MSA), progressive neurodegeneration results from the protein α-synuclein misfolding into a self-templating prion conformation that spreads throughout the brain. MSA prions are transmissible to transgenic (Tg) mice expressing mutated human α-synuclein (TgM83+/-), inducing neurological disease following intracranial inoculation with brain homogenate from deceased patient samples. Noting the similarities between α-synuclein prions and PrP scrapie (PrPSc) prions responsible for Creutzfeldt-Jakob disease (CJD), we investigated MSA transmission under conditions known to result in PrPSc transmission. When peripherally exposed to MSA via the peritoneal cavity, hind leg muscle, and tongue, TgM83+/- mice developed neurological signs accompanied by α-synuclein prions in the brain. Iatrogenic CJD, resulting from PrPSc prion adherence to surgical steel instruments, has been investigated by incubating steel sutures in contaminated brain homogenate before implantation into mouse brain. Mice studied using this model for MSA developed disease, whereas wire incubated in control homogenate had no effect on the animals. Notably, formalin fixation did not inactivate α-synuclein prions. Formalin-fixed MSA patient samples also transmitted disease to TgM83+/- mice, even after incubating in fixative for 244 months. Finally, at least 10% sarkosyl was found to be the concentration necessary to partially inactivate MSA prions. These results demonstrate the robustness of α-synuclein prions to denaturation. Moreover, they establish the parallel characteristics between PrPSc and α-synuclein prions, arguing that clinicians should exercise caution when working with materials that might contain α-synuclein prions to prevent disease.


Assuntos
Atrofia de Múltiplos Sistemas/metabolismo , Príons/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Encéfalo/patologia , Detergentes/farmacologia , Modelos Animais de Doenças , Fixadores , Formaldeído , Células HEK293 , Humanos , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Príons/administração & dosagem , Agregados Proteicos , Estabilidade Proteica/efeitos dos fármacos , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Aço Inoxidável , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
PLoS One ; 10(2): e0116841, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658425

RESUMO

The protein α-synuclein (α-Syn) has a central role in the pathogenesis of Parkinson's disease (PD) and immunotherapeutic approaches targeting this molecule have shown promising results. In this study, novel antibodies were generated against specific peptides from full length human α-Syn and evaluated for effectiveness in ameliorating α-Syn-induced cell death and behavioral deficits in an AAV-α-Syn expressing rat model of PD. Fisher 344 rats were injected with rAAV vector into the right substantia nigra (SN), while control rats received an AAV vector expressing green fluorescent protein (GFP). Beginning one week after injection of the AAV-α-Syn vectors, rats were treated intraperitoneally with either control IgG or antibodies against the N-terminal (AB1), or central region (AB2) of α-Syn. An unbiased stereological estimation of TH+, NeuN+, and OX6 (MHC-II) immunostaining revealed that the α-Syn peptide antibodies (AB1 and AB2) significantly inhibited α-Syn-induced dopaminergic cell (DA) and NeuN+ cell loss (one-way ANOVA (F (3, 30) = 5.8, p = 0.002 and (F (3, 29) = 7.92, p = 0.002 respectively), as well as decreasing the number of activated microglia in the ipsilateral SN (one-way ANOVA F = 14.09; p = 0.0003). Antibody treated animals also had lower levels of α-Syn in the ipsilateral SN (one-way ANOVA F (7, 37) = 9.786; p = 0.0001) and demonstrated a partial intermediate improvement of the behavioral deficits. Our data suggest that, in particular, an α-Syn peptide antibody against the N-terminal region of the protein can protect against DA neuron loss and, to some extent behavioral deficits. As such, these results may be a potential therapeutic strategy for halting the progression of PD.


Assuntos
Anticorpos/imunologia , Morte Celular/fisiologia , Neurônios Dopaminérgicos/fisiologia , Imunoterapia/métodos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/imunologia , alfa-Sinucleína/imunologia , Análise de Variância , Animais , Anticorpos/administração & dosagem , Anticorpos/farmacologia , Comportamento Animal/fisiologia , Morte Celular/efeitos dos fármacos , Dependovirus , Neurônios Dopaminérgicos/efeitos dos fármacos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Proteínas de Fluorescência Verde , Humanos , Imuno-Histoquímica , Injeções Intraperitoneais , Ratos , Substância Negra/metabolismo , alfa-Sinucleína/efeitos adversos
13.
Mol Neurobiol ; 47(2): 598-612, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22933040

RESUMO

Epidemiological, population-based case-control, and experimental studies at the molecular, cellular, and organism levels revealed that exposure to various environmental agents, including a number of structurally different agrochemicals, may contribute to the pathogenesis of Parkinson's disease (PD) and several other neurodegenerative disorders. The role of genetic predisposition in PD has also been increasingly acknowledged, driven by the identification of a number of disease-related genes [e.g., α-synuclein, parkin, DJ-1, ubiquitin C-terminal hydrolase isozyme L1 (UCH-L1), and nuclear receptor-related factor 1]. Therefore, the etiology of this multifactorial disease is likely to involve both genetic and environmental factors. Various neurotoxicants, including agrochemicals, have been shown to elevate the levels of α-synuclein expression in neurons and to promote aggregation of this protein in vivo. Many agrochemicals physically interact with α-synuclein and accelerate the fibrillation and aggregation rates of this protein in vitro. This review analyzes some of the aspects linking α-synuclein to PD, provides brief structural and functional descriptions of this important protein, and represents some data connecting exposure to agrochemicals with α-synuclein aggregation and PD pathogenesis.


Assuntos
Agroquímicos/metabolismo , Poluentes Ambientais/metabolismo , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , alfa-Sinucleína/metabolismo , Agroquímicos/química , Agroquímicos/toxicidade , Animais , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Humanos , Doença de Parkinson Secundária/etiologia , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/toxicidade
14.
Mol Neurobiol ; 47(2): 525-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22923367

RESUMO

The toxicity of α-synuclein in the neuropathology of Parkinson's disease which includes its hallmark aggregation has been studied scrupulously in the last decade. Although little is known regarding the normal functions of α-synuclein, its association with membrane phospholipids suggests its potential role in signaling pathways. Following extensive evidences for its nuclear localization, we and others recently demonstrated DNA binding activity of α-synuclein that modulates its conformation as well as aggregation properties. Furthermore, we also underscored the similarities among various amyloidogenic proteins involved in neurodegenerative diseases including amyloid beta peptides and tau. Our more recent studies show that α-synuclein is glycated and glycosylated both in vitro and in neurons, significantly affecting its folding, oligomeric, and DNA binding properties. Glycated α-synuclein causes increased genome damage both via its direct interaction with DNA and by increased generation of reactive oxygen species as glycation byproduct. In this review, we discuss the mechanisms of glycation and other posttranslational modifications of α-synuclein, including phosphorylation and nitration, and their role in neuronal death in Parkinson's disease.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/fisiologia , Animais , Morte Celular/fisiologia , Glicosilação , Humanos , Doença de Parkinson/patologia , Fosforilação/fisiologia , Ligação Proteica/fisiologia , Dobramento de Proteína , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/toxicidade
15.
Mol Neurobiol ; 47(2): 495-508, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22622968

RESUMO

The histopathological hallmark of Parkinson's disease (PD) is the presence of fibrillar aggregates referred to as Lewy bodies (LBs), in which α-synuclein is a major constituent. Pale bodies, the precursors of LBs, may serve the material for that LBs continue to expand. LBs consist of a heterogeneous mixture of more than 90 molecules, including PD-linked gene products (α-synuclein, DJ-1, LRRK2, parkin, and PINK-1), mitochondria-related proteins, and molecules implicated in the ubiquitin-proteasome system, autophagy, and aggresome formation. LB formation has been considered to be a marker for neuronal degeneration because neuronal loss is found in the predilection sites for LBs. However, recent studies have indicated that nonfibrillar α-synuclein is cytotoxic and that fibrillar aggregates of α-synuclein (LBs and pale bodies) may represent a cytoprotective mechanism in PD.


Assuntos
Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Humanos , Corpos de Lewy/fisiologia , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/prevenção & controle , Doença de Parkinson/prevenção & controle , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/toxicidade
16.
PLoS One ; 7(9): e45256, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028885

RESUMO

Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action.


Assuntos
Dieta , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/dietoterapia , Spirulina/química , Substância Negra/efeitos dos fármacos , alfa-Sinucleína/efeitos adversos , Animais , Receptor 1 de Quimiocina CX3C , Dependovirus/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Injeções Intraventriculares , Masculino , Microglia/metabolismo , Microglia/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/metabolismo , Doença de Parkinson Secundária/patologia , Ratos , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Substância Negra/metabolismo , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
17.
J Exp Med ; 209(5): 975-86, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22508839

RESUMO

The accumulation of misfolded proteins is a fundamental pathogenic process in neurodegenerative diseases. However, the factors that trigger aggregation of α-Synuclein (α-Syn), the principal component of the intraneuronal inclusions known as Lewy bodies (LBs), and Lewy neurites (LNs), which characterize Parkinson's disease (PD) and dementia with LBs (DLB), are poorly understood. We show here that in young asymptomatic α-Syn transgenic (Tg) mice, intracerebral injections of brain homogenates derived from older Tg mice exhibiting α-Syn pathology accelerate both the formation of intracellular LB/LN-like inclusions and the onset of neurological symptoms in recipient animals. Pathological α-Syn propagated along major central nervous system (CNS) pathways to regions far beyond injection sites and reduced survival with a highly reproducible interval from injection to death in inoculated animals. Importantly, inoculation with α-Syn amyloid fibrils assembled from recombinant human α-Syn induced identical consequences. Furthermore, we show for the first time that synthetic α-Syn fibrils are wholly sufficient to initiate PD-like LBs/LNs and to transmit disease in vivo. Thus, our data point to a prion-like cascade in synucleinopathies whereby cell-cell transmission and propagation of misfolded α-Syn underlie the CNS spread of LBs/LNs. These findings open up new avenues for understanding the progression of PD and for developing novel therapeutics.


Assuntos
Amiloide/efeitos adversos , Encéfalo/patologia , Doença por Corpos de Lewy/induzido quimicamente , Doença por Corpos de Lewy/patologia , alfa-Sinucleína/efeitos adversos , Amiloide/administração & dosagem , Animais , Humanos , Imuno-Histoquímica , Injeções , Masculino , Camundongos , Camundongos Transgênicos , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética
18.
Parkinsonism Relat Disord ; 18 Suppl 1: S24-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22166445

RESUMO

Accumulation of alpha-synuclein is a pathological feature in several neurological diseases. Its characterization has allowed for a re-grouping of diseases according to the expected pathology. The clinical syndrome of PD can now be classified into forms with and without alpha-synuclein pathology. DLB and PDD are synucleinopathies, and MSA shows alpha-synuclein pathology with glial inclusions. ADHD symptoms commonly occur in persons that will subsequently develop DLB. A similar phenomenon may be the early personality changes and frontotemporal atrophy in patients with SNCA multiplication. RLS is not known to have alpha-synuclein pathology, but as PD and ADHD, involves a hypodopaminergic state. Furthermore, PD and RLS co-occur in families in a way that suggests common inheritance. A proportion of patients with ET have brainstem Lewy body pathology. Gaucher disease and other lysosomal storage disorders also have alpha-synuclein pathology. Alpha-synuclein is a naturally unfolded protein. Non-fibrillar oligomeres may be the toxic species, and Lewy body formation may in fact be protective. Inhibiting alpha-synuclein toxicity seems to be an attractive novel treatment strategy and several approaches are being developed. When such treatments become available, clinicians will need to be familiar with the clinical features that distinguish the synucleinopathies from their look-alikes.


Assuntos
Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sinucleínas/efeitos adversos , alfa-Sinucleína/efeitos adversos , Animais , Química Encefálica/genética , Química Encefálica/fisiologia , Humanos , Doença por Corpos de Lewy/genética , Doença de Parkinson/genética , Sinucleínas/genética , Sinucleínas/fisiologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
19.
Parkinsonism Relat Disord ; 18 Suppl 1: S28-30, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22166446

RESUMO

Parkinson's disease (PD) is characterized by a gradual accumulation of neuropathology that may begin many years before a clinical diagnosis can be made using currently accepted criteria. Here, we first review the prevalence of α-synuclein neuropathology in elderly and discuss its clinical relevance in Parkinson patients. Subsequently, the results of a retrospective study focussing on the distribution of neuropathology in Parkinson patients with a tremor-dominant (TD), non-tremordominant (NTD) or rapid disease progression (RDP) subtype are presented. The study population recruited by the Netherlands Brain bank consisted of 149 non-neurological donors, 26 donors with incidental Lewy body disease (iLBD) and 111 Parkinson patients. In total, 89% of these cases could be classified in accordance with the Braak staging when taking into account the severity of α-synuclein pathology and adding an amygdala-predominant category of synucleinopathy. The pathological progression seemed to be non-linear. Interestingly, a strong correlation between neuronal loss and α-synuclein pathology was observed in the substantia nigra in Braak stages 3-6 (P < 0.01). However, there was no correlation between Hoehn & Yahr and Braak stages. Neuropathological progression may, however, vary between subtypes as cortical Lewy body load and Braak stages were higher in patients with NTD compared to TD and Alzheimer pathology was more prevalent in RDP patients. Recognition of clinical subtypes in neuropathological studies is essential to identify selective vulnerability to protein accumulation that may determine the clinical phenotype in PD.


Assuntos
Achados Incidentais , Doença de Parkinson/classificação , Doença de Parkinson/patologia , alfa-Sinucleína/efeitos adversos , Animais , Progressão da Doença , Humanos , Doença de Parkinson/genética , Estudos Retrospectivos , Tremor/classificação , Tremor/genética , Tremor/patologia
20.
Neuron ; 72(1): 57-71, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21982369

RESUMO

Inclusions composed of α-synuclein (α-syn), i.e., Lewy bodies (LBs) and Lewy neurites (LNs), define synucleinopathies including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Here, we demonstrate that preformed fibrils generated from full-length and truncated recombinant α-syn enter primary neurons, probably by adsorptive-mediated endocytosis, and promote recruitment of soluble endogenous α-syn into insoluble PD-like LBs and LNs. Remarkably, endogenous α-syn was sufficient for formation of these aggregates, and overexpression of wild-type or mutant α-syn was not required. LN-like pathology first developed in axons and propagated to form LB-like inclusions in perikarya. Accumulation of pathologic α-syn led to selective decreases in synaptic proteins, progressive impairments in neuronal excitability and connectivity, and, eventually, neuron death. Thus, our data contribute important insights into the etiology and pathogenesis of PD-like α-syn inclusions and their impact on neuronal functions, and they provide a model for discovering therapeutics targeting pathologic α-syn-mediated neurodegeneration.


Assuntos
Morte Celular/fisiologia , Corpos de Lewy/patologia , Neurônios/patologia , Sinapses/patologia , alfa-Sinucleína/efeitos adversos , alfa-Sinucleína/metabolismo , Animais , Transporte Axonal/fisiologia , Endocitose/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Humanos , Corpos de Lewy/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Proteínas do Tecido Nervoso/metabolismo , Neuritos/metabolismo , Neuritos/patologia , Neurônios/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Cultura Primária de Células , Sinapses/metabolismo , Imagens com Corantes Sensíveis à Voltagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA