Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 8(5)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36883568

RESUMO

WHIM syndrome is an inherited immune disorder caused by an autosomal dominant heterozygous mutation in CXCR4. The disease is characterized by neutropenia/leukopenia (secondary to retention of mature neutrophils in bone marrow), recurrent bacterial infections, treatment-refractory warts, and hypogammaglobulinemia. All mutations reported in WHIM patients lead to the truncations in the C-terminal domain of CXCR4, R334X being the most frequent. This defect prevents receptor internalization and enhances both calcium mobilization and ERK phosphorylation, resulting in increased chemotaxis in response to the unique ligand CXCL12. Here, we describe 3 patients presenting neutropenia and myelokathexis, but normal lymphocyte count and immunoglobulin levels, carrying what we believe to be a novel Leu317fsX3 mutation in CXCR4, leading to a complete truncation of its intracellular tail. The analysis of the L317fsX3 mutation in cells derived from patients and in vitro cellular models reveals unique signaling features in comparison with R334X mutation. The L317fsX3 mutation impairs CXCR4 downregulation and ß-arrestin recruitment in response to CXCL12 and reduces other signaling events - including ERK1/2 phosphorylation, calcium mobilization, and chemotaxis - all processes that are typically enhanced in cells carrying the R334X mutation. Our findings suggest that, overall, the L317fsX3 mutation may be causative of a form of WHIM syndrome not associated with an augmented CXCR4 response to CXCL12.


Assuntos
Proteínas de Ligação ao GTP , Doenças da Imunodeficiência Primária , beta-Arrestinas , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/imunologia , beta-Arrestinas/genética , beta-Arrestinas/imunologia , Cálcio/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Mutação , Neutropenia/genética , Neutropenia/imunologia , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/imunologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Verrugas/genética , Verrugas/imunologia
2.
BMC Biotechnol ; 21(1): 41, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34225700

RESUMO

BACKGROUND: CCR6 chemokine receptor is an important target in inflammatory diseases. Th17 cells express CCR6 and a number of inflammatory cytokines, including IL-17 and IL-22, which are involved in the propagation of inflammatory immune responses. CCR6 antagonist would be a potential treatment for inflammatory diseases such as psoriasis or rheumatoid arthritis. The aim of this study is to develop an antagonistic monoclonal antibody (mAb) against human CCR6 receptor (hCCR6). RESULTS: We generate monoclonal antibodies against hCCR6 immunizing Balb/c mice with hCCR6 overexpressing cells. The antibodies were tested by flow cytometry for specific binding to hCCR6, cloned by limiting dilution and resulted in the isolation and purification monoclonal antibody 1C6. By ELISA and flow cytometry, was determined that the antibody obtained binds to hCCR6 N-terminal domain. The ability of 1C6 to neutralize hCCR6 signaling was tested and we determined that 1C6 antibody were able to block response in ß-arrestin recruitment assay with IC50 10.23 nM, but did not inhibit calcium mobilization. In addition, we found in a chemotaxis assay that 1C6 reduces the migration of hCCR6 cells to their ligand CCL20. Finally, we determined by RT-qPCR that the expression of IL-17A in Th17 cells treated with 1C6 was inhibited. CONCLUSIONS: In the present study, we applied whole cell immunization for successfully obtain an antibody that is capable to neutralize hCCR6 signaling and to reduce hCCR6 cells migration and IL-17 expression. These results provide an efficient approach to obtain therapeutic potential antibodies in the treatment of CCR6-mediated inflammatory diseases.


Assuntos
Anticorpos Monoclonais/imunologia , Quimiocina CCL20/imunologia , Interleucina-17/imunologia , Receptores CCR6/química , Receptores CCR6/imunologia , beta-Arrestinas/imunologia , Animais , Quimiocina CCL20/genética , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos BALB C , Domínios Proteicos , Receptores CCR6/genética , Transdução de Sinais , beta-Arrestinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA