RESUMO
Fossil proteins are valuable tools in evolutionary biology. Recent technological advances and better integration of experimental methods have confirmed the feasibility of biomolecular preservation in deep time, yielding new insights into the timing of key evolutionary transitions. Keratins (formerly α-keratins) and corneous ß-proteins (CBPs, formerly ß-keratins) are of particular interest as they define tissue structures that underpin fundamental physiological and ecological strategies and have the potential to inform on the molecular evolution of the vertebrate integument. Reports of CBPs in Mesozoic fossils, however, appear to conflict with experimental evidence for CBP degradation during fossilization. Further, the recent model for molecular modification of feather chemistry during the dinosaur-bird transition does not consider the relative preservation potential of different feather proteins. Here we use controlled taphonomic experiments coupled with infrared and sulfur X-ray spectroscopy to show that the dominant ß-sheet structure of CBPs is progressively altered to α-helices with increasing temperature, suggesting that (α-)keratins and α-helices in fossil feathers are most likely artefacts of fossilization. Our analyses of fossil feathers shows that this process is independent of geological age, as even Cenozoic feathers can comprise primarily α-helices and disordered structures. Critically, our experiments show that feather CBPs can survive moderate thermal maturation. As predicted by our experiments, analyses of Mesozoic feathers confirm that evidence of feather CBPs can persist through deep time.
Assuntos
Plumas , beta-Queratinas , Animais , Queratinas/análise , Queratinas/genética , Queratinas/metabolismo , beta-Queratinas/análise , beta-Queratinas/genética , beta-Queratinas/metabolismo , Evolução Biológica , PeleRESUMO
BACKGROUND: Animals develop skin regional specificities to best adapt to their environments. Birds are excellent models in which to study the epigenetic mechanisms that facilitate these adaptions. Patients suffering from SATB2 mutations exhibit multiple defects including ectodermal dysplasia-like changes. The preferential expression of SATB2, a chromatin regulator, in feather-forming compared to scale-forming regions, suggests it functions in regional specification of chicken skin appendages by acting on either differentiation or morphogenesis. RESULTS: Retrovirus mediated SATB2 misexpression in developing feathers, beaks, and claws causes epidermal differentiation abnormalities (e.g. knobs, plaques) with few organ morphology alterations. Chicken ß-keratins are encoded in 5 sub-clusters (Claw, Feather, Feather-like, Scale, and Keratinocyte) on Chromosome 25 and a large Feather keratin cluster on Chromosome 27. Type I and II α-keratin clusters are located on Chromosomes 27 and 33, respectively. Transcriptome analyses showed these keratins (1) are often tuned up or down collectively as a sub-cluster, and (2) these changes occur in a temporo-spatial specific manner. CONCLUSIONS: These results suggest an organizing role of SATB2 in cluster-level gene co-regulation during skin regional specification.
Assuntos
beta-Queratinas , Animais , Galinhas/genética , Plumas/metabolismo , Queratinas/genética , Queratinas/metabolismo , Família Multigênica , beta-Queratinas/genética , beta-Queratinas/metabolismoRESUMO
The epidermal differentiation complex (EDC) encodes a group of unique proteins expressed in late epidermal differentiation. The EDC gave integuments new physicochemical properties and is critical in evolution. Recently, we showed ß-keratins, members of the EDC, undergo gene cluster switching with overexpression of SATB2 (Special AT-rich binding protein-2), considered a chromatin regulator. We wondered whether this unique regulatory mechanism is specific to ß-keratins or may be derived from and common to EDC members. Here we explore (1) the systematic expression patterns of non-ß-keratin EDC genes and their preferential expression in different skin appendages during development, (2) whether the expression of non-ß-keratin EDC sub-clusters are also regulated in clusters by SATB2. We analyzed bulk RNA-seq and ChIP-seq data and also evaluated the disrupted expression patterns caused by overexpressing SATB2. The results show that the expression of whole EDDA and EDQM sub-clusters are possibly mediated by enhancers in E14-feathers. Overexpressing SATB2 down-regulates the enriched EDCRP sub-cluster in feathers and the EDCH sub-cluster in beaks. These results reveal the potential of complex epigenetic regulation activities within the avian EDC, implying transcriptional regulation of EDC members acting at the gene and/or gene cluster level in a temporal and skin regional-specific fashion, which may contribute to the evolution of diverse avian integuments.
Assuntos
Epiderme/crescimento & desenvolvimento , Tegumento Comum/crescimento & desenvolvimento , Proteínas de Ligação à Região de Interação com a Matriz/genética , beta-Queratinas/genética , Animais , Proteínas Aviárias/genética , Aves/genética , Aves/crescimento & desenvolvimento , Diferenciação Celular/genética , Cromossomos/genética , Epiderme/metabolismo , Epigênese Genética/genética , Evolução Molecular , Plumas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Pele/crescimento & desenvolvimento , Pele/metabolismo , Fatores de Transcrição/genéticaRESUMO
The ß-keratin chain with four 34-residue repeats that is conserved across the lepidosaurs (lizards, snakes and tuatara) contains three linker regions as well as a short, conserved N-terminal domain and a longer, more variable C-terminal domain. Earlier modelling had shown that only six classes of structure involving the four 34-residue repeats were possible. In three of these the 34-residue repeats were confined to a single filament (Classes 1, 2 and 3) whereas in the remaining three classes the repeats lay in two, three or four filaments, with some of the linkers forming interfilament connections (Classes 4, 5 and 6). In this work the members of each class of structure (a total of 20 arrangements) have been described and a comparison has been made of the topologies of each of the linker regions. This provides new constraints on the structure of the chain as a whole. Also, analysis of the sequences of the three linker regions has revealed that the central linker (and only the central linker) contains four short regions displaying a distinctive dipeptide repeat of the form (S-X)2,3 separated by short regions containing proline and cysteine residues. By analogy with silk fibroin proteins this has the capability of forming a ß-sheet-like conformation. Using the topology and sequence data the evidence suggests that the four 34-residue repeat chain adopts a Class 4a structure with a ß-sandwich in filament 1 connected through the central linker to a ß-sandwich in filament 2.
Assuntos
Sequência Conservada/genética , Sequências de Repetição em Tandem/genética , beta-Queratinas/genética , Sequência de Aminoácidos , Animais , Cisteína/genética , Prolina/genética , Domínios Proteicos/genéticaRESUMO
Mechanisms controlling skin heterogeneity are poorly understood. In this issue of Developmental Cell, Liang et al. show that in chicken, the difference in ß-keratin genes expressed in feathered and scaly skin is regulated via typical enhancers, while differential expression within individual feathers correlates with chromatin looping within the gene cluster.
Assuntos
Plumas , beta-Queratinas , Animais , Cromatina/genética , Queratinas , Família Multigênica , beta-Queratinas/genéticaRESUMO
Regional specification is critical for skin development, regeneration, and evolution. The contribution of epigenetics in this process remains unknown. Here, using avian epidermis, we find two major strategies regulate ß-keratin gene clusters. (1) Over the body, macro-regional specificities (scales, feathers, claws, etc.) established by typical enhancers control five subclusters located within the epidermal differentiation complex on chromosome 25; (2) within a feather, micro-regional specificities are orchestrated by temporospatial chromatin looping of the feather ß-keratin gene cluster on chromosome 27. Analyses suggest a three-factor model for regional specification: competence factors (e.g., AP1) make chromatin accessible, regional specifiers (e.g., Zic1) target specific genome regions, and chromatin regulators (e.g., CTCF and SATBs) establish looping configurations. Gene perturbations disrupt morphogenesis and histo-differentiation. This chicken skin paradigm advances our understanding of how regulation of big gene clusters can set up a two-dimensional body surface map.
Assuntos
Proteínas Aviárias/metabolismo , Fator de Ligação a CCCTC/metabolismo , Montagem e Desmontagem da Cromatina , Células Epiteliais/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Morfogênese , beta-Queratinas/genética , Animais , Proteínas Aviárias/genética , Fator de Ligação a CCCTC/genética , Diferenciação Celular , Embrião de Galinha , Cromossomos/genética , Células Epiteliais/citologia , Plumas/citologia , Plumas/embriologia , Plumas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Família MultigênicaRESUMO
Corneous proteins are an important component of the tetrapod integument. Duplication and diversification of keratins and associated proteins are linked with the origin of most novel integumentary structures like mammalian hair, avian feathers, and scutes covering turtle shells. Accordingly, the loss of integumentary structures often coincides with the loss of genes encoding keratin and associated proteins. For example, many hair keratins in dolphins and whales have become pseudogenes. The adhesive setae of geckos and anoles are composed of both intermediate filament keratins (IF-keratins, formerly known as alpha-keratins) and corneous beta-proteins (CBPs, formerly known as beta-keratins) and recent whole genome assemblies of two gecko species and an anole uncovered duplications in seta-specific CBPs in each of these lineages. While anoles evolved adhesive toepads just once, there are two competing hypotheses about the origin(s) of digital adhesion in geckos involving either a single origin or multiple origins. Using data from three published gecko genomes, I examine CBP gene evolution in geckos and find support for a hypothesis where CBP gene duplications are associated with the repeated evolution of digital adhesion. Although these results are preliminary, I discuss how additional gecko genome assemblies, combined with phylogenies of keratin and associated protein genes and gene duplication models, can provide rigorous tests of several hypotheses related to gecko CBP evolution. This includes a taxon sampling strategy for sequencing and assembly of gecko genomes that could help resolve competing hypotheses surrounding the origin(s) of digital adhesion.
Assuntos
Evolução Molecular , Duplicação Gênica , Queratinas/genética , Lagartos/fisiologia , Proteínas de Répteis/genética , beta-Queratinas/genética , Animais , Queratinas/metabolismo , Lagartos/genética , Filogenia , Proteínas de Répteis/metabolismo , beta-Queratinas/metabolismoRESUMO
In all amniotes specialized intermediate filament keratins (IF-keratins), in addition to keratin-associated and corneous proteins form the outermost cornified layer of the epidermis. Only in reptiles and birds (sauropsids) the epidermis of scales, claws, beaks, and feathers, largely comprises small proteins formerly indicated as "beta-keratins" but here identified as corneous beta-proteins (CBPs) to avoid confusion with true keratins. Genes coding for CBPs have evolved within the epidermal differentiation complex (EDC), a locus with no relationship with those of IF-keratins. CBP genes have the same exon-intron structure as EDC genes encoding other corneous proteins of sauropsids and mammals, but they are unique by encoding a peculiar internal amino acid sequence motif beta-sheet region that allows formation of CBP filaments in the epidermis and epidermal appendages of reptiles and birds. In contrast, skin appendages of mammals, like hairs, claws, horns and nails, contain keratin-associated proteins that, like IF-keratin genes, are encoded by genes in loci different from the EDC. Phylogenetic analysis shows that lepidosaurian (lizards and snakes) and nonlepidosaurian (crocodilians, birds, and turtles) CBPs form two separate clades that likely originated after the divergence of these groups of sauropsids in the Permian Period. Clade-specific CBPs evolved to make most of the corneous material of feathers in birds and of the shell in turtles. Based on the recent identification of the complete sets of CBPs in all major phylogenetic clades of sauropsids, this review provides a comprehensive overview of the molecular evolution of CBPs.
Assuntos
Evolução Biológica , Aves/metabolismo , Epiderme/metabolismo , Répteis/metabolismo , beta-Queratinas/metabolismo , Animais , Aves/genética , Regulação da Expressão Gênica , Répteis/genética , beta-Queratinas/genéticaRESUMO
The origin of feathers is an important question in Evo-Devo studies, with the eventual evolution of vaned feathers which are aerodynamic, allowing feathered dinosaurs and early birds to fly and venture into new ecological niches. Studying how feathers and scales are developmentally specified provides insight into how a new organ may evolve. We identified feather-associated genes using genomic analyses. The candidate genes were tested by expressing them in chicken and alligator scale forming regions. Ectopic expression of these genes induced intermediate morphotypes between scales and feathers which revealed several major morphogenetic events along this path: Localized growth zone formation, follicle invagination, epithelial branching, feather keratin differentiation, and dermal papilla formation. In addition to molecules known to induce feathers on scales (retinoic acid, ß-catenin), we identified novel scale-feather converters (Sox2, Zic1, Grem1, Spry2, Sox18) which induce one or more regulatory modules guiding these morphogenetic events. Some morphotypes resemble filamentous appendages found in feathered dinosaur fossils, whereas others exhibit characteristics of modern avian feathers. We propose these morpho-regulatory modules were used to diversify archosaur scales and to initiate feather evolution. The regulatory combination and hierarchical integration may have led to the formation of extant feather forms. Our study highlights the importance of integrating discoveries between developmental biology and paleontology.
Assuntos
Escamas de Animais , Evolução Biológica , Plumas , Morfogênese/genética , Jacarés e Crocodilos , Animais , Embrião de Galinha , Perfilação da Expressão Gênica , Genômica , Fenótipo , Fatores de Transcrição , beta-Queratinas/genética , beta-Queratinas/metabolismoRESUMO
Feathers, which are mainly composed of α- and ß-keratins, are highly diversified, largely owing to duplication and diversification of ß-keratin genes during bird evolution. However, little is known about the regulatory changes that contributed to the expressional diversification of ß-keratin genes. To address this issue, we studied transcriptomes from five different parts of chicken contour and flight feathers. From these transcriptomes we inferred ß-keratin enriched co-expression modules of genes and predicted transcription factors (TFs) of ß-keratin genes. In total, we predicted 262 TF-target gene relationships in which 56 TFs regulate 91 ß-keratin genes; we validated 14 of them by in vitro tests. A dual criterion of TF enrichment and "TF-target gene" expression correlation identified 26 TFs as the major regulators of ß-keratin genes. According to our predictions, the ancestral scale and claw ß-keratin genes have common and unique regulators, whereas most feather ß-keratin genes show chromosome-wise regulation, distinct from scale and claw ß-keratin genes. Thus, after expansion from the ß-keratin gene on Chr7 to other chromosomes, which still shares a TF with scale and claw ß-keratin genes, most feather ß-keratin genes have recruited distinct or chromosome-specific regulators. Moreover, our data showed correlated gene expression profiles, positive or negative, between predicted TFs and their target genes over the five studied feather regions. Therefore, regulatory divergences among feather ß-keratin genes have contributed to structural differences among different parts of feathers. Our study sheds light on how feather ß-keratin genes have diverged in regulation from scale and claw ß-keratin genes and among themselves.
Assuntos
Galinhas/genética , Plumas/fisiologia , Regulação da Expressão Gênica/genética , beta-Queratinas/genética , Animais , Evolução Biológica , Evolução Molecular , Plumas/metabolismo , Variação Genética , Família Multigênica , Análise de Sequência de DNA/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma , beta-Queratinas/metabolismoRESUMO
Avian integumentary organs include feathers, scales, claws, and beaks. They cover the body surface and play various functions to help adapt birds to diverse environments. These keratinized structures are mainly composed of corneous materials made of α-keratins, which exist in all vertebrates, and ß-keratins, which only exist in birds and reptiles. Here, members of the keratin gene families were used to study how gene family evolution contributes to novelty and adaptation, focusing on tissue morphogenesis. Using chicken as a model, we applied RNA-seq and in situ hybridization to map α- and ß-keratin genes in various skin appendages at embryonic developmental stages. The data demonstrate that temporal and spatial α- and ß-keratin expression is involved in establishing the diversity of skin appendage phenotypes. Embryonic feathers express a higher proportion of ß-keratin genes than other skin regions. In feather filament morphogenesis, ß-keratins show intricate complexity in diverse substructures of feather branches. To explore functional interactions, we used a retrovirus transgenic system to ectopically express mutant α- or antisense ß-keratin forms. α- and ß-keratins show mutual dependence and mutations in either keratin type results in disrupted keratin networks and failure to form proper feather branches. Our data suggest that combinations of α- and ß-keratin genes contribute to the morphological and structural diversity of different avian skin appendages, with feather-ß-keratins conferring more possible composites in building intrafeather architecture complexity, setting up a platform of morphological evolution of functional forms in feathers.
Assuntos
Evolução Biológica , Mapeamento Cromossômico , Queratinas/genética , Pele/embriologia , beta-Queratinas/genética , Animais , Embrião de Galinha , Hibridização In Situ , Queratina-13/genética , RNA Antissenso/farmacologia , Pele/metabolismoRESUMO
BACKGROUND: Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (ß) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. RESULTS: We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The ß-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather ß-keratins comprise a large majority of the total number of ß-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather ß-keratin genes and larger proportions of keratinocyte ß-keratin genes. Additionally, birds of prey have a larger proportion of claw ß-keratins. Analysis of α- and ß-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed ß-keratin genes far exceeds that of α-keratins. CONCLUSIONS: These results support the view that the number of α- and ß-keratin genes expressed, the proportion of the ß-keratin subfamily genes expressed and the diversification of the ß-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.
Assuntos
Proteínas Aviárias/genética , Aves/classificação , Aves/genética , Evolução Molecular , Queratinas/genética , beta-Queratinas/genética , Animais , Aves/fisiologia , Plumas/crescimento & desenvolvimento , Humanos , Mamíferos/genética , Família Multigênica , FilogeniaRESUMO
Feathers are hallmark avian integument appendages, although they were also present on theropods. They are composed of flexible corneous materials made of α- and ß-keratins, but their genomic organization and their functional roles in feathers have not been well studied. First, we made an exhaustive search of α- and ß-keratin genes in the new chicken genome assembly (Galgal4). Then, using transcriptomic analysis, we studied α- and ß-keratin gene expression patterns in five types of feather epidermis. The expression patterns of ß-keratin genes were different in different feather types, whereas those of α-keratin genes were less variable. In addition, we obtained extensive α- and ß-keratin mRNA in situ hybridization data, showing that α-keratins and ß-keratins are preferentially expressed in different parts of the feather components. Together, our data suggest that feather morphological and structural diversity can largely be attributed to differential combinations of α- and ß-keratin genes in different intrafeather regions and/or feather types from different body parts. The expression profiles provide new insights into the evolutionary origin and diversification of feathers. Finally, functional analysis using mutant chicken keratin forms based on those found in the human α-keratin mutation database led to abnormal phenotypes. This demonstrates that the chicken can be a convenient model for studying the molecular biology of human keratin-based diseases.
Assuntos
Proteínas Aviárias/genética , Galinhas/genética , Plumas/metabolismo , Queratinas/genética , beta-Queratinas/genética , Animais , Proteínas Aviárias/metabolismo , Galinhas/classificação , Galinhas/crescimento & desenvolvimento , Galinhas/metabolismo , Evolução Molecular , Plumas/química , Plumas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Genômica , Humanos , Queratinas/metabolismo , Família Multigênica , Filogenia , beta-Queratinas/metabolismoRESUMO
Feathers are elaborate skin appendages shared by birds and theropod dinosaurs that have hierarchical branching of the rachis, barbs, and barbules. Feather filaments consist of ß-keratins encoded by multiple genes, most of which are located in tandem arrays on chromosomes 2, 25, and 27 in chicken. The expansion of the genes is thought to have contributed to feather evolution; however, it is unclear how the individual genes are involved in feather formation. The aim of the present study was to identify feather keratin genes involved in the formation of barbules. Using a combination of microarray analysis, reverse-transcription polymerase chain reaction, and in situ hybridization, we found an uncharacterized keratin gene on chromosome 7 that was expressed specifically in barbule cells in regenerating chicken feathers. We have named the gene barbule specific keratin 1 (BlSK1). The BlSK1 gene structure was similar to the gene structure of previously characterized feather keratin genes, and consisted of a non-coding leader exon, an intron, and an exon with an open reading frame (ORF). The ORF was predicted to encode a 98 aa long protein, which shared 59% identity with feather keratin B. Orthologs of BlSK1 were found in the genomes of other avian species, including turkey, duck, zebra finch, and flycatcher, in regions that shared synteny with chromosome 7 of chicken. Interestingly, BlSK1 was expressed in feather follicles that generated pennaceous barbules but not in follicles that generated plumulaceous barbules. These results suggested that the composition of feather keratins probably varies depending on the structure of the feather filaments and, that individual feather keratin genes may be involved in building different portions and/or types of feathers in chicken.
Assuntos
Galinhas/genética , Plumas/citologia , Plumas/metabolismo , Regulação da Expressão Gênica , beta-Queratinas/genética , Animais , Sequência de Bases , Evolução Biológica , Estradiol/farmacologia , Feminino , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , RNA Mensageiro/biossíntese , Alinhamento de SequênciaRESUMO
The archosauria consist of two living groups, crocodilians, and birds. Here we compare the structure, expression, and phylogeny of the beta (ß)-keratins in two crocodilian genomes and two avian genomes to gain a better understanding of the evolutionary origin of the feather ß-keratins. Unlike squamates such as the green anole with 40 ß-keratins in its genome, the chicken and zebra finch genomes have over 100 ß-keratin genes in their genomes, while the American alligator has 20 ß-keratin genes, and the saltwater crocodile has 21 ß-keratin genes. The crocodilian ß-keratins are similar to those of birds and these structural proteins have a central filament domain and N- and C-termini, which contribute to the matrix material between the twisted ß-sheets, which form the 2-3 nm filament. Overall the expression of alligator ß-keratin genes in the integument increases during development. Phylogenetic analysis demonstrates that a crocodilian ß-keratin clade forms a monophyletic group with the avian scale and feather ß-keratins, suggesting that avian scale and feather ß-keratins along with a subset of crocodilian ß-keratins evolved from a common ancestral gene/s. Overall, our analyses support the view that the epidermal appendages of basal archosaurs used a diverse array of ß-keratins, which evolved into crocodilian and avian specific clades. In birds, the scale and feather subfamilies appear to have evolved independently in the avian lineage from a subset of archosaurian claw ß-keratins. The expansion of the avian specific feather ß-keratin genes accompanied the diversification of birds and the evolution of feathers.
Assuntos
Jacarés e Crocodilos/genética , Aves/genética , Evolução Molecular , Plumas/metabolismo , beta-Queratinas/genética , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase/veterinária , RNA/química , RNA/genética , Alinhamento de Sequência , Análise de Sequência de DNARESUMO
The feather aerofoil is unequalled in nature. It is comprised of a central rachis, serial paired branches or barbs, from which arise further branches, the barbules. Barbs and barbules arise from the significantly thinner lateral walls (the epicortex) of the rachis and barbs respectively, as opposed to the thicker dorsal and ventral walls (the cortex). We hypothesized a microstructural design of the epicortex that would resist the vertical or shearing stresses. The microstructures of the cortex and epicortex of the rachis and barbs were investigated in several bird species by microbe-assisted selective disassembly and conventional methods via scanning electron microscopy. We report, preeminent of the finds, a novel system of crossed fibres (ranging from â¼100-800 nm in diameter), oppositely oriented in alternate layers of the epicortex in the rachis and barbs. It represents the first cross-fibre microstructure, not only for the feather but in keratin per se. The cortex of the barbs is comprised of syncitial barbule cells, definitive structural units shown in the rachidial cortex in a related study. The structural connection between the cortex of the rachis and barbs appears uninterrupted. A new model on feather microstructure incorporating the findings here and in the related study is presented. The helical fibre system found in the integument of a diverse range of invertebrates and vertebrates has been implicated in profound functional strategies, perhaps none more so potentially than in the aerofoil microstructure of the feather here, which is central to one of the marvels of nature, bird flight.
Assuntos
Aves/metabolismo , Galinhas/metabolismo , Falconiformes/metabolismo , Estresse Mecânico , Estrigiformes/metabolismo , beta-Queratinas/química , Animais , Fenômenos Biomecânicos , Aves/microbiologia , Galinhas/microbiologia , Falconiformes/microbiologia , Voo Animal , Fungos , Estrigiformes/microbiologia , beta-Queratinas/genéticaRESUMO
Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.
Assuntos
Aves/genética , Evolução Molecular , Tartarugas/genética , beta-Queratinas/genética , Sequência de Aminoácidos/genética , Animais , Evolução Biológica , Aves/classificação , Epiderme , Plumas , Genômica , Filogenia , Tartarugas/classificação , beta-Queratinas/classificaçãoRESUMO
BACKGROUND: The pigeon crop is specially adapted to produce milk that is fed to newly hatched young. The process of pigeon milk production begins when the germinal cell layer of the crop rapidly proliferates in response to prolactin, which results in a mass of epithelial cells that are sloughed from the crop and regurgitated to the young. We proposed that the evolution of pigeon milk built upon the ability of avian keratinocytes to accumulate intracellular neutral lipids during the cornification of the epidermis. However, this cornification process in the pigeon crop has not been characterised. RESULTS: We identified the epidermal differentiation complex in the draft pigeon genome scaffold and found that, like the chicken, it contained beta-keratin genes. These beta-keratin genes can be classified, based on sequence similarity, into several clusters including feather, scale and claw keratins. The cornified cells of the pigeon crop express several cornification-associated genes including cornulin, S100-A9 and A16-like, transglutaminase 6-like and the pigeon 'lactating' crop-specific annexin cp35. Beta-keratins play an important role in 'lactating' crop, with several claw and scale keratins up-regulated. Additionally, transglutaminase 5 and differential splice variants of transglutaminase 4 are up-regulated along with S100-A10. CONCLUSIONS: This study of global gene expression in the crop has expanded our knowledge of pigeon milk production, in particular, the mechanism of cornification and lipid production. It is a highly specialised process that utilises the normal keratinocyte cellular processes to produce a targeted nutrient solution for the young at a very high turnover.
Assuntos
Columbidae/genética , Perfilação da Expressão Gênica , Leite/fisiologia , Triglicerídeos/genética , Animais , Apoptose , Evolução Biológica , Diferenciação Celular , Columbidae/crescimento & desenvolvimento , Células Epidérmicas , Epiderme/metabolismo , Queratinócitos/citologia , Queratinócitos/metabolismo , Transglutaminases/genética , Triglicerídeos/biossíntese , beta-Queratinas/genéticaRESUMO
The epidermis of different scales in the lizard Anolis carolinensis expresses specific keratin-associated beta-proteins (beta-keratins). In order to localize the sites of accumulation of different beta-proteins, we have utilized antibodies directed against representative members of the main families of beta-proteins, the glycine-rich (HgG5), glycine-cysteine rich (HgGC3), glycine-cysteine medium-rich (HgGC10), and cysteine-rich (HgC1) beta-proteins. Immunoblotting and immunocytochemical controls confirm the specificity of the antibodies made against these proteins. Light and ultrastructural immunocytochemistry shows that the glycine-rich protein HgG5 is present in beta-layers of different body scales but is scarce in the oberhautchen and claws, and is absent in alpha-layers and adhesive setae. The cysteine-glycine-rich protein HgGC3 is low to absent in the oberhautchen, beta-layer, and mesos-layer but increases in alpha-layers. This beta-protein is low in claws where it is likely associated with the hard alpha-keratins previously studied in this lizard. The glycine-cysteine medium-rich HgGC10 protein is low in the beta-layer, higher in alpha-layers, and in the oberhautchen. This protein forms a major component of setal proteins including those of the adhesive spatula that allow this lizard to stick on vertical surfaces. HgC1 is poorly localized in most epidermis analyzed including adhesive setae and claws and appears as a minor component of the alpha-layers. In conclusion, the present study suggests that beta- and alpha-layers of lizard epidermis represent regions with different accumulation of glycine-rich proteins (mainly for mechanical resistance and hydrophobicity in the beta-layer) or cysteine-glycine-rich proteins (for both resistance and elasticity in both alpha- and beta-layers).
Assuntos
Epiderme/fisiologia , Casco e Garras/metabolismo , Lagartos/fisiologia , Morfogênese/fisiologia , beta-Queratinas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Epiderme/metabolismo , Epiderme/ultraestrutura , Imunofluorescência , Imuno-Histoquímica , Lagartos/metabolismo , Cloreto de Tolônio , beta-Queratinas/genéticaRESUMO
Feathers of today's birds are constructed of beta (ß)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (ß-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (â¼155 Million years ago (Ma)) the basal ß-keratins of birds began diverging from their archosaurian ancestor â¼216 Ma. However, the subfamily of feather ß-keratins, as found in living birds, did not begin diverging until â¼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian ß-keratins, most likely did not contain the feather ß-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather ß-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian ß-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the ß-keratins in feathers support the view that the appearance of the subfamily of feather ß-keratins altered the biophysical nature of the feather establishing its role in powered flight.