Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Carbohydr Polym ; 343: 122454, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174132

RESUMO

Efficient, green and stable catalysis has always been the core concept of enzyme catalysis in industrial processes for manufacturing. Therefore, we construct a new strategy with photothermal interfacial molecular transfer for green and efficient biodiesel catalysis. We encapsulate Candida albicans lipase B (CalB) in a γ-cyclodextrin metal-organic framework (γ-CD-MOF) loading with Ti3C2TX by in situ growth and electrostatic assembly. The γ-CD-MOF not only protects the fragile enzyme, but also enhances the catalytic performance through the synergistic effects of porous adsorption (MOF pore structure) and interfacial enrichment (cyclodextrins host-guest assembly structure) for accelerating substrate transfer (642.6 %). The CalB@γ-CD-MOF/MXene-i activity can be regulated up to 274.6 % by exposure to near-infrared (NIR). Importantly, CalB@γ-CD-MOF/MXene-i achieves 93.3 % biodiesel conversion under NIR and maintained 86.9 % activity after 6 cycles. Meanwhile, the MXene after the CalB@γ-CD-MOF/MXene catalytic cycle can be almost completely recovered. We verify the mechanism of high catalytic activity of γ-CD-MOF and rationalize the mechanism of CD molecular channel by DFT. Therefore, this highly selective enzyme catalytic platform offers new possibilities for green and efficient preparation of bioenergy.


Assuntos
Biocombustíveis , Proteínas Fúngicas , Lipase , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Lipase/química , Lipase/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Candida albicans/enzimologia , Biocatálise , gama-Ciclodextrinas/química , Catálise , Porosidade , Titânio/química
2.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125950

RESUMO

In vitro alternative therapy of human epidermoid squamous carcinoma (A431) by superparamagnetic hyperthermia (SPMHT) using Fe3O4 (magnetite) superparamagnetic nanoparticles (SPIONs) with an average diameter of 15.8 nm, bioconjugated with hydroxypropyl gamma-cyclodextrins (HP-γ-CDs) by means of polyacrylic acid (PAA) biopolymer, is presented in this paper. The therapy was carried out at a temperature of 43 °C for 30 min using the concentrations of Fe3O4 ferrimagnetic nanoparticles from nanobioconjugates of 1, 5, and 10 mg/mL nanoparticles in cell suspension, which were previously found by us to be non-toxic for healthy cells (cell viabilities close to 100%), according to ISO standards (cell viability must be greater than 70%). The temperature for the in vitro therapy was obtained by the safe application (without exceeding the biological limit and cellular damage) of an alternating magnetic field with a frequency of 312.4 kHz and amplitudes of 168, 208, and 370 G, depending on the concentration of the magnetic nanoparticles. The optimal concentration of magnetic nanoparticles in suspension was found experimentally. The results obtained after the treatment show its high effectiveness in destroying the A431 tumor cells, up to 83%, with the possibility of increasing even more, which demonstrates the viability of the SPMHT method with Fe3O4-PAA-(HP-γ-CDs) nanobioconjugates for human squamous cancer therapy.


Assuntos
Carcinoma de Células Escamosas , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias Cutâneas , gama-Ciclodextrinas , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , gama-Ciclodextrinas/química , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Sobrevivência Celular/efeitos dos fármacos , Nanoconjugados/química
3.
Carbohydr Polym ; 342: 122350, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048216

RESUMO

Piperine (PiP), a bioactive molecule, exhibits numerous health benefits and is frequently employed as a co-delivery agent with various phytomedicines (e.g., curcumin) to enhance their bioavailability. This is attributed to PiP's inhibitory activity against drug-metabolizing proteins, notably CYP3A4. Nevertheless, PiP encounters solubility challenges addressed in this study using cyclodextrins (CDs). Specifically, γ-CD and its derivatives, Hydroxypropyl-γ-CD (HP-γ-CD), and Octakis (6-O-sulfo)-γ-CD (Octakis-S-γ-CD), were employed to form supramolecular complexes with PiP. The conformational space of the complexes was assessed through 1 µs molecular dynamics simulations and umbrella sampling. Additionally, quantum mechanical calculations using wB97X-D dispersion-corrected DFT functional and 6-311 + G(d,p) basis set were conducted on the complexes to examine the thermodynamics and kinetic stability. Results indicated that Octakis-S-γ-CD exhibits superior host capabilities for PiP, with the most favorable complexation energy (-457.05 kJ/mol), followed by HP-γ-CD (-249.16 kJ/mol). Furthermore, two conformations of the Octakis-S-γ-CD/PiP complex were explored to elucidate the optimal binding orientation of PiP within the binding pocket of Octakis-S-γ-CD. Supramolecular chemistry relies significantly on non-covalent interactions. Therefore, our investigation extensively explores the critical atoms involved in these interactions, elucidating the influence of substituted groups on the stability of inclusion complexes. This comprehensive analysis contributes to emphasizing the γ-CD derivatives with improved host capacity.


Assuntos
Alcaloides , Benzodioxóis , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Piperidinas , Alcamidas Poli-Insaturadas , Termodinâmica , Alcamidas Poli-Insaturadas/química , Piperidinas/química , Alcaloides/química , Benzodioxóis/química , gama-Ciclodextrinas/química , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/química
4.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39063043

RESUMO

Ibuprofen is a well-known and broadly used, nonsteroidal anti-inflammatory and painkiller medicine. Ibuprofen is a chiral compound, and its two isomers have different biological effects, therefore, their chiral separation is necessary. Ibuprofen and its derivatives were used as model compounds to establish transportable structure chiral selectivity relationships. Chiral selectors were permethylated α-, ß-, and γ-cyclodextrins containing gas chromatographic stationary phases. The chiral selectivity of ibuprofen as a free acid and its various alkyl esters (methyl, ethyl, propyl, isopropyl, butyl, isobutyl, and isoamyl esters) derivatives were tested at different temperatures. Every tested stationary phase was capable of the chiral separations of ibuprofen in its free acid form. The less strong included S optical isomers eluted before R optical isomers in every separate case. The results offer to draw transportable guidelines for the chiral selectivity vs. analyte structures. It was recognized that the S isomers of free ibuprofen acid showed an overloading phenomenon, but the R isomer did not. The results were supported by molecular modeling studies.


Assuntos
Ibuprofeno , Ibuprofeno/química , Cromatografia Gasosa/métodos , Estereoisomerismo , Ciclodextrinas/química , Modelos Moleculares , Metilação , Anti-Inflamatórios não Esteroides/química , gama-Ciclodextrinas/química
5.
Drug Deliv ; 31(1): 2361168, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38899440

RESUMO

Glaucoma is the leading cause of blindness worldwide. However, its surgical treatment, in particular via trabeculectomy, can be complicated by fibrosis. In current clinical practice, application of the drug, Mitomycin C, prevents or delays fibrosis, but can lead to additional side effects, such as bleb leakage and hypotony. Previous in silico drug screening and in vitro testing has identified the known antibiotic, josamycin, as a possible alternative antifibrotic medication with potentially fewer side effects. However, a suitable ocular delivery mechanism for the hydrophobic drug to the surgical site does not yet exist. Therefore, the focus of this paper is the development of an implantable drug delivery system for sustained delivery of josamycin after glaucoma surgery based on crosslinked γ-cyclodextrin. γ-Cyclodextrin is a commonly used solubilizer which was shown to complex with josamycin, drastically increasing the drug's solubility in aqueous solutions. A simple γ-cyclodextrin crosslinking method produced biocompatible hydrogels well-suited for implantation. The crosslinked γ - cyclodextrin retained the ability to form complexes with josamycin, resulting in a 4-fold higher drug loading efficiency when compared to linear dextran hydrogels, and prolonged drug release over 4 days.


Assuntos
Preparações de Ação Retardada , Hidrogéis , Solubilidade , gama-Ciclodextrinas , Hidrogéis/química , gama-Ciclodextrinas/química , Liberação Controlada de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Glaucoma/tratamento farmacológico , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Portadores de Fármacos/química , Animais , Humanos , Reagentes de Ligações Cruzadas/química
6.
Anal Chem ; 96(21): 8325-8331, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38738931

RESUMO

The high expression of Spermidine/spermine N1-acetyltransferase (SSAT-1) is an important indicator in early cancer diagnosis. Here, we developed a nanopore-based methodology with γ-cyclodextrin as an adaptor to detect and quantify acetylamantadine, the specific SSAT-1-catalyzed product from amantadine, to accordingly reflect the activity of SSAT-1. We employ γ-cyclodextrin and report that amantadine cannot cause any secondary signals in γ-cyclodextrin-assisted α-HL nanopore, while its acetylation product, acetylamantadine, does. This allows γ-cyclodextrin to practically detect acetylamantadine in the interference of excessive amantadine, superior to the previously reported ß-cyclodextrin. The quantification of acetylamantadine was not interfered with even a 50-fold amantadine and displayed no interference in artificial urine sample analysis, which indicates the good feasibility of this nanopore-based methodology in painless cancer prediagnosis. In addition, the discrimination mechanism is also explored by 2-D nuclear magnetic resonance (NMR) and nanopore experiments with a series of adamantane derivatives with different hydrophilic and hydrophobic groups. We found that both the hydrophobic region matching effect and hydrophilic interactions play a synergistic effect in forming a host-guest complex to further generate the characteristic signals, which may provide insights for the subsequent design and study of drug-cyclodextrin complexes.


Assuntos
Amantadina , Nanoporos , gama-Ciclodextrinas , gama-Ciclodextrinas/química , Humanos , Amantadina/química , Amantadina/análise , Neoplasias
7.
J Agric Food Chem ; 72(19): 11140-11152, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703140

RESUMO

Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.


Assuntos
Colite Ulcerativa , Curcumina , Estruturas Metalorgânicas , Peptídeos , Curcumina/química , Curcumina/administração & dosagem , Estruturas Metalorgânicas/química , Animais , Humanos , Peptídeos/química , Peptídeos/administração & dosagem , Colite Ulcerativa/tratamento farmacológico , Camundongos , Quitosana/química , Clara de Ovo/química , Polissacarídeos/química , Masculino , Administração Oral , Sinergismo Farmacológico , gama-Ciclodextrinas/química , Portadores de Fármacos/química , Proteínas do Ovo/química
8.
Biomacromolecules ; 25(7): 4449-4468, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38819927

RESUMO

The γ-cyclodextrin (γ-CD) metal-organic frameworks (CD-MOF-1) consist of γ-CD and potassium (K+) ions through coordinating an eight-coordinated K+ ion with two C5-linked oxygen and C6-linked hydroxyl (C5-O/C6-OH) groups in the primary faces of adjacent γ-CD units and two C2- and C3-linked hydroxyl (C2-OH/C3-OH) groups in the secondary faces. Herein, we found polysaccharide gels with only C2-OH/C3-OH or C5-O/C6-OH groups in pyranoid rings can form four-coordinated K+ ions and then coordinate γ-CD in a KOH solution for CD-MOF-1 growth. Exposure of C2-OH/C3-OH or C5-O/C6-OH groups in polysaccharide gels is important to form active four-coordinated K+ ions. Mechanism supporting this work is that four-coordinated K+ ion sites are first formed after coordinating C2-OH/C3-OH groups in pectin and then coordinating C5-O/C6-OH groups in the primary faces of γ-CD units. Alternatively, four-coordinated K+ ions with C5-O/C6-OH groups in chitosan can coordinate the C2-OH/C3-OH groups in the secondary faces of γ-CD units. Mechanism of CD-MOF-1 growing on pectin and chitosan gels through the proposed four-coordinated K+ ions is also universally applicable to other polysaccharide gels with similar C2-OH/C3-OH or C5-O/C6-OH groups such as alginate gel. Based on this mechanism, we developed pectin and chitosan gel-based CD-MOF-1 composites and exemplified applications of them in antibacterial and organic dye removal. To help future research and applications of this mechanism, we share our theoretical assumption for further investigations that any matrices with an ortho-hydroxyl carbon chain or ortho-hydroxyl ether structures may form four-coordinated K+ ions for CD-MOF-1 growth. The proposed mechanism will broaden the development of novel CD-MOF-1 composites in various fields.


Assuntos
Géis , Potássio , Potássio/química , Géis/química , Porosidade , gama-Ciclodextrinas/química , Estruturas Metalorgânicas/química , Polissacarídeos/química , Pectinas/química , Íons/química
9.
Int J Biol Macromol ; 270(Pt 1): 132344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754666

RESUMO

Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.


Assuntos
Luteolina , Nanofibras , gama-Ciclodextrinas , Nanofibras/química , gama-Ciclodextrinas/química , Luteolina/química , Luteolina/farmacologia , Solubilidade , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/química , Antioxidantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Picratos/química , Compostos de Bifenilo/química
10.
AAPS PharmSciTech ; 25(5): 117, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806874

RESUMO

Eugenol (Eug) holds potential as a treatment for bacterial rhinosinusitis by nasal powder drug delivery. To stabilization and solidification of volatile Eug, herein, nasal inhalable γ-cyclodextrin metal-organic framework (γ-CD-MOF) was investigated as a carrier by gas-solid adsorption method. The results showed that the particle size of Eug loaded by γ-CD-MOF (Eug@γ-CD-MOF) distributed in the range of 10-150 µm well. In comparison to γ-CD and ß-CD-MOF, γ-CD-MOF has higher thermal stability to Eug. And the intermolecular interactions between Eug and the carriers were verified by characterizations and molecular docking. Based on the bionic human nasal cavity model, Eug@γ-CD-MOF had a high deposition distribution (90.07 ± 1.58%). Compared with free Eug, the retention time Eug@γ-CD-MOF in the nasal cavity was prolonged from 5 min to 60 min. In addition, the cell viability showed that Eug@γ-CD-MOF (Eug content range 3.125-200 µg/mL) was non-cytotoxic. And the encapsulation of γ-CD-MOF could not reduce the bacteriostatic effect of Eug. Therefore, the biocompatible γ-CD-MOF could be a potential and valuable carrier for nasal drug delivery to realize solidification and nasal therapeutic effects of volatile oils.


Assuntos
Administração Intranasal , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Eugenol , Estruturas Metalorgânicas , Pós , Estruturas Metalorgânicas/química , Pós/química , Humanos , Eugenol/química , Eugenol/administração & dosagem , Eugenol/farmacologia , Administração Intranasal/métodos , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Tamanho da Partícula , Sobrevivência Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular/métodos , gama-Ciclodextrinas/química , Estabilidade de Medicamentos , Antibacterianos/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Ciclodextrinas/química , Cavidade Nasal/metabolismo
11.
Small ; 20(29): e2400399, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607266

RESUMO

To address the issue of bacterial growth on fresh-cut fruits, this paper reports the synthesis of nanosized γ-cyclodextrin metal-organic frameworks (CD-MOFs) using an ultrasound-assisted method and their application as carriers of limonene for antibacterial active packaging. The effects of the processing parameters on the morphology and crystallinity of the CD-MOFs are investigated, and the results prove that the addition of methanol is the key to producing nanosized CD-MOFs. The limonene loading content of the nanosized CD-MOFs can reach approximately 170 mg g-1. The sustained-release behaviors of limonene in the CD-MOFs are evaluated. Molecular docking simulations reveal the distribution and binding sites of limonene in the CD-MOFs. CD-MOFs are deposited on the surfaces of polycaprolactone (PCL) nanofibers via an immersion method, and limonene-loaded CD-MOF@PCL nanofibers are prepared. The morphology, crystallinity, thermal stability, mechanical properties, and antibacterial activity of the nanofibers are also studied. The nanofiber film effectively inhibits bacterial growth and prolongs the shelf life of fresh-cut apples. This study provides a novel strategy for developing antibacterial active packaging materials based on CD-MOFs and PCL nanofibers.


Assuntos
Frutas , Limoneno , Estruturas Metalorgânicas , Nanofibras , Poliésteres , gama-Ciclodextrinas , Limoneno/química , Limoneno/farmacologia , Nanofibras/química , Poliésteres/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , gama-Ciclodextrinas/química , Frutas/química , Terpenos/química , Terpenos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Simulação de Acoplamento Molecular
12.
J Sci Food Agric ; 104(10): 6045-6052, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445761

RESUMO

BACKGROUND: Papaya, a highly nutritious and economically significant fruit, is susceptible to infections caused by phytopathogenic fungi. Cinnamon essential oil, derived from Cinnamomum cassia (CC), shows promise in preserving papaya due to its antifungal properties. However, CC is volatile, sensitive to environmental factors, and carries a strong aroma. γ-Cyclodextrin (γ-CD) is known for encapsulating hydrophilic molecules, shielding them from environmental influences, reducing odor, and enabling controlled release due to its unique channel structure. This study aimed to tackle these challenges by preparing and characterizing an inclusion complex of CC with γ-CD (CC-γ-CD), and subsequently evaluating its efficacy in preserving papaya fruits. RESULTS: Analyses, including Fourier-infrared, powder X-ray diffraction, thermal gravity analysis, differential scanning calorimeter, and scanning electron microscopy, revealed successful encapsulation of CC components within the γ-CD cavity. Evaluations of the CC-γ-CD complex's impact on papaya fruit shelf life and quality showed notable enhancements. Fruits treated with CC-γ-CD inclusion complex at a dose of 10 g kg-1 exhibited a 55% extension in shelf-life, evidenced by reduced disease severity index compared with untreated fruit in the same storage conditions. Detailed physicochemical and bromatological assessments highlighted significant improvements, particularly in fruit treated with CC-γ-CD inclusion complex at a dose of 10 g kg-1. CONCLUSION: The application of CC-γ-CD inclusion complex at 10 g kg-1 extended the shelf-life of papaya fruit, significantly and markedly improved the overall quality. These findings underscore the potential of the CC-γ-CD inclusion complex as an effective preservative for papaya, offering a promising solution for its postharvest management and marketability. © 2024 Society of Chemical Industry.


Assuntos
Carica , Cinnamomum zeylanicum , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Óleos Voláteis , gama-Ciclodextrinas , Carica/química , Frutas/química , Frutas/microbiologia , Conservação de Alimentos/métodos , Óleos Voláteis/química , Óleos Voláteis/farmacologia , gama-Ciclodextrinas/química , gama-Ciclodextrinas/farmacologia , Cinnamomum zeylanicum/química , Conservantes de Alimentos/farmacologia , Conservantes de Alimentos/química
13.
Carbohydr Polym ; 334: 122018, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553217

RESUMO

Sugammadex, marketed as Bridion™, is an approved cyclodextrin (CD) based drug for the reversal of neuromuscular blockade in adults undergoing surgery. Sugammadex forms an inclusion complex with the neuromuscular blocking agent (NMBA) rocuronium, allowing rapid reversal of muscle paralysis. In silico methods have been developed for studying CD inclusion complexes, aimed at accurately predicting their structural, energetic, dynamic, and kinetic properties, as well as binding constants. Here, a computational study aimed at characterizing the sugammadex-rocuronium system from the perspective of docking calculations, free molecular dynamics (MD) simulations, and biased metadynamics simulations with potential of mean force (PMF) calculations is presented. The aim is to provide detailed information about this system, as well as to use it as a model system for validation of the methods. This method predicts results in line with experimental evidence for both the optimal structure and the quantitative value for the binding constant. Interestingly, there is a less profound preference for the orientation than might be assumed based on electrostatic interactions, suggesting that both orientations may exist in solution. These results show that this technology can efficiently analyze CD inclusion complexes and could be used to facilitate the development and optimization of novel applications for CDs.


Assuntos
Ciclodextrinas , Fármacos Neuromusculares não Despolarizantes , gama-Ciclodextrinas , Humanos , Adulto , Sugammadex , Rocurônio , gama-Ciclodextrinas/química , Simulação de Dinâmica Molecular , Fármacos Neuromusculares não Despolarizantes/química , Androstanóis/química
14.
Colloids Surf B Biointerfaces ; 237: 113841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492412

RESUMO

Geraniol (Ger) is an essential oil molecule with excellent biological activity. High hydrophobicity and volatility limit its practical application. Cyclodextrins (CDs) are water-soluble cyclic oligosaccharides with hydrophobic cavities. Physical encapsulation of CDs to improve the solubility and stability of essential oil molecules is not satisfactory. Therefore, this study synthesized the γ-CD derivative (γ-CD-Ger) by grafting Ger onto γ-CD using a bromide-mediated method. Compared to the inclusion complexes (γ-CD/Ger) formed by both, the derivatives exhibit better solubility and thermal stability. The derivative has better antibacterial activity when the ratio of γ-CD to Ger was 1:2. In addition, the derivatives did not exhibit cytotoxic and hemolytic properties. These results indicate that this research provides a water-soluble antibacterial agent with a wide range of promising applications and offers new ideas for the application of alcohol hydrophobic molecules in aqueous systems.


Assuntos
Monoterpenos Acíclicos , Ciclodextrinas , Óleos Voláteis , gama-Ciclodextrinas , gama-Ciclodextrinas/farmacologia , gama-Ciclodextrinas/química , Solubilidade , Antibacterianos/farmacologia , Ciclodextrinas/farmacologia , Ciclodextrinas/química , Água/química
15.
Biomed Pharmacother ; 171: 116174, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38237346

RESUMO

γ-Cyclodextrin metal-organic frameworks (CD-MOFs) are considered as a green and biocompatible material with great potential in drug delivery systems. Original CD-MOFs show the poor aerosol properties, which limit the application in pulmonary drug delivery. To improve the in vitro deposition properties, herein, we synthesized CD-MOFs by the vapor diffusion method using a series of modulators to achieve better pulmonary delivery of cyclosporine A (CsA). The results showed that blank CD-MOFs and drug loaded CD-MOFs prepared with different modulators all preserved the cubical shape, and exhibited the similar crystal form, structural characteristics, thermal behaviors and release properties. In addition, drug loaded CD-MOFs prepared with polyethylene glycol 10000 (PEG 10000) as a modulator exhibited better in vitro aerosol performance than those of synthesized using other modulators, and the in vivo pharmacokinetics data demonstrated that the bioavailability of CsA could be significantly enhanced by inhalation administration of drug loaded CD-MOFs compared with oral administration of Neoral®. The repeated dose inhalation toxicity also confirmed the fine biocompatibility of CD-MOFs as the carrier for pulmonary drug delivery. Therefore, the results demonstrated CD-MOFs as the promising carrier could be used for pulmonary drug delivery.


Assuntos
Ciclodextrinas , Estruturas Metalorgânicas , gama-Ciclodextrinas , gama-Ciclodextrinas/química , Ciclosporina , Sistemas de Liberação de Medicamentos/métodos , Ciclodextrinas/química , Aerossóis
16.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894730

RESUMO

Frequently, a good chiral separation is the result of long trial and error processes. The three-point interaction mechanisms require the fair geometrical fitting and functional group compatibility of the interacting groups. Structure-chiral selectivity correlations are guidelines that can be established via trough systematic studies using model compounds. The enantiorecognition of the test compounds was studied on an octakis 2,3-Di-O-acetyl-6-O-tert-butyldimethylsilyl-gamma-cyclodextrin (TBDMSDAGCD) chiral selector. In our work, mandelic acid and its variously substituted compounds were used as model compounds to establish adaptable rules for other enantiomeric pairs. The mandelic acid and its modified compounds were altered at both their carboxyl and hydroxyl positions to test the key interaction forces of the chiral recognition processes. Ring- and alkyl-substituted mandelic acid derivatives were also used in our experiments. The chiral selectivity values of 20 test compounds were measured and extrapolated to 100 °C. The hydrogen donor abilities of test compounds improved their chiral selectivities. The inclusion phenomenon also played a role in chiral recognition processes in several cases. Enantiomer elution reversals were observed for different derivatives of hydroxyl groups, providing evidence for the multimodal character of the selector. The results of our research can serve as guidelines to achieve appropriate chiral separation for other enantiomeric pairs.


Assuntos
Ciclodextrinas , gama-Ciclodextrinas , gama-Ciclodextrinas/química , Ciclodextrinas/química , Ácidos Mandélicos , Cromatografia Gasosa/métodos , Estereoisomerismo
17.
Mikrochim Acta ; 190(4): 125, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894805

RESUMO

Olivetol (OLV), as a cannabidiol (CBD) analog, was incorporated in γ-cyclodextrin metal-organic frameworks (γ-CD-MOFs) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liposomes as potential analgesic drug delivery systems (DDS) for dental hypersensitivity (DH) treatment. These DDS have been scarcely employed in oral health, being the first time in case of MOFs loaded with cannabinoids. In vitro experiments using bovine teeth were performed to verify if the drug is able to reach the dentin, where it can flow to the pulp tissues and exert its analgesic effect; enamel and dentin regions were analyzed by synchrotron radiation-based FTIR microspectroscopy. Principal component analysis (PCA) was used to process the spectroscopic data as a powerful chemometric tool, and it revealed a similar behavior in both regions. The studied DDS have been characterized by different techniques, and is was demonstrated that DDS is an efficient way to carry the drug through dental tissues without compromising their structure.


Assuntos
Canabinoides , Estruturas Metalorgânicas , gama-Ciclodextrinas , Animais , Bovinos , Lipossomos/química , Estruturas Metalorgânicas/química , gama-Ciclodextrinas/química , Preparações de Ação Retardada , Saúde Bucal
18.
Food Chem ; 418: 136000, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36989653

RESUMO

Here, an ethanol-mediated method was introduced to fabricate γ-cyclodextrin-based metal-organic frameworks (γ-CD-MOFs) as microcarriers for epigallocatechin-3-gallate (EGCG). Through adjusting ethanol gas diffusion temperature and ethanol liquid feed speed, we achieved control of crystallization efficiency and crystals size without extra surfactants. Under the sequential regulatory by ethanol in two phases, the obtained γ-CD-MOFs with cubic shape exhibited excellent crystallinity, high surface area, and uniform size distribution. Through the interplay of hydrogen bonding, hydrophobic interactions and π stacking, EGCG molecules could be stored efficiently within cavities and tunnels of the γ-CD-MOFs with high load capability of 334 mg g-1. More importantly, the incorporation of EGCG within frameworks wouldn't disintegrate the unique body-centered cubic structure of γ-CD-MOFs, in turn, would improve the thermostability and antioxidative activity of EGCG. Significantly, all food-grade materials ensured the γ-CD-MOFs high acceptance and applicability for food and biomedical applications.


Assuntos
Estruturas Metalorgânicas , gama-Ciclodextrinas , gama-Ciclodextrinas/química , Estruturas Metalorgânicas/química , Antioxidantes , Temperatura , Etanol
19.
Carbohydr Polym ; 304: 120516, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641162

RESUMO

Cyclodextrin metal-organic frameworks (CD-MOF) are a class of biocompatible MOF with a great potential in drug delivery applications. Original CD-MOF crystals are fragile and large (0.2-1 mm), which are less useful in pharmaceutical applications. Cetyltrimethylammonium bromide and long chain poly(ethylene) glycol, used in size modulation to produce nanosized CD-MOF can compromise the biocompatibility, and physiochemical properties of CD-MOF as their complete removal from frameworks is difficult. To avoid the use of above-mentioned modulators, herein, we demonstrate the synthesis of nanosized CD-MOF using triethylamine (TEA) as a modulator to reduce their size to ~254 nm. The MOF characteristics such as crystal and chemical structure remain unaffected and the surface area of CD-MOF synthesised with TEA is measured 1075.5 m2/g, almost 50 % higher than those of synthesised using bulky modulators. The improved CD-MOF architecture utilized for the in-situ synthesis of silver nanoparticles resulted in enhanced antimicrobial efficacy tested against Staphylococcus aureus and Escherichia coli bacteria and Candida albicans fungus. And minimum inhibitory concentration (MIC) is recorded in the range of 31-15 µg/mL. Overall, the structural improvement in CD-MOF supported with thorough comparative investigations and enhanced antimicrobial efficacy could be very helpful in further establishing them in biomedicine field.


Assuntos
Anti-Infecciosos , Ciclodextrinas , Nanopartículas Metálicas , Estruturas Metalorgânicas , gama-Ciclodextrinas , gama-Ciclodextrinas/farmacologia , gama-Ciclodextrinas/química , Prata/farmacologia , Ciclodextrinas/química , Estruturas Metalorgânicas/química , Polietilenoglicóis
20.
ACS Sens ; 8(1): 218-227, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36537860

RESUMO

Fluorescence recognition of d-glucose in water with excellent sensitivity, selectivity, and chiral selectivity is desired because d-glucose is an essential component in biological and pathological processes. We report an innovative approach that exploits the 1:2 stoichiometric inclusion complexes of γ-cyclodextrin (γ-CyD) with two molecules of fluorescent monoboronic acid-based receptors, which form a pseudo-diboronic acid moiety as the recognition site for d-glucose in water. Two monoboronic acids (1F and 2N) were easily synthesized without heating or column purification. The 1:2 stoichiometric inclusion complexes (1F/γ-CyD and 2N/γ-CyD) were prepared in a mixture of dimethyl sulfoxide/water (2/98 in v/v) by mixing γ-CyD and the corresponding monoboronic acids. Both 1F/γ-CyD and 2N/γ-CyD exhibited strong turn-on response to d-glucose with excellent selectivity over nine other saccharides in the water-rich solvent at pH 7.4 owing to the ditopic recognition of d-glucose by the pseudo-diboronic acid moieties. The limits of detection of 1F/γ-CyD and 2N/γ-CyD for d-glucose were 1.1 and 1.8 µM, respectively, indicating the remarkable sensitivity for the detection of d-glucose at µM levels. 1F/γ-CyD and 2N/γ-CyD also demonstrated chiral-selective recognition of d-glucose, which is apparent from the 2.0- and 6.3-fold enhancement of fluorescence by the addition of d-glucose relative to l-glucose addition, owing to the chiral pseudo-diboronic acid moieties produced by the chiral γ-CyD cavity. To the best of our knowledge, 2N/γ-CyD has the highest d/l selectivity among hitherto reported fluorescent diboronic acid-based receptors.


Assuntos
gama-Ciclodextrinas , gama-Ciclodextrinas/química , Ácidos Borônicos/química , Glucose/química , Água/química , Corantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA