Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 39(17): 7641-55, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21693558

RESUMO

The modified nucleosides N(2)-methylguanosine and N(2)(2)-dimethylguanosine in transfer RNA occur at five positions in the D and anticodon arms, and at positions G6 and G7 in the acceptor stem. Trm1 and Trm11 enzymes are known to be responsible for several of the D/anticodon arm modifications, but methylases catalyzing post-transcriptional m(2)G synthesis in the acceptor stem are uncharacterized. Here, we report that the MJ0438 gene from Methanocaldococcus jannaschii encodes a novel S-adenosylmethionine-dependent methyltransferase, now identified as Trm14, which generates m(2)G at position 6 in tRNA(Cys). The 381 amino acid Trm14 protein possesses a canonical RNA recognition THUMP domain at the amino terminus, followed by a γ-class Rossmann fold amino-methyltransferase catalytic domain featuring the signature NPPY active site motif. Trm14 is associated with cluster of orthologous groups (COG) 0116, and most closely resembles the m(2)G10 tRNA methylase Trm11. Phylogenetic analysis reveals a canonical archaeal/bacterial evolutionary separation with 20-30% sequence identities between the two branches, but it is likely that the detailed functions of COG 0116 enzymes differ between the archaeal and bacterial domains. In the archaeal branch, the protein is found exclusively in thermophiles. More distantly related Trm14 homologs were also identified in eukaryotes known to possess the m(2)G6 tRNA modification.


Assuntos
Proteínas Arqueais/metabolismo , Methanococcales/enzimologia , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/classificação , Proteínas Arqueais/genética , Sequência de Bases , Biocatálise , Dados de Sequência Molecular , Filogenia , RNA de Transferência/química , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
2.
RNA ; 17(7): 1236-46, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21602303

RESUMO

Bacterial TrmD and eukaryotic-archaeal Trm5 form a pair of analogous tRNA methyltransferase that catalyze methyl transfer from S-adenosyl methionine (AdoMet) to N(1) of G37, using catalytic motifs that share no sequence or structural homology. Here we show that natural and synthetic analogs of AdoMet are unable to distinguish TrmD from Trm5. Instead, fragments of AdoMet, adenosine and methionine, are selectively inhibitory of TrmD rather than Trm5. Detailed structural information of the two enzymes in complex with adenosine reveals how Trm5 escapes targeting by adopting an altered structure, whereas TrmD is trapped by targeting due to its rigid structure that stably accommodates the fragment. Free energy analysis exposes energetic disparities between the two enzymes in how they approach the binding of AdoMet versus fragments and provides insights into the design of inhibitors selective for TrmD.


Assuntos
Metano/análogos & derivados , Fragmentos de Peptídeos/farmacologia , tRNA Metiltransferases/química , tRNA Metiltransferases/classificação , tRNA Metiltransferases/metabolismo , Adenosina/metabolismo , Adenosina/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metano/química , Metano/metabolismo , Metionina/metabolismo , Metionina/farmacologia , Modelos Biológicos , Modelos Moleculares , Fragmentos de Peptídeos/química , Ligação Proteica , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Homologia de Sequência , Especificidade por Substrato , tRNA Metiltransferases/antagonistas & inibidores
3.
Nucleic Acids Res ; 38(19): 6533-43, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20525789

RESUMO

Two archaeal tRNA methyltransferases belonging to the SPOUT superfamily and displaying unexpected activities are identified. These enzymes are orthologous to the yeast Trm10p methyltransferase, which catalyses the formation of 1-methylguanosine at position 9 of tRNA. In contrast, the Trm10p orthologue from the crenarchaeon Sulfolobus acidocaldarius forms 1-methyladenosine at the same position. Even more surprisingly, the Trm10p orthologue from the euryarchaeon Thermococcus kodakaraensis methylates the N(1)-atom of either adenosine or guanosine at position 9 in different tRNAs. This is to our knowledge the first example of a tRNA methyltransferase with a broadened nucleoside recognition capability. The evolution of tRNA methyltransferases methylating the N(1) atom of a purine residue is discussed.


Assuntos
Adenosina/análogos & derivados , Proteínas Arqueais/metabolismo , Guanosina/análogos & derivados , tRNA Metiltransferases/metabolismo , Adenosina/metabolismo , Proteínas Arqueais/classificação , Biocatálise , Escherichia coli/genética , Guanosina/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Sulfolobus acidocaldarius/enzimologia , Thermococcus/enzimologia , tRNA Metiltransferases/classificação
4.
Mol Cell Biol ; 30(10): 2449-59, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20308323

RESUMO

tRNA nucleosides are extensively modified to ensure their proper function in translation. However, many of the enzymes responsible for tRNA modifications in mammals await identification. Here, we show that human AlkB homolog 8 (ABH8) catalyzes tRNA methylation to generate 5-methylcarboxymethyl uridine (mcm(5)U) at the wobble position of certain tRNAs, a critical anticodon loop modification linked to DNA damage survival. We find that ABH8 interacts specifically with tRNAs containing mcm(5)U and that purified ABH8 complexes methylate RNA in vitro. Significantly, ABH8 depletion in human cells reduces endogenous levels of mcm(5)U in RNA and increases cellular sensitivity to DNA-damaging agents. Moreover, DNA-damaging agents induce ABH8 expression in an ATM-dependent manner. These results expand the role of mammalian AlkB proteins beyond that of direct DNA repair and support a regulatory mechanism in the DNA damage response pathway involving modulation of tRNA modification.


Assuntos
Dano ao DNA , Uridina/metabolismo , tRNA Metiltransferases/metabolismo , Homólogo AlkB 8 da RNAt Metiltransferase , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Uridina/química , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
5.
Nucleic Acids Res ; 38(5): 1415-30, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007150

RESUMO

The nucleobase modification 5-methylcytosine (m(5)C) is widespread both in DNA and different cellular RNAs. The functions and enzymatic mechanisms of DNA m(5)C-methylation were extensively studied during the last decades. However, the location, the mechanism of formation and the cellular function(s) of the same modified nucleobase in RNA still remain to be elucidated. The recent development of a bisulfite sequencing approach for efficient m(5)C localization in various RNA molecules puts ribo-m(5)C in a highly privileged position as one of the few RNA modifications whose detection is amenable to PCR-based amplification and sequencing methods. Additional progress in the field also includes the characterization of several specific RNA methyltransferase enzymes in various organisms, and the discovery of a new and unexpected link between DNA and RNA m(5)C-methylation. Numerous putative RNA:m(5)C-MTases have now been identified and are awaiting characterization, including the identification of their RNA substrates and their related cellular functions. In order to bring these recent exciting developments into perspective, this review provides an ordered overview of the detection methods for RNA methylation, of the biochemistry, enzymology and molecular biology of the corresponding modification enzymes, and discusses perspectives for the emerging biological functions of these enzymes.


Assuntos
5-Metilcitosina/química , 5-Metilcitosina/fisiologia , RNA/química , tRNA Metiltransferases/química , 5-Metilcitosina/análise , Biocatálise , RNA/metabolismo , Análise de Sequência de RNA , tRNA Metiltransferases/classificação , tRNA Metiltransferases/metabolismo
6.
Nucleic Acids Res ; 36(10): 3252-62, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18420655

RESUMO

N(1)-methylation of adenosine to m(1)A occurs in several different positions in tRNAs from various organisms. A methyl group at position N(1) prevents Watson-Crick-type base pairing by adenosine and is therefore important for regulation of structure and stability of tRNA molecules. Thus far, only one family of genes encoding enzymes responsible for m(1)A methylation at position 58 has been identified, while other m(1)A methyltransferases (MTases) remain elusive. Here, we show that Bacillus subtilis open reading frame yqfN is necessary and sufficient for N(1)-adenosine methylation at position 22 of bacterial tRNA. Thus, we propose to rename YqfN as TrmK, according to the traditional nomenclature for bacterial tRNA MTases, or TrMet(m(1)A22) according to the nomenclature from the MODOMICS database of RNA modification enzymes. tRNAs purified from a DeltatrmK strain are a good substrate in vitro for the recombinant TrmK protein, which is sufficient for m(1)A methylation at position 22 as are tRNAs from Escherichia coli, which natively lacks m(1)A22. TrmK is conserved in Gram-positive bacteria and present in some Gram-negative bacteria, but its orthologs are apparently absent from archaea and eukaryota. Protein structure prediction indicates that the active site of TrmK does not resemble the active site of the m(1)A58 MTase TrmI, suggesting that these two enzymatic activities evolved independently.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , tRNA Metiltransferases/química , Sequência de Aminoácidos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Sequência de Bases , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , RNA de Transferência/química , RNA de Transferência/metabolismo , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
7.
Nucleic Acids Symp Ser (Oxf) ; (51): 445-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18029778

RESUMO

Since the SPOUT superfamily was defined by homology between the SpoU and TrmD families [Anantharaman, V. et al., J. Mol. Microbiol. Biotechnol., 4, 71-75 (2002)], many crystal structures have been solved and numerous new homologous sequences have been found in the superfamily. Therefore, nowadays, we can consider enzyme function and/or evolution process of the SPOUT superfamily members using not only amino acid sequences but also protein structures. Recently, a bioinformatics research on SPOUT superfamily proposed existences of new member proteins [COG1756, COG1772, COG4080, and COG1901], and provided a structural and evolutionary classification of the proteins [Tkaczuk, K.L. et al., BMC Bioinformatics, 8:73 (2007)], which serves as a guide for studies on the SPOUT family in future. In this meeting, we report a new approach using a flexible protein structure alignment algorithm (FATCAT) to analyze the structures of SPOUT superfamily proteins, and discuss differences in substrate selectivities of methyltransferases in the superfamily.


Assuntos
tRNA Metiltransferases/química , Algoritmos , Sequência de Aminoácidos , Sequência Conservada , Estrutura Terciária de Proteína , Alinhamento de Sequência , Especificidade por Substrato , tRNA Metiltransferases/classificação , tRNA Metiltransferases/metabolismo
8.
Biochemistry ; 45(24): 7463-73, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16768442

RESUMO

The enzyme tRNA(m1G37) methyl transferase catalyzes the transfer of a methyl group from S-adenosyl methionine (AdoMet) to the N1 position of G37, which is 3' to the anticodon sequence and whose modification is important for maintaining the reading frame fidelity. While the enzyme in bacteria is highly conserved and is encoded by the trmD gene, recent studies show that the counterpart of this enzyme in archaea and eukarya, encoded by the trm5 gene, is unrelated to trmD both in sequence and in structure. To further test this prediction, we seek to identify residues in the second class of tRNA(m1G37) methyl transferase that are required for catalysis. Such residues should provide mechanistic insights into the distinct structural origins of the two classes. Using the Trm5 enzyme of the archaeon Methanocaldococcus jannaschii (previously MJ0883) as an example, we have created mutants to test many conserved residues for their catalytic potential and substrate-binding capabilities with respect to both AdoMet and tRNA. We identified that the proline at position 267 (P267) is a critical residue for catalysis, because substitution of this residue severely decreases the kcat of the methylation reaction in steady-state kinetic analysis, and the k(chem) in single turnover kinetic analysis. However, substitution of P267 has milder effect on the Km and little effect on the Kd of either substrate. Because P267 has no functional side chain that can directly participate in the chemistry of methyl transfer, we suggest that its role in catalysis is to stabilize conformations of enzyme and substrates for proper alignment of reactive groups at the enzyme active site. Sequence analysis shows that P267 is embedded in a peptide motif that is conserved among the Trm5 family, but absent from the TrmD family, supporting the notion that the two families are descendants of unrelated protein structures.


Assuntos
Prolina/química , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Anticódon , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Catálise , Sequência Conservada , Análise Mutacional de DNA , Endorribonucleases/química , Endorribonucleases/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
9.
Nucleic Acids Res ; 33(13): 3955-64, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16027442

RESUMO

Formation of 5-methyluridine (ribothymidine) at position 54 of the T-psi loop of tRNA is catalyzed by site-specific tRNA methyltransferases (tRNA:m(5)U-54 MTase). In all Eukarya and many Gram-negative Bacteria, the methyl donor for this reaction is S-adenosyl-l-methionine (S-AdoMet), while in several Gram-positive Bacteria, the source of carbon is N(5), N(10)-methylenetetrahydrofolate (CH(2)H(4)folate). We have identified the gene for Bacillus subtilis tRNA:m(5)U-54 MTase. The encoded recombinant protein contains tightly bound flavin and is active in Escherichia coli mutant lacking m(5)U-54 in tRNAs and in vitro using T7 tRNA transcript as substrate. This gene is currently annotated gid in Genome Data Banks and it is here renamed trmFO. TrmFO (Gid) orthologs have also been identified in many other bacterial genomes and comparison of their amino acid sequences reveals that they are phylogenetically distinct from either ThyA or ThyX class of thymidylate synthases, which catalyze folate-dependent formation of deoxyribothymine monophosphate, the universal DNA precursor.


Assuntos
Bactérias/enzimologia , Evolução Molecular , Genes Bacterianos , Uridina/análogos & derivados , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Escherichia coli/metabolismo , Flavinas/metabolismo , Genômica , Filogenia , RNA de Transferência/metabolismo , Uridina/metabolismo , tRNA Metiltransferases/metabolismo
10.
RNA ; 11(7): 1051-63, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15987815

RESUMO

We identified the first archaeal tRNA ribose 2'-O-methylase, aTrm56, belonging to the Cluster of Orthologous Groups (COG) 1303 that contains archaeal genes only. The corresponding protein exhibits a SPOUT S-adenosylmethionine (AdoMet)-dependent methyltransferase domain found in bacterial and yeast G18 tRNA 2'-O-methylases (SpoU, Trm3). We cloned the Pyrococcus abyssi PAB1040 gene belonging to this COG, expressed and purified the corresponding protein, and showed that in vitro, it specifically catalyzes the AdoMet-dependent 2'-O-ribose methylation of C at position 56 in tRNA transcripts. This tRNA methylation is present only in archaea, and the gene for this enzyme is present in all the archaeal genomes sequenced up to now, except in the crenarchaeon Pyrobaculum aerophilum. In this archaea, the C56 2'-O-methylation is provided by a C/D sRNP. Our work is the first demonstration that, within the same kingdom, two different mechanisms are used to modify the same nucleoside in tRNAs.


Assuntos
Citosina/metabolismo , RNA Arqueal/metabolismo , RNA Nucleolar Pequeno/metabolismo , RNA de Transferência/química , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Catálise , Clonagem Molecular , Sequência Consenso , Escherichia coli/genética , Genoma Arqueal , Glutationa Transferase/metabolismo , Cinética , Dados de Sequência Molecular , Peso Molecular , Fases de Leitura Aberta , Filogenia , Estrutura Secundária de Proteína , Pyrobaculum/genética , Pyrobaculum/metabolismo , Pyrococcus abyssi/enzimologia , Pyrococcus abyssi/genética , RNA Arqueal/química , RNA Arqueal/genética , RNA Nucleolar Pequeno/genética , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
11.
Nucleic Acids Res ; 32(Web Server issue): W576-81, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15215454

RESUMO

Meta-BASIC (http://basic.bioinfo.pl) is a novel sensitive approach for recognition of distant similarity between proteins based on consensus alignments of meta profiles. Specifically, Meta-BASIC compares sequence profiles combined with predicted secondary structure by utilizing several scoring systems and alignment algorithms. In our benchmarking tests, Meta-BASIC outperforms many individual servers, including fold recognition servers, and it can compete with meta predictors that base their strength on the structural comparison of models. In addition, Meta-BASIC, which enables detection of very distant relationships even if the tertiary structure for the reference protein is not known, has a high-throughput capability. This new method is applied to 860 PfamA protein families with unknown function (DUF) and provides many novel structure-functional assignments available on-line at http://basic.bioinfo.pl/duf.pl. Detailed discussion is provided for two of the most interesting assignments. DUF271 and DUF431 are predicted to be a nucleotide-diphospho-sugar transferase and an alpha/beta-knot SAM-dependent RNA methyltransferase, respectively.


Assuntos
Software , Homologia Estrutural de Proteína , Algoritmos , Glicosiltransferases/química , Glicosiltransferases/classificação , Internet , Modelos Moleculares , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/classificação , Proteínas/fisiologia , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases/química , tRNA Metiltransferases/classificação
12.
Nucleic Acids Res ; 32(8): 2453-63, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15121902

RESUMO

Three types of methyltransferases (MTases) generate 5-methylpyrimidine in nucleic acids, forming m5U in RNA, m5C in RNA and m5C in DNA. The DNA:m5C MTases have been extensively studied by crystallographic, biophysical, biochemical and computational methods. On the other hand, the sequence-structure-function relationships of RNA:m5C MTases remain obscure, as do the potential evolutionary relationships between the three types of 5-methylpyrimidine-generating enzymes. Sequence analyses and homology modeling of the yeast tRNA:m5C MTase Trm4p (also called Ncl1p) provided a structural and evolutionary platform for identification of catalytic residues and modeling of the architecture of the RNA:m5C MTase active site. The analysis led to the identification of two invariant residues that are important for Trm4p activity in addition to the conserved Cys residues in motif IV and motif VI that were previously found to be critical. The newly identified residues include a Lys residue in motif I and an Asp in motif IV. A conserved Gln found in motif X was found to be dispensable for MTase activity. Locations of essential residues in the model of Trm4p are in very good agreement with the X-ray structure of an RNA:m5C MTase homolog PH1374. Theoretical and experimental analyses revealed that RNA:m5C MTases share a number of features with either RNA:m5U MTases or DNA:m5C MTases, which suggested a tentative phylogenetic model of relationships between these three classes of 5-methylpyrimidine MTases. We infer that RNA:m5C MTases evolved from RNA:m5U MTases by acquiring an additional Cys residue in motif IV, which was adapted to function as the nucleophilic catalyst only later in DNA:m5C MTases, accompanied by loss of the original Cys from motif VI, transfer of a conserved carboxylate from motif IV to motif VI and sequence permutation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/classificação , Proteínas de Saccharomyces cerevisiae , tRNA Metiltransferases , tRNA Metiltransferases/classificação , Sequência de Aminoácidos , Aminoácidos/genética , Aminoácidos/fisiologia , Sítios de Ligação , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Alinhamento de Sequência , Relação Estrutura-Atividade , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
13.
EMBO J ; 21(7): 1811-20, 2002 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-11927565

RESUMO

The genome of Saccharomyces cerevisiae encodes three close homologues of the Escherichia coli 2'-O-rRNA methyltransferase FtsJ/RrmJ, designated Trm7p, Spb1p and Mrm2p. We present evidence that Trm7p methylates the 2'-O-ribose of nucleotides at positions 32 and 34 of the tRNA anticodon loop, both in vivo and in vitro. In a trm7Delta strain, which is viable but grows slowly, translation is impaired, thus indicating that these tRNA modifications could be important for translation efficiency. We discuss the emergence of a family of three 2'-O-RNA methyltransferases in Eukaryota and one in Prokaryota from a common ancestor. We propose that each eukaryotic enzyme is located in a different cell compartment, in which it would methylate a different RNA that can adopt a very similar secondary structure.


Assuntos
Anticódon/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , Ribose/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , tRNA Metiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Catálise , Proteínas de Ciclo Celular/química , Escherichia coli/enzimologia , Células Eucarióticas , Humanos , Metiltransferases/química , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Estrutura Terciária de Proteína , RNA Mensageiro , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/classificação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribose/análogos & derivados , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , tRNA Metiltransferases/química , tRNA Metiltransferases/classificação , tRNA Metiltransferases/genética
15.
FEBS Lett ; 507(2): 123-7, 2001 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-11684083

RESUMO

The amino acid sequences of Gcd10p and Gcd14p, the two subunits of the tRNA:(1-methyladenosine-58; m(1)A58) methyltransferase (MTase) of Saccharomyces cerevisiae, have been analyzed using iterative sequence database searches and fold recognition programs. The results suggest that the 'catalytic' Gcd14p and 'substrate binding' Gcd10p are related to each other and to a group of prokaryotic open reading frames, which were previously annotated as hypothetical protein isoaspartate MTases in sequence databases. It is predicted that the prokaryotic proteins are genuine tRNA:m(1)A MTases based on similarity of their predicted active site to the Gcd14p family. In addition to the MTase domain, an additional domain was identified in the N-terminus of all these proteins that may be involved in interaction with tRNA. These results suggest that the eukaryotic tRNA:m(1)A58 MTase is a product of gene duplication and divergent evolution of a possibly homodimeric prokaryotic enzyme.


Assuntos
Archaea/enzimologia , Eubacterium/enzimologia , Dobramento de Proteína , tRNA Metiltransferases/química , Sequência de Aminoácidos , Dados de Sequência Molecular , RNA de Transferência , Análise de Sequência de Proteína , tRNA Metiltransferases/classificação , tRNA Metiltransferases/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA