Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.310
Filtrar
1.
J Food Sci ; 89(7): 4123-4135, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957110

RESUMO

Extraction of starch from waste is also an effective way to recover resources and provide new sources of starch. In this study, starch was isolated from white kidney bean residue, chickpea residue, and tiger nut meal after protein or oil extraction, and the morphology of starch particles was observed to determine their physicochemical properties and in vitro digestibility. All these isolated starches had unique properties, among which white kidney bean starch (KBS) had a high amylose content (43.48%), and its structure was better ordered. Scanning electron microscopy revealed distinct granular morphologies for the three starches. KBS and chickpea starch (CHS) were medium-granular starches, whereas tiger nut starch was a small granular starch. Fourier transform infrared spectroscopy analysis confirmed the absence of significant differences in functional groups and chemical bonds among the three starch molecules. In vitro digestibility studies showed that CHS is more resistant to enzymatic degradation. Overall, these results will facilitate the development of products based on the separation of nonconventional starches from waste.


Assuntos
Cicer , Digestão , Amido , Amido/química , Cicer/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Amilose/química , Phaseolus/química , Microscopia Eletrônica de Varredura
2.
Sci Rep ; 14(1): 15032, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951590

RESUMO

In agriculture, hydrogels can be addressed for effective operation of water and controlled-release fertilizers. Hydrogels have a significant ability for retaining water and improving nutrient availability in soil, enhancing plant growth while reducing water and fertilizer usage. This work aimed to prepare a hydrogel composite based on microalgae and biopolymers including chitosan and starch for use as a soil conditioner. The hydrogel composite was characterized by FTIR, XRD, and SEM. All hydrogel properties were studied including swelling degree, biodegradability, water-holding capacity, water retention, and re-swelling capacity in soil and water. The urea fertilizer loading and releasing behavior of the prepared hydrogels were investigated. The results revealed that the range of the maximal urea loading was between 99 and 440%, and the kinetics of loading was fitted with Freundlich model. The urea release % exhibited 78-95%, after 30 days, and the kinetics of release was fitted with zero-order, Higuchi, and Korsmeyer-Peppas models. Furthermore, the prepared hydrogels obtained a significant water-holding capacity, after blending soil (50 g) with small amount of hydrogels (1 g), the capacity increased in the range of 99.4-101.5%. In sum, the prepared hydrogels have the potential to be applied as a soil conditioner.


Assuntos
Fertilizantes , Hidrogéis , Microalgas , Ureia , Fertilizantes/análise , Hidrogéis/química , Ureia/química , Microalgas/química , Preparações de Ação Retardada/química , Cinética , Água/química , Solo/química , Quitosana/química , Amido/química
3.
J Texture Stud ; 55(4): e12854, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960864

RESUMO

The effect of varying extrusion conditions on the functional properties of hulless barley-mung bean (70:30) extruded snacks was investigated using response surface methodology with feed moisture (FM), barrel temperature (BT), and screw speed (SS) as process variables. Results revealed significant impacts on functional characteristics with varying extrusion conditions. Bulk density (BD) of extruded snacks ranged from 0.24 to 0.42 g/cm3, showing that lower FM and higher BT results in lower BD while it increased with increasing FM, SS, and BT. The expansion ratio (ER) of extruded snacks ranged between 2.03 and 2.33, showing BT and SS had a desirable positive effect, whereas increasing FM led to decreased ER. Increasing BT and SS depicted a negative effect on water absorption index, whereas FM showed positive effect, which ranged between 4.21 and 4.82 g/g. A positive effect on water solubility index was depicted by BT and SS, which ranges between 9.01% and 13.45%, as higher SS and BT led to starch degradation and increased solubility suggesting better digestibility. The hardness of extruded snacks ranged from 32.56 to 66.88 Newton (N), showing increasing FM increased hardness, whereas higher SS and BT resulted in lowering the hardness. Scanning electronic microscope (SEM) analysis revealed structural changes in extrudates in comparison with nonextruded flour, indicating starch gelatinization and pore formation affected by varying processing parameters. Shifts in absorption bands were observed in Fourier transform infrared spectroscopy (FT-IR), suggesting structural changes in starch and protein. Understanding the effects of extrusion parameters on product properties can help tailored production to meet consumers' preferences and the development of functional snacks with improved nutritional quality.


Assuntos
Manipulação de Alimentos , Hordeum , Lanches , Solubilidade , Vigna , Água , Manipulação de Alimentos/métodos , Vigna/química , Dureza , Farinha/análise , Temperatura , Amido/química
4.
Sci Adv ; 10(28): eadl3591, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985863

RESUMO

The hydrogen isotopic composition (δ2H) of plant compounds is increasingly used as a hydroclimatic proxy; however, the interpretation of δ2H values is hampered by potential coeffecting biochemical and biophysical processes. Here, we studied δ2H values of water and carbohydrates in leaves and roots, and of leaf n-alkanes, in two distinct tobacco (Nicotiana sylvestris) experiments. Large differences in plant performance and biochemistry resulted from (a) soil fertilization with varying nitrogen (N) species ratios and (b) knockout-induced starch deficiency. We observed a strong 2H-enrichment in sugars and starch with a decreasing performance induced by increasing NO3-/NH4+ ratios and starch deficiency, as well as from leaves to roots. However, δ2H values of cellulose and n-alkanes were less affected. We show that relative concentrations of sugars and starch, interlinked with leaf gas exchange, shape δ2H values of carbohydrates. We thus provide insights into drivers of hydrogen isotopic composition of plant compounds and into the mechanistic modeling of plant cellulose δ2H values.


Assuntos
Carboidratos , Hidrogênio , Folhas de Planta , Folhas de Planta/química , Folhas de Planta/metabolismo , Hidrogênio/análise , Carboidratos/química , Carboidratos/análise , Amido/química , Nicotiana/química , Lipídeos/análise , Lipídeos/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Metabolismo dos Carboidratos , Deutério/química , Alcanos/análise , Alcanos/química , Água/química
5.
Orphanet J Rare Dis ; 19(1): 258, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982397

RESUMO

BACKGROUND: Hypoglycaemia is the primary manifestation of all the hepatic types of glycogen storage disease (GSD). In 2008, Glycosade®, an extended-release waxy maize cornstarch, was reported as an alternative to uncooked cornstarch (UCCS) which could prolong the duration of fasting in the GSD population. To date, there has been minimal published experience in (a) young children, (b) the ketotic forms of GSD, and (c) with daytime dosing. The Glyde study was created as a prospective, global initiative to test the efficacy and tolerance of Glycosade use across a broader and more diverse population. METHODS: A randomised double-blind cross-over fasting study assessing the tolerance and efficacy of Glycosade compared with cornstarch was performed across disease types and ages. Participants and clinicians chose the product deemed superior, whilst still blinded. Participants were followed for 2 years to assess long-term metabolic control, growth, and quality of life. RESULTS: Sixty-one participants (age 2-62 years; 59% female) were enrolled, and 58 participants completed the fasting studies (28 GSD I; 30 GSD III, VI, IX). Glycosade improved duration of fasting in GSD I and duration of fasting without ketosis in the ketotic forms. Chronic Glycosade use was chosen by 69% of participants. Those treated with Glycosade for the 2-year chronic phase used fewer doses of therapy while markers of metabolic control remained stable. CONCLUSION: The Glyde study is the first multi-centre international trial demonstrating the efficacy and tolerance of Glycosade in a large cohort of hepatic GSD patients across a diverse international population. The ability to use fewer doses of therapy per day and avoidance of overnight therapy may improve compliance, safety, and quality of life without sacrificing metabolic control.


Assuntos
Amido , Humanos , Feminino , Criança , Masculino , Adolescente , Pré-Escolar , Adulto , Adulto Jovem , Pessoa de Meia-Idade , Método Duplo-Cego , Doença de Depósito de Glicogênio/dietoterapia , Estudos Cross-Over , Preparações de Ação Retardada
6.
Plant Cell Rep ; 43(8): 195, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008098

RESUMO

KEY MESSAGE: ZmRLCK58, a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation in the shoot. Magnesium (Mg) deficiency is one of critical limiting factors for crop production in widespread acidic soils worldwide. However, the molecular mechanism of crop response to Mg deficiency is still largely unclear. Here, we found higher concentrations of H2O2, soluble sugars, and starch (1.5-, 1.9-, and 1.4-fold, respectively) in the shoot of low-Mg-treated maize seedlings, compared with Mg sufficient plants under hydroponic culture. Consistent with over-accumulation of H2O2, transcriptome profiling revealed significant enrichment of 175 differentially expressed genes (DEGs) in "response to oxygen-containing compound" out of 641 DEGs in the shoot under low Mg. Among 175 DEGs, a down-regulated receptor-like cytoplasmic kinase ZmRLCK58 underwent a recent duplication event before Poaceae divergence and was highly expressed in the maize shoot. ZmRLCK58 overexpression enhanced H2O2 accumulation in shoots by 21.3% and 29.8% under control and low-Mg conditions, respectively, while reducing biomass accumulation compared with wild-type plants. Low Mg further led to 39.7% less starch accumulation in the ZmRLCK58 overexpression shoot and lower Mg utilization efficiency. Compared with wild-type plants, overall down-regulated expression of genes related to response to carbohydrate, photosynthesis, H2O2 metabolic, oxidation-reduction, and ROS metabolic processes in ZmRLCK58 overexpression lines preconditioned aforementioned physiological alterations. Together, ZmRLCK58, as a negative growth regulator, reduces tolerance of maize seedlings to low Mg via enhancing H2O2 accumulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Magnésio , Proteínas de Plantas , Plântula , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Magnésio/metabolismo , Magnésio/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Amido/metabolismo , Perfilação da Expressão Gênica , Brotos de Planta/metabolismo , Brotos de Planta/genética , Brotos de Planta/efeitos dos fármacos , Plantas Geneticamente Modificadas
7.
Molecules ; 29(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38999063

RESUMO

As part of the multifaceted strategies developed to shape the common environmental policy, considerable attention is now being paid to assessing the degree of environmental degradation in soil under xenobiotic pressure. Bisphenol A (BPA) has only been marginally investigated in this ecosystem context. Therefore, research was carried out to determine the biochemical properties of soils contaminated with BPA at two levels of contamination: 500 mg and 1000 mg BPA kg-1 d.m. of soil. Reliable biochemical indicators of soil changes, whose activity was determined in the pot experiment conducted, were used: dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulfatase, and ß-glucosidase. Using the definition of soil health as the ability to promote plant growth, the influence of BPA on the growth and development of Zea mays, a plant used for energy production, was also tested. As well as the biomass of aerial parts and roots, the leaf greenness index (SPAD) of Zea mays was also assessed. A key aspect of the research was to identify those of the six remediating substances-molecular sieve, zeolite, sepiolite, starch, grass compost, and fermented bark-whose use could become common practice in both environmental protection and agriculture. Exposure to BPA revealed the highest sensitivity of dehydrogenases, urease, and acid phosphatase and the lowest sensitivity of alkaline phosphatase and catalase to this phenolic compound. The enzyme response generated a reduction in the biochemical fertility index (BA21) of 64% (500 mg BPA) and 70% (1000 mg BPA kg-1 d.m. of soil). The toxicity of BPA led to a drastic reduction in root biomass and consequently in the aerial parts of Zea mays. Compost and molecular sieve proved to be the most effective in mitigating the negative effect of the xenobiotic on the parameters discussed. The results obtained are the first research step in the search for further substances with bioremediation potential against both soil and plants under BPA pressure.


Assuntos
Fosfatase Ácida , Compostos Benzidrílicos , Fenóis , Poluentes do Solo , Solo , Zea mays , Fenóis/química , Compostos Benzidrílicos/química , Poluentes do Solo/química , Zea mays/química , Solo/química , Fosfatase Ácida/metabolismo , Arilsulfatases/metabolismo , Fosfatase Alcalina/metabolismo , Zeolitas/química , Oxirredutases/metabolismo , Urease/metabolismo , Catalase/metabolismo , Biodegradação Ambiental , Silicatos de Magnésio/química , Amido/química , beta-Glucosidase/metabolismo , Compostagem/métodos
8.
Molecules ; 29(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999160

RESUMO

Chemically modified mandua starch was successfully synthesized and applied to coat mesalamine-loaded matrix tablets. The coating material was an aqueous dispersion of mandua starch modified by sodium trimetaphosphate and sodium tripolyphosphate. To investigate the colon-targeting release competence, chemically modified mandua starch film-coated mesalamine tablets were produced using the wet granulation method followed by dip coating. The effect of the coating on the colon-targeted release of the resultant delivery system was inspected in healthy human volunteers and rabbits using roentgenography. The results show that drug release was controlled when the coating level was 10% w/w. The release percentage in the upper gastric phase (pH 1.2, simulated gastric fluid) was less than 6% and reached up to 59.51% w/w after 14 h in simulated colonic fluid. In addition to in vivo roentgenographic studies in healthy rabbits, human volunteer studies proved the colon targeting efficiency of the formulation. These results clearly demonstrated that chemically modified mandua starch has high effectiveness as a novel aqueous coating material for controlled release or colon targeting.


Assuntos
Liberação Controlada de Fármacos , Mesalamina , Amido , Comprimidos , Mesalamina/química , Mesalamina/farmacocinética , Coelhos , Amido/química , Animais , Humanos , Concentração de Íons de Hidrogênio , Fosforilação , Preparações de Ação Retardada/química , Colo/metabolismo
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000330

RESUMO

Drought stress is a major meteorological threat to crop growth and yield. Barley (Hordeum vulgare L.) is a vital cereal crop with strong drought tolerance worldwide. However, the underlying growth properties and metabolomic regulatory module of drought tolerance remains less known. Here, we investigated the plant height, spike length, effective tiller, biomass, average spikelets, 1000-grain weight, number of seeds per plant, grain weight per plant, ash content, protein content, starch content, cellulose content, and metabolomic regulation mechanisms of drought stress in barley. Our results revealed that the growth properties were different between ZDM5430 and IL-12 under drought stress at different growth stages. We found that a total of 12,235 metabolites were identified in two barley genotype root samples with drought treatment. More than 50% of these metabolites showed significant differences between the ZDM5430 and IL-12 roots. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 368 differential metabolites mainly involved in starch and sucrose metabolism, the pentose phosphate pathway, pyrimidine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis in ZDM5430 under drought stress, whereas the different metabolites of IL-12 under drought stress related to starch and sucrose metabolism, the pentose phosphate pathway, 2-oxocarboxylic acid metabolism, cutin, suberine and wax biosynthesis, carbon metabolism, fatty acid biosynthesis, and C5-branched dibasic acid metabolism. These metabolites have application in the tricarboxylic cycle, the urea cycle, the met salvage pathway, amino acid metabolism, unsaturated fatty acid biosynthesis, phenolic metabolism, and glycolysis. On the other hand, the expression patterns of 13 genes related to the abovementioned bioprocesses in different barley genotypes roots were proposed. These findings afford an overview for the understanding of barley roots' metabolic changes in the drought defense mechanism by revealing the differently accumulated compounds.


Assuntos
Secas , Hordeum , Metabolômica , Hordeum/genética , Hordeum/metabolismo , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Metabolômica/métodos , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Metaboloma , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Amido/metabolismo , Resistência à Seca
10.
Sensors (Basel) ; 24(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39001010

RESUMO

Carbohydrates are the main components of lentils, accounting for more than 60% of their composition. Their content is influenced by genetic factors, with different contents depending on the variety. These compounds have not only been linked to interesting health benefits, but they also have a significant influence on the techno-functional properties of lentil-derived products. In this study, the use of near-infrared spectroscopy (NIRS) to predict the concentration of total carbohydrate, fibre, starch, total sugars, fructose, sucrose and raffinose was investigated. For this purpose, six different cultivars of macrosperm (n = 37) and microsperm (n = 43) lentils have been analysed, the samples were recorded whole and ground and the suitability of both recording methods were compared. Different spectral and mathematical pre-treatments were evaluated before developing the calibration models using the Modified Partial Least Squares regression method, with a cross-validation and an external validation. The predictive models developed show excellent coefficients of determination (RSQ > 0.9) for the total sugars and fructose, sucrose, and raffinose. The recording of ground samples allowed for obtaining better models for the calibration of starch content (R > 0.8), total sugars and sucrose (R > 0.93), and raffinose (R > 0.91). The results obtained confirm that there is sufficient information in the NIRS spectral region for the development of predictive models for the quantification of the carbohydrate content in lentils.


Assuntos
Carboidratos , Lens (Planta) , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Carboidratos/análise , Carboidratos/química , Lens (Planta)/química , Amido/análise , Amido/química , Sacarose/análise , Análise dos Mínimos Quadrados , Frutose/análise , Calibragem
11.
Commun Biol ; 7(1): 841, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987396

RESUMO

Cereal seeds are vital for food, feed, and agricultural sustainability because they store and provide essential nutrients to human and animal food and feed systems. Unraveling molecular processes in seed development is crucial for enhancing cereal grain yield and quality. We analyze spatiotemporal transcriptome and metabolome profiles during sorghum seed development in the inbred line 'BTx623'. Morphological and molecular analyses identify the key stages of seed maturation, specifying starch biosynthesis onset at 5 days post-anthesis (dpa) and protein at 10 dpa. Transcriptome profiling from 1 to 25 dpa reveal dynamic gene expression pathways, shifting from cellular growth and embryo development (1-5 dpa) to cell division, fatty acid biosynthesis (5-25 dpa), and seed storage compounds synthesis in the endosperm (5-25 dpa). Network analysis identifies 361 and 207 hub genes linked to starch and protein synthesis in the endosperm, respectively, which will help breeders enhance sorghum grain quality. The availability of this data in the sorghum reference genome line establishes a baseline for future studies as new pangenomes emerge, which will consider copy number and presence-absence variation in functional food traits.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Sementes , Sorghum , Transcriptoma , Sorghum/genética , Sorghum/metabolismo , Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Endosperma/metabolismo , Endosperma/genética , Amido/biossíntese , Amido/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo
12.
PLoS One ; 19(7): e0304373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38959223

RESUMO

Crystal type is an important physicochemical property of starch. However, it is currently unclear whether changes in crystal type affect other properties of starch. This study discovered that water deficit resulted in an increase in small starch granules and transparency in Pueraria lobata var. thomsonii, while causing a decrease in amylose content and swelling power. Additionally, the crystal type of P. Thomsonii starch changed from CB-type to CA-type under water deficit, without significantly altering the short-range ordered structure and chain length distribution of starch. This transformation in crystal type led to peak splitting in the DSC heat flow curve of starch, alterations in gelatinization behavior, and an increase in resistant starch content. These changes in crystalline structure and physicochemical properties of starch granules are considered as adaptive strategies employed by P. Thomsonii to cope with water deficit.


Assuntos
Amilose , Pueraria , Amido , Água , Pueraria/química , Amido/química , Água/química , Amilose/química , Amilose/análise , Cristalização , Difração de Raios X , Varredura Diferencial de Calorimetria
13.
BMC Plant Biol ; 24(1): 672, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004728

RESUMO

BACKGROUND: Grain quality is an important index of rice production, particularly when plants are grown under stress. Arsenic (As) contamination in paddy fields severely affects rice grain yield and quality. Here, the effects of As and combinations of As(III)-oxidizing bacteria (Pseudomonas stutzeri 4.25, 4.27, and 4.44) and plant growth-promoting bacteria (Delftia acidovorans KKU2500-12 and Cupriavidus taiwanensis KKU2500-3) on enzymes related to starch accumulation in grains and the grain quality of Khao Dawk Mali 105 rice cultivated in As-contaminated soil under greenhouse conditions were investigated. RESULTS: Arsenic affected the activities of starch biosynthesis-related enzymes, and decreases of up to 76.27%, 71.53%, 49.74%, 73.39%, and 47.46% in AGPase, SSS, GBSS, SBE, and SDBE activities, respectively, and 9.42-61.07% in starch accumulation in grains were detected after growth in As-contaminated soil. However, the KKU2500-3/4.25 and KKU2500-3/4.44 combinations yielded the greatest enzyme activities in grains, and compared with the results observed in uninoculated seedlings, increases in starch accumulation of up to 51.16% and 23.81% were found in the inoculated seedlings after growth in medium- and high-As-contaminated soils, at 10-17 and 10-24 days after anthesis, respectively. The bacteria increased the 2-AP content in rice under As stress, possibly via the induction of proline, a 2-AP substrate. Bacterium-inoculated rice had significantly greater 2-AP levels than uninoculated rice, and 2.16-9.93% and 26.57-42.04% increases were detected in rice plants grown in medium- and high-As-contaminated soils, respectively. CONCLUSIONS: Arsenic toxicity can be mitigated in rice growing under greenhouse conditions by maintaining starch biosynthesis, accumulating amylose, and increasing 2-AP content. The effectiveness of these bacteria should be validated in paddy fields; hence, safe rice grains with a good starch content and aroma could be produced.


Assuntos
Arsênio , Oryza , Amido , Oryza/microbiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Amido/metabolismo , Arsênio/metabolismo , Grão Comestível/microbiologia , Poluentes do Solo/metabolismo , Microbiologia do Solo , Estresse Fisiológico
14.
Carbohydr Polym ; 339: 122264, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823928

RESUMO

Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.


Assuntos
Amilopectina , Amilose , Oryza , Oryza/química , Amilopectina/química , Viscosidade , Amilose/química , Amilose/análise , Amido/química , Digestão , Reologia
15.
Molecules ; 29(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930854

RESUMO

Glycogen, an α-glucan polymer serving as an energy storage compound in microorganisms, is synthesized through distinct pathways (GlgC-GlgA or GlgE pathway). Both pathways involve multiple enzymes, with a shared glycogen branching enzyme (GBE). GBEs play a pivotal role in establishing α-1,6-linkages within the glycogen structure. GBEs are also used for starch modification. Understanding how these enzymes work is interesting for both glycogen synthesis in microorganisms, as well as novel applications for starch modification. This study focuses on a putative enzyme GH13_9 GBE (PoGBE13), present in a polysaccharide utilization locus (PUL) of Pontibacter sp. SGAir0037, and related to the GlgE glycogen synthesis pathway. While the PUL of Pontibacter sp. SGAir0037 contains glycogen-degrading enzymes, the branching enzyme (PoGBE13) was also found due to genetic closeness. Characterization revealed that PoGBE13 functions as a typical branching enzyme, exhibiting a relatively high branching over non-branching (hydrolysis and α-1,4-transferase activity) ratio on linear maltooctadecaose (3.0 ± 0.4). Besides the GH13_9 GBE, a GH57 (PoGH57) enzyme was selected for characterization from the same PUL due to its undefined function. The combined action of both GH13 and GH57 enzymes suggested 4-α-glucanotransferase activity for PoGH57. The characterization of these unique enzymes related to a GlgE glycogen synthesis pathway provides a more profound understanding of their interactions and synergistic roles in glycogen synthesis and are potential enzymes for use in starch modification processes. Due to the structural similarity between glycogen and starch, PoGBE13 can potentially be used for starch modification with different applications, for example, in functional food ingredients.


Assuntos
Glicosídeo Hidrolases , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética , Glicogênio/metabolismo , Glicogênio/biossíntese , Polissacarídeos/metabolismo , Polissacarídeos/química , Polissacarídeos/biossíntese , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/genética , Amido/metabolismo , Amido/química , Especificidade por Substrato , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
16.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930947

RESUMO

Starch is a natural plant raw material applicable in many areas of industry. In practice, it is most often used in a modified form, i.e., after various treatments aimed at modifying its properties. Modifications of native starch enable producing resistant starch, which, as a prebiotic with confirmed health-promoting properties, has been increasingly used as a food additive. The present study aimed to determine the effect of roasting retrograded starch with the addition of anhydrous glucose at different temperatures (110, 130 or 150 °C) and different times (5 or 24 h) on the modified starch's properties. The results of high-performance size-exclusion chromatography coupled with refractive index detector (HPSEC/RI) analysis and the changes observed in the solubility of starch roasted with glucose in DMSO, as well as in its other properties, confirm the changes in its molecular structure, including thermolytic degradation and the ongoing polymerization of starch with added glucose.


Assuntos
Glucose , Amido , Glucose/química , Amido/química , Solubilidade , Temperatura Alta , Amido Resistente , Culinária , Temperatura
17.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928007

RESUMO

Three types of starch with different amylose content were esterified and blended with polybutylene succinate (PBS) to obtain esterified manioc starch/PBS (EMS/PBS), esterified corn starch/PBS (ECS/PBS), and esterified waxy corn starch/PBS (EWS/PBS) composites. The EMS/PBS and ECS/PBS composites with high amylose content displayed typical V-type crystal structures. The original crystals of EWS, which had low amylose content, were disrupted during the esterification process. EWS exhibited the strongest interaction with PBS and the most favorable interface compatibility. The pyrolysis temperature was in order of EMS/PBS < ECS/PBS < EWS/PBS. The elongation at break of the three blends was higher than that of pure PBS. The esterification and plasticization of the EWS/PBS composite were the most comprehensive. The EWS/PBS composite showed the lowest storage modulus (G') and complex viscosity (η*). The interfacial bonding force of the composite materials increased with more amylopectin, decreasing intermolecular forces and destroying crystal structures, which decreased G' and η* and increased toughness. The EWS/PBS composite, with the least amylose content, had the best hydrophobicity and degradation performance.


Assuntos
Amilose , Amilose/química , Esterificação , Amido/química , Polímeros/química , Viscosidade , Polienos/química , Zea mays/química , Butileno Glicóis/química
18.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825718

RESUMO

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Assuntos
Silagem , Zea mays , Zea mays/genética , Genótipo , Clima Tropical , Fermentação , Amido , Carboidratos , Proteínas de Plantas , Paquistão , Agricultura
19.
Sci Rep ; 14(1): 12722, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830940

RESUMO

Pinellia ternata (Thunb.) Breit is a traditional Chinese medicine with important pharmacological effects. However, its cultivation is challenged by soil degradation following excessive use of chemical fertilizer. We conducted an experiment exploring the effects of replacing chemical fertilizers with organic fertilizers (OF) on the growth and yield of P. ternata, as well as on the soil physicochemical properties and microbial community composition using containerized plants. Six fertilization treatments were evaluated, including control (CK), chemical fertilizer (CF), different proportions of replacing chemical fertilizer with organic fertilizer (OM1-4). Containerized P. ternata plants in each OF treatment had greater growth and yield than the CK and CF treatments while maintaining alkaloid content. The OM3 treatment had the greatest yield among all treatments, with an increase of 42.35% and 44.93% compared to the CK and CF treatments, respectively. OF treatments improved soil quality and fertility by enhancing the activities of soil urease (S-UE) and sucrase (S-SC) enzymes while increasing soil organic matter and trace mineral elements. OF treatments increased bacterial abundance and changed soil community structure. In comparison to the CK microbial groups enriched in OM3 were OLB13, Vicinamibacteraceae, and Blrii41. There were also changes in the abundance of gene transcripts among treatments. The abundance of genes involved in the nitrogen cycle in the OM3 has increased, specifically promoting the transformation of N-NO3- into N-NH4+, a type of nitrogen more easily absorbed by P. ternata. Also, genes involved in "starch and sucrose metabolism" and "plant hormone signal transduction" pathways were positively correlated to P. ternata yield and were upregulated in the OM3 treatment. Overall, OF in P. ternata cultivation is a feasible practice in advancing sustainable agriculture and is potentially profitable in commercial production.


Assuntos
Fertilizantes , Ciclo do Nitrogênio , Pinellia , Solo , Amido , Sacarose , Solo/química , Pinellia/metabolismo , Sacarose/metabolismo , Amido/metabolismo , Microbiologia do Solo , Nitrogênio/metabolismo
20.
Carbohydr Polym ; 340: 122273, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858001

RESUMO

During home cooking or industrial food processing operations, starch granules usually undergo a process known as gelatinization. The starch gelatinization degree (DG) influences the structural organization and properties of starch, which in turn alters the physicochemical, organoleptic, and gastrointestinal properties of starchy foods. This review summarizes methods for measuring DG, as well as the impact of DG on the starch structure, properties, and applications. Enzymatic digestion, iodine colorimetry, and differential scanning calorimetry are the most common methods for evaluating the DG. As the DG increases, the structural organization of the molecules within starch granules is progressively disrupted, the particle size of the granules is altered due to swelling and then disruption, the crystallinity is decreased, the molecular weight is reduced, and the starch-lipid complexes are formed. The impact of DG on the starch structure and properties depends on the processing method, operating conditions, and starch source. The starch DG affects the quality of many foods, including baked goods, fried foods, alcoholic beverages, emulsified foods, and edible inks. Thus, a better understanding of the changes in starch structure and function caused by gelatinization could facilitate the development of foods with novel or improved properties.


Assuntos
Amido , Amido/química , Varredura Diferencial de Calorimetria , Tamanho da Partícula , Manipulação de Alimentos/métodos , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA