RESUMO
BACKGROUND: Cellulitis is a common skin disease encountered in medical emergencies in hospitals. It can be treated using a combination of antibiotics therapy; however, the causative agent Staphylococcus aureus has been reported to develop resistance towards the currently used antibiotics. Therefore, the search for more alternative herbal origin antimicrobial agents is critical. AIM: In this study, maceration and Soxhlet extraction of the whole plant of Cassia alata Linn. (leaves, roots, and stem) were performed using four solvents with different polarities, namely n-hexane, ethyl acetate, ethanol and distilled water. The crude extracts were screened using agar well diffusion, colorimetric broth microdilution, grid culture and bacterial growth curve analysis against Staphylococcus aureus. The phytochemicals in the crude extracts were identified using Gas Chromatography-Mass Spectrometry (GC-MS). RESULTS: Agar-well diffusion analysis revealed that extraction using ethyl acetate showed the largest inhibition zone with an average diameter of 15.30 mm (root Soxhlet extract) followed by 14.70 mm (leaf Soxhlet extract) and 13.70 mm (root maceration extract). The lowest minimum inhibitory and minimum bactericidal concentration in root Soxhlet extract using ethyl acetate was 0.313 and 0.625 µg µL-1, respectively. Our study proved that crude extract of the plant suppressed the growth of S. aureus as evidenced from a significant regression extension (p < 0.06, p = 0.00003) of lag phase for 6 h after the treatment with increased concentration. Based on the GC-MS analysis, 88 phytochemicals consist of fatty acids, esters, alkanes, phenols, fatty alcohols, sesquiterpenoids and macrocycle that possibly contributed to the antimicrobial properties were identified, 32 of which were previously characterized for their antimicrobial, antioxidant, and anti-inflammatory activities. CONCLUSION: Ethyl acetate crude extract was better than the other investigated solvents. The root and stem of C. alata showed significant antimicrobial efficacy against S. aureus in this study. The remaining 56 out of 88 phytochemicals of the plant should be intensively studied for more medicinal uses.
Assuntos
Anti-Infecciosos , Cassia , Staphylococcus aureus , Cassia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Celulite (Flegmão) , Ágar , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Folhas de Planta/química , Solventes/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análiseRESUMO
Current antimicrobial challenges in hospitals, pharmaceutical production units, and food packaging have motivated the development of antimicrobial agents, among them the antimicrobial compounds based on cellulose and peptides. Herein, we develop molecular dynamics (MD) models to dissect and characterize the adsorption process of antimicrobial peptides (AMPs) such as protegrin 1, magainin 2, and cyclic indolicidin on various surfaces of cellulose including [-1-10], [1-10], [-100], [100], [-110], and [110]. Our results suggest that the magainin 2 antimicrobial peptide loses most of its initial helix form, spreads on the cellulose surface, and makes the most rigid structure with [110] surface. The cyclic indolicidin peptide has the lowest affinity to adsorb on the cellulose surfaces, and the protegrin 1 peptide successfully adsorbs on all the proposed cellulose surfaces. Our MD simulations confirmed that cellulose can improve the corresponding peptides' structural stability and change their secondary structures during adsorption. The [-1-10] and [100] surfaces of cellulose show considerable affinity against the AMPs, exhibiting greater interactions with and adsorption to the peptides. Our data imply that the stronger adsorptions are caused by a set of H-bonds, van der Waals, and electrostatic interactions, where van der Waals interactions play a prominent role in the stability of the AMP-cellulose structures. Our energy analysis results suggest that glutamic acid and arginine amino acids have key roles in the stability of AMPs on cellulose surfaces due largely to stronger interactions with the cellulose surfaces as compared with other residues. Our results can provide useful insight at the molecular level that can help design better antimicrobial biomaterials based on cellulose.
Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Adsorção , Magaininas , Celulose/química , Anti-Infecciosos/farmacologiaRESUMO
In this investigation, lactic acid bacteria (LAB) isolated from milk were tested for their antibacterial properties and improved the antimicrobial activity of these isolates using genome shuffling. A total of sixty-one isolates were found in eleven samples, which were then tested using the agar diffusion method for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, and Pseudomonas aeruginosa. Thirty-one strains exhibited antibacterial activity against at least one of the tested pathogens, with an inhibitory zone's diameter varying between 15.0 and 24.0 mm. Two isolates that showed the highest antimicrobial activity were identified as Lactobacillus plantarum CIP 103151 and Lactobacillus plantarum JCM 1149 according to 16S rRNA analysis. In the present study, applying genome shuffling approach significantly enhanced the antibacterial activity of L. plantarum. The initial populations were obtained via ultraviolet irradiation and were treated using the protoplast fusion method. The ideal condition for the production of protoplasts was 15 mg/ml of lysozyme and 10 µg/ml of mutanolysin. After two rounds of fusion, ten recombinants exhibited a significant increase in the inhibition zones versus S. aureus, S. typhimurium, P. aeruginosa, and E. coli, reaching up to 1.34, 1.31, 1.37, and 1.37-fold increase in inhibitory zone respectively. Random Amplified Polymorphic DNA results showed clear differences in DNA banding patterns among the wild strain of L. plantarum CIP 103151 and the three selected shuffled strains using primers 1283 & OPA09. On the other hand, no change was obtained using primers OPD03 neither among the wild strain and the three recombinant strains nor among the three shuffled strains.
Assuntos
Anti-Infecciosos , Lactobacillales , Lactobacillales/genética , Staphylococcus aureus/genética , RNA Ribossômico 16S/genética , Embaralhamento de DNA , Escherichia coli/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologiaRESUMO
This study evaluated the antimicrobial capacity of BlueM® mouthwash against the bacterium Streptococcus mutans and its influence on gbpA gene expression as well as its cytotoxic effect on fibroblast cells. BlueM® showed antimicrobial activity, with MIC and MBC values of 0.005% and 0.01%, respectively. The MBIC was 6.25% for S. mutans. CFU count and confocal microscopy revealed significant effect of BlueM® on S. mutans biofilm pre-formed on dentin surfaces. Interestingly, the analysis of gbpA gene expression indicated a decrease in gene expression after 15 min of treatment with BlueM® at a concentration of 25%. Moreover, BlueM® exhibited low levels of cytotoxicity. In conclusion, our results showed the antimicrobial effectiveness of BlueM® against S. mutans, its ability to modulate the expression of the gbpA gene and its low cytotoxicity. This study supports the therapeutic potential of BlueM® as an alternative agent for the control of oral biofilm.
Assuntos
Anti-Infecciosos , Cárie Dentária , Humanos , Streptococcus mutans/genética , Virulência , Anti-Infecciosos/farmacologia , Biofilmes , Expressão Gênica , Antibacterianos/farmacologiaRESUMO
Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. CNPs have a wide range of applications due to their unique characteristics, including plant growth promotion and protection, drug delivery, antimicrobials, and encapsulation. The current study describes an alternative, biologically-based strategy for CNPs biosynthesis using Olea europaea leaves extract. Face centered central composite design (FCCCD), with 50 experiments was used for optimization of CNPs biosynthesis. The artificial neural network (ANN) was employed for analyzing, validating, and predicting CNPs biosynthesis using Olea europaea leaves extract. Using the desirability function, the optimum conditions for maximum CNPs biosynthesis were determined theoretically and verified experimentally. The highest experimental yield of CNPs (21.15 mg CNPs/mL) was obtained using chitosan solution of 1%, leaves extract solution of 100%, initial pH 4.47, and incubation time of 60 min at 53.83°C. The SEM and TEM images revealed that CNPs had a spherical form and varied in size between 6.91 and 11.14 nm. X-ray diffraction demonstrates the crystalline nature of CNPs. The surface of the CNPs is positively charged, having a Zeta potential of 33.1 mV. FTIR analysis revealed various functional groups including C-H, C-O, CONH2, NH2, C-OH and C-O-C. The thermogravimetric investigation indicated that CNPs are thermally stable. The CNPs were able to suppress biofilm formation by P. aeruginosa, S. aureus and C. albicans at concentrations ranging from 10 to 1500 µg/mL in a dose-dependent manner. Inhibition of biofilm formation was associated with suppression of metabolic activity, protein/exopolysaccharide moieties, and hydrophobicity of biofilm encased cells (r Ë 0.9, P = 0.00). Due to their small size, in the range of 6.91 to 11.14 nm, CNPs produced using Olea europaea leaves extract are promising for applications in the medical and pharmaceutical industries, in addition to their potential application in controlling multidrug-resistant microorganisms, especially those associated with post COVID-19 pneumonia in immunosuppressed patients.
Assuntos
Anti-Infecciosos , COVID-19 , Quitosana , Nanopartículas , Humanos , Quitosana/química , Inteligência Artificial , Staphylococcus aureus , Nanopartículas/química , Anti-Infecciosos/farmacologiaRESUMO
Antimicrobial resistance (AMR) is a threat to global public health. However, unsatisfactory approaches to directly measuring the AMR burden carried by individuals has hampered efforts to assess interventions aimed at reducing selection for AMR. Metagenomics can provide accurate detection and quantification of AMR genes within an individual person's faecal flora (their gut "resistome"). Using this approach, we aimed to test the hypothesis that differences in antimicrobial use across different hospitals in the United Kingdom will result in observable differences in the resistome of individual patients. Three National Health Service acute Hospital Trusts with markedly different antibiotic use and Clostridioides difficile infection rates collected faecal samples from anonymous patients which were discarded after C. difficile testing over a period of 9 to 15 months. Metagenomic DNA was extracted from these samples and sequenced using an Illumina NovaSeq 6000 platform. The resulting sequencing reads were analysed for taxonomic composition and for the presence of AMR genes. Among 683 faecal metagenomes we found huge variation between individuals in terms of taxonomic diversity (Shannon Index range 0.10-3.99) and carriage of AMR genes (Median 1.50 genes/cell/sample overall). We found no statistically significant differences in diversity (median Shannon index 2.16 (IQR 1.71-2.56), 2.15 (IQR 1.62-2.50) and 2.26 (IQR 1.55-2.51)) or carriage of AMR genes (median 1.37 genes/cell/sample (IQR 0.70-3.24), 1.70 (IQR 0.70-4.52) and 1.43 (IQR 0.55-3.71)) at the three trusts respectively. This was also the case across the sample collection period within the trusts. While we have not demonstrated differences over place or time using metagenomic sequencing of faecal discards, other sampling frameworks may be more suitable to determine whether organisational level differences in antibiotic use are associated with individual-level differences in burden of AMR carriage.
Assuntos
Anti-Infecciosos , Clostridioides difficile , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Metagenoma , Clostridioides difficile/genética , Medicina Estatal , Farmacorresistência Bacteriana/genética , Anti-Infecciosos/farmacologia , Metagenômica/métodosRESUMO
Laccases [E.C. 1.10.3.2, benzenediol:dioxygen oxidoreductase] can oxidize phenolic substances, e.g. di- and polyphenols, hydroxylated biaryls, aminophenols or aryldiamines. This large substrate spectrum is the basis for various reaction possibilities, which include depolymerization and polymerization reactions, but also the coupling of different substance classes. To catalyze these reactions, laccases demand only atmospheric oxygen and no depletive cofactors. The utilization of mild and environmentally friendly reaction conditions such as room temperature, atmospheric pressure, and the avoidance of organic solvents makes the laccase-mediated reaction a valuable tool in green chemistry for the synthesis of biologically active compounds such as antimicrobial substances. In particular, the production of novel antibiotics becomes vital due to the evolution of antibiotic resistances amongst bacteria and fungi. Therefore, laccase-mediated homo- and heteromolecular coupling reactions result in derivatized or newly synthesized antibiotics. The coupling or derivatization of biologically active compounds or its basic structures may allow the development of novel pharmaceuticals, as well as the improvement of efficacy or tolerability of an already applied drug. Furthermore, by the laccase-mediated coupling of two different active substances a synergistic effect may be possible. However, the coupling of compounds that have no described efficacy can lead to biologically active substances by means of laccase. The review summarizes laccase-mediated reactions for the synthesis of antimicrobial compounds valuable for medical purposes. In particular, reactions with two different reaction partners were shown in detail. In addition, studies with in vitro and in vivo experimental data for the confirmation of the antibacterial and/or antifungal efficacy of the products, synthesized with laccase, were of special interest. Analyses of the structure-activity relationship confirm the great potential of the novel compounds. These substances may represent not only a value for pharmaceutical and chemical industry, but also for other industries due to a possible functionalization of surfaces such as wood or textiles.
Assuntos
Anti-Infecciosos , Lacase , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Antifúngicos , Aminofenóis , OxigênioRESUMO
BACKGROUND: Enterococcus faecalis (E. faecalis) is the most frequently isolated bacteria from teeth with root canal treatment failure. This study aims to evaluate the disinfection effect of ultrasonic-mediated cold plasma-loaded microbubbles (PMBs) on 7d E. faecalis biofilm, the mechanical safety and the mechanisms. METHODS: The PMBs were fabricated by a modified emulsification process and the key reactive species, nitric oxide (NO) and hydrogen peroxide (H2O2) were evaluated. The 7d E. faecalis biofilm on human tooth disk was constructed and divided into the following groups: PBS, 2.5%NaOCl, 2%CHX, and different concentrations of PMBs (108 mL-1, 107 mL-1). The disinfection effects and elimination effects were verified with confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). Microhardness and roughness change of dentin after PMBs treatment were verified respectively. RESULTS: The concentration of NO and H2O2 in PMBs increased by 39.99% and 50.97% after ultrasound treatment (p < 0.05) respectively. The CLSM and SEM results indicate that PMBs with ultrasound treatment could remove the bacteria and biofilm components effectively, especially those living in dentin tubules. The 2.5% NaOCl presented an excellent effect against biofilm on dishes, but the elimination effect on dentin tubules is limited. The 2% CHX group exhibits significant disinfection effect. The biosafety tests indicated that there is no significant changes on microhardness and roughness after PMBs with ultrasound treatment (p > 0.05). CONCLUSION: PMBs combined with ultrasound treatment exhibited significant disinfection effect and biofilm removal effect, the mechanical safety is acceptable.
Assuntos
Anti-Infecciosos , Enterococcus faecalis , Humanos , Peróxido de Hidrogênio/farmacologia , Ultrassom , Microbolhas , Irrigantes do Canal Radicular/farmacologia , Anti-Infecciosos/farmacologia , Biofilmes , Hipoclorito de Sódio/farmacologia , Cavidade Pulpar , Dentina , Microscopia ConfocalRESUMO
Health care-associated infections (HAIs) contribute to a significant rate of morbidity, mortality, and financial burden on health systems. These infections are caused by multidrug-resistant bacteria that produce biofilm as the main virulence factor. This study aimed to evaluate the effect of the copper-based metallic compounds [Cu(phen)(pz)NO2]Cl (I), [Cu(bpy)(pz)(NO2)]Cl (II), and [Cu(phen)(INA)NO2]Cl (III), where phen = phenanthroline, bpy = bipyridine, pz = pyrazinamide, and INA = isonicotinic acid, against planktonic cells and biofilms formation of Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli. The susceptibility of the microorganisms was evaluated by minimum inhibitory concentration (MIC), minimum bacterial concentration (MBC), and time-kill curve assay on planktonic cells. The biofilm formation was evaluated by biomass quantification through staining with crystal violet (CV), colony-forming units (CFUs) quantification, and biofilm metabolic activity determination by XTT assay. The compounds showed bacteriostatic and bactericidal activity on all microorganisms analyzed. Regarding the antibiofilm activity, all metallic compounds were able to reduce significantly the biofilm biomass, colony-forming units, and the metabolic activity of remaining cells, varying the efficient concentration according to the strain analyzed. Interestingly, compounds (I), (II) and (III) did not exhibit DNA degradation activity even with up to 100 µM of these metal complexes. On the other hand, complexes (I) and (III) showed a remarkable capacity to cleave DNA upon addition of glutathione, a reducing agent (CuII/CuI) that leads to reactive oxygen species (ROS) formation. The results presented in this study showed promising antimicrobial and antibiofilm effects.
Assuntos
Anti-Infecciosos , Infecção Hospitalar , Humanos , Antibacterianos/farmacologia , Cobre/farmacologia , Dióxido de Nitrogênio/farmacologia , Anti-Infecciosos/farmacologia , Bactérias , Biofilmes , Atenção à Saúde , Testes de Sensibilidade MicrobianaRESUMO
INTRODUCTION: Salmonellosis is one of the diseases affecting chicken breeding farms in research locations. This study aimed to estimate the prevalence of Salmonella, its risk factors, and the distribution of antibiotic resistance in chicken breeding farms in and around Arba Minch town, Southern Ethiopia. METHODOLOGY: A total of 390 samples were obtained from the chicks selected using stratified random selection from the breeding farms. Each chick's rectum was sampled for cloacal swabs and fecal samples, which were later analyzed for Salmonella using microbial culture and serological methods. Drug sensitivity testing was done using disk diffusion techniques. RESULTS: Salmonella isolates were found in 7/285 (2.45%) of fecal dropping and 14/105 (13.33%) of cloacal swabs. S. Anatum 6/21 (28.57%), S. Saintpaul 5/21 (23.8%), S. Typhimurium 4/21 (19.04%), S. Kentucky 4/21(19.04%), and S. Haifa 2/21 (9.52%) were the identified serotypes with a prevalence of 21/390 (5.38%) (95% CI = 2.2-8). According to a multivariate logistic regression analysis of the risk factors, the source of feed, contact with other farms, chick breed, and management were statistically significant influences on the presence of Salmonella in chicks (p < 0.05). The 8 antimicrobials tested were found to be ineffective against 90.47% of the isolates. These antimicrobials are used in both human and animal medicine. CONCLUSION: Our findings confirmed that risk factors such as feed source, breed, contact with other farms, and management had a significant effect on the occurrence of salmonellosis in chicks, and disease control in the study area requires special attention.
Assuntos
Anti-Infecciosos , Intoxicação Alimentar por Salmonella , Salmonelose Animal , Animais , Humanos , Galinhas , Fazendas , Prevalência , Etiópia/epidemiologia , Antibacterianos/farmacologia , Salmonelose Animal/epidemiologia , Intoxicação Alimentar por Salmonella/tratamento farmacológico , Salmonella , Anti-Infecciosos/farmacologia , Fatores de RiscoRESUMO
In this work, two compounds belonging to the BODIPY family, and previously investigated for their photosensitizing properties, have been bound to the amino-pendant groups of three random copolymers, with different amounts of methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) in the backbone. The P(MMA-ran-DMAEMA) copolymers have inherently bactericidal activity, due to the amino groups of DMAEMA and to the quaternized nitrogens bounded to BODIPY. Systems consisting of filter paper discs coated with copolymers conjugated to BODIPY were tested on two model microorganisms, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). On solid medium, irradiation with green light induced an antimicrobial effect, visible as a clear inhibition area around the coated disks. The system based on the copolymer with 43% DMAEMA and circa 0.70 wt/wt% of BODIPY was the most efficient in both bacterial species, and a selectivity for the Gram-positive model was observed, independently of the conjugated BODIPY. A residual antimicrobial activity was also observed after dark incubation, attributed to the inherently bactericidal properties of copolymers.
Assuntos
Anti-Infecciosos , Fotoquimioterapia , Escherichia coli , Metilmetacrilato , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Metacrilatos/farmacologia , Polímeros/farmacologia , Antibacterianos/farmacologia , Fármacos Fotossensibilizantes/farmacologiaRESUMO
Infections caused by multi-drug-resistant (MDR) bacteria are a global threat to human health. As venoms are the source of biochemically diverse bioactive proteins and peptides, we investigated the antimicrobial activity and murine skin infection model-based wound healing efficacy of a 13 kDa protein. The active component PaTx-II was isolated from the venom of Pseudechis australis (Australian King Brown or Mulga Snake). PaTx-II inhibited the growth of Gram-positive bacteria in vitro, with moderate potency (MICs of 25 µM) observed against S. aureus, E. aerogenes, and P. vulgaris. The antibiotic activity of PaTx-II was associated with the disruption of membrane integrity, pore formation, and lysis of bacterial cells, as evidenced by scanning and transmission microscopy. However, these effects were not observed with mammalian cells, and PaTx-II exhibited minimal cytotoxicity (CC50 > 1000 µM) toward skin/lung cells. Antimicrobial efficacy was then determined using a murine model of S. aureus skin infection. Topical application of PaTx-II (0.5 mg/kg) cleared S. aureus with concomitant increased vascularization and re-epithelialization, promoting wound healing. As small proteins and peptides can possess immunomodulatory effects to enhance microbial clearance, cytokines and collagen from the wound tissue samples were analyzed by immunoblots and immunoassays. The amounts of type I collagen in PaTx-II-treated sites were elevated compared to the vehicle controls, suggesting a potential role for collagen in facilitating the maturation of the dermal matrix during wound healing. Levels of the proinflammatory cytokines interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2) and interleukin-10 (IL-10), factors known to promote neovascularization, were substantially reduced by PaTx-II treatment. Further studies that characterize the contributions towards efficacy imparted by in vitro antimicrobial and immunomodulatory activity with PaTx-II are warranted.
Assuntos
Anti-Infecciosos , Venenos de Cnidários , Colubridae , Humanos , Animais , Camundongos , Staphylococcus aureus , Austrália , Cicatrização , Anti-Infecciosos/farmacologia , Venenos de Cnidários/farmacologia , Colágeno/farmacologia , Peptídeos/farmacologia , Citocinas/farmacologia , MamíferosRESUMO
We explored the antimicrobial activity of sertraline on Listeria monocytogenes and further investigated the effects of sertraline on biofilm formation and the virulence gene expression of L. monocytogenes. The minimum inhibitory concentration and minimum bactericidal concentration for sertraline against L. monocytogenes were in the range of 16-32 µg/mL and 64 µg/mL, respectively. Sertraline-dependent damage of the cell membrane and a decrease in intracellular ATP and pHin in L. monocytogenes were observed. In addition, sertraline reduced the biofilm formation efficiency of the L. monocytogenes strains. Importantly, low concentrations (0.1 µg/mL and 1 µg/mL) of sertraline significantly down-regulated the expression levels of various L. monocytogens virulence genes (prfA, actA, degU, flaA, sigB, ltrC and sufS). These results collectively suggest a role of sertraline for the control of L. monocytogenes in the food industry.
Assuntos
Anti-Infecciosos , Listeria monocytogenes , Sertralina , Proteínas de Bactérias/metabolismo , Virulência , Anti-Infecciosos/farmacologia , Regulação Bacteriana da Expressão GênicaRESUMO
Difficult-to-treat infections make complex wounds a problem of great clinical and socio-economic impact. Moreover, model therapies of wound care are increasing antibiotic resistance and becoming a critical problem, beyond healing. Therefore, phytochemicals are promising alternatives, with both antimicrobial and antioxidant activities to heal, strike infection, and the inherent microbial resistance. Hereupon, chitosan (CS)-based microparticles (as CM) were designed and developed as carriers of tannic acid (TA). These CMTA were designed to improve TA stability, bioavailability, and delivery in situ. The CMTA were prepared by spray dryer technique and were characterized regarding encapsulation efficiency, kinetic release, and morphology. Antimicrobial potential was evaluated against methicillin-resistant and methicillin-sensitive Staphylococcus aureus (MRSA and MSSA), Staphylococcus epidermidis, Escherichia coli, Candida albicans, and Pseudomonas aeruginosa strains, as common wound pathogens, and the agar diffusion inhibition growth zones were tested for antimicrobial profile. Biocompatibility tests were performed using human dermal fibroblasts. CMTA had a satisfactory product yield of ca. 32% and high encapsulation efficiency of ca. 99%. Diameters were lower than 10 µm, and the particles showed a spherical morphology. The developed microsystems were also antimicrobial for representative Gram+, Gram-, and yeast as common wound contaminants. CMTA improved cell viability (ca. 73%) and proliferation (ca. 70%) compared to free TA in solution and even compared to the physical mixture of CS and TA in dermal fibroblasts.
Assuntos
Anti-Infecciosos , Quitosana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Quitosana/uso terapêutico , Taninos/química , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos/farmacologiaRESUMO
This study aimed to obtain and analyse Mentha piperita essential oil (MpEO) for the prospect of being used as an enhancement agent for the antimicrobial potential of ozone against gram-positive and gram-negative bacteria and fungi. The research was done for different exposure times, and it gained time-dose relationships and time-effect correlations. Mentha piperita (Mp) essential oil (MpEO) was obtained via hydrodistillation and further analysed by using GC-MS. The broth microdilution assay was used to determine the strain inhibition/strain mass growth by using spectrophotometric optical density reading (OD). The bacterial/mycelium growth rates (BGR/MGR) and the bacterial/mycelium inhibition rates (BIR/MIR) after ozone treatment in the presence and absence of MpEO on the ATTC strains were calculated; the minimum inhibition concentration (MIC) and statistical interpretations of the time-dose relationship and specific t-test correlations were determined. The effect of ozone on the following tested strains at maximum efficiency was observed after 55 s of single ozone exposure, in order of effect strength: S. aureus > P. aeruginosa > E. coli > C. albicans > S. mutans. For ozone with the addition of 2% MpEO (MIC), maximum efficacy was recorded at 5 s for these strains, in order of effect strength: C. albicans > E. coli > P. aeruginosa > S. aureus > S. mutans. The results suggest a new development and affinity regarding the cell membrane of the different microorganisms tested. In conclusion, the use of ozone, combined with MpEO, is sustained as an alternative therapy in plaque biofilm and suggested as helpful in controlling oral disease-causing microorganisms in medicine.
Assuntos
Anti-Infecciosos , Mentha , Óleos Voláteis , Mentha piperita , Antibacterianos/farmacologia , Escherichia coli , Staphylococcus aureus , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Candida albicans , Óleos Voláteis/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
The abuse of antibiotics and lack of new antibacterial drugs has led to the emergence of superbugs that raise fears of untreatable infections. The Cathelicidin family of antimicrobial peptide (AMP) with varying antibacterial activities and safety is considered to be a promising alternative to conventional antibiotics. In this study, we investigated a novel Cathelicidin peptide named Hydrostatin-AMP2 from the sea snake Hydrophis cyanocinctus. The peptide was identified based on gene functional annotation of the H. cyanocinctus genome and bioinformatic prediction. Hydrostatin-AMP2 showed excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria, including standard and clinical Ampicillin-resistant strains. The results of the bacterial killing kinetic assay demonstrated that Hydrostatin-AMP2 had faster antimicrobial action than Ampicillin. Meanwhile, Hydrostatin-AMP2 exhibited significant anti-biofilm activity including inhibition and eradication. It also showed a low propensity to induce resistance as well as low cytotoxicity and hemolytic activity. Notably, Hydrostatin-AMP2 apparently decreased the production of pro-inflammatory cytokines in the LPS-induced RAW264.7 cell model. To sum up, these findings indicate that Hydrostatin-AMP2 is a potential peptide candidate for the development of new-generation antimicrobial drugs fighting against antibiotic-resistant bacterial infections.
Assuntos
Anti-Infecciosos , Hydrophiidae , Animais , Catelicidinas/química , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Bactérias , Ampicilina , Testes de Sensibilidade MicrobianaRESUMO
Two new 4-hydroxy-2-pyridone alkaloids furanpydone A and B (1 and 2), along with two known compounds N-hydroxyapiosporamide (3) and apiosporamide (4) were isolated from the endophytic fungus Arthrinium sp. GZWMJZ-606 in Houttuynia cordata Thunb. Furanpydone A and B had unusual 5-(7-oxabicyclo[2.2.1]heptane)-4-hydroxy-2-pyridone skeleton. Their structures including absolute configurations were determined on the basis of spectroscopic analysis, as well as the X-ray diffraction experiment. Compound 1 showed inhibitory activity against ten cancer cell lines (MKN-45, HCT116, K562, A549, DU145, SF126, A-375, 786O, 5637, and PATU8988T) with IC50 values from 4.35 to 9.72 µM. Compounds 1, 3 and 4 showed moderate inhibitory effects against four Gram-positive strains (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus Subtilis, Clostridium perfringens) and one Gram-negative strain (Ralstonia solanacarum) with MIC values from 1.56 to 25 µM. However, compounds 1-4 showed no obvious inhibitory activity against two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two pathogenic fungi (Candida albicans and Candida glabrata) at 50 µM. These results show that compounds 1-4 are expected to be developed as lead compounds for antibacterial or anti-tumor drugs.
Assuntos
Alcaloides , Anti-Infecciosos , Antineoplásicos , Houttuynia , Staphylococcus aureus Resistente à Meticilina , Xylariales , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Alcaloides/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologiaRESUMO
Artemisia vulgaris is an enormously useful aromatic plant known for its insecticidal, antifungal, parasiticidal, and medicinal values. The main aim of this study is to investigate phytochemical contents and the potential antimicrobial activities of Artemisia vulgaris essential oil (AVEO) from the fresh leaves of A. vulgaris grown in Manipur. The AVEO isolated by hydro-distillation from A. vulgaris were analyzed by gas chromatography/mass spectrometry and solid-phase microextraction-GC/MS to describe their volatile chemical profile. There were 47 components identified in the AVEO by GC/MS, amounting to 97.66% of the total composition, while 97.35% were identified by SPME-GC/MS. The prominent compounds present in AVEO analyzed by direct injection and SPME methods are found to be eucalyptol (29.91% and 43.70%), sabinene (8.44% and 8.86%), endo-Borneol (8.24% and 4.76%), 2,7-Dimethyl-2,6-octadien-4-ol (6.76% and 4.24%), and 10-epi-γ-Eudesmol (6.50% and 3.09%). The consolidated component in the leaf volatiles comes to the terms of monoterpenes. The AVEO exhibits antimicrobial activities against fungal pathogens such as Sclerotium oryzae (ITCC 4107) and Fusarium oxysporum (MTCC 9913) and bacterial cultures such as Bacillus cereus (ATCC 13061) and Staphylococcus aureus (ATCC 25923). The percent inhibition of AVEO against the S. oryzae and F. oxysporum was found up to 50.3% and 33.13%, respectively. The MIC and MBC of the essential oil tested for B. cereus and S. aureus were found to be (0.3%, 0.63%) and (0.63%, 2.5%), respectively. Finally, the results revealed that the AVEO characterized by the hydro-distillation and SPME extraction yielded the same chemical profile and showed potent antimicrobial activities. Further research into A. vulgaris's antibacterial properties can be performed in order to use it as a source for natural antimicrobial medications.
Assuntos
Anti-Infecciosos , Artemisia , Óleos Voláteis , Óleos Voláteis/química , Artemisia/química , Staphylococcus aureus , Índia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Folhas de Planta/química , Compostos Fitoquímicos , Testes de Sensibilidade MicrobianaRESUMO
Green synthesis of nanomaterials has emerged as an ecofriendly sustainable technology for the removal of dyes in the last few decades. Especially, plant leaf extracts have been considered as inexpensive and effective materials for the synthesis of nanoparticles. In this study, zinc oxide nanoparticles (ZnO NPs) were prepared using leaves extract of Brassica oleracea var. botrytis (BO) by co-precipitation and applied for photocatalytic/antibacterial activity. The synthesized BO-ZnO NPs was characterized by different instrumental techniques. The UV-vis Spectrum of the synthesized material showed maximum absorbance at a wavelength of 311 nm, which confirmed the formation of BO-ZnO NPs. The XRD pattern of BO-ZnO NPs represents a hexagonal wurtzite structure and the average size of particles was about 52 nm. FT-IR spectrum analysis confirms the presence of hydroxyl, carbonyl, carboxylic, and phenol groups. SEM images exhibited a flower like morphology and EDX spectrum confirming the presence of the elements Zn and O. Photo-catalytic activity of BO-ZnO NPs was tested against thiazine dye (methylene blue-MB) degradation under direct sunlight irradiation. Around 80% of the MB dye got degraded at pH 8 under 75 min of sunlight irradiation. Further, the study examined that the antimicrobial and larvicidal activity of BO-ZnO NPs obtained through green synthesis. The antimicrobial study results showed that the BO-ZnO NPs formed zones against bacterial pathogens. The results showed the formation of an inhibition zone against B. subtills (16 mm), S.aureus (13 mm), K. pneumonia (13 mm), and E. coli (9 mm) respectively at a concentration of 100 µg/mL of BO-ZnO NPs. The larvicidal activity of the BO-ZnO NPs was tested against the fourth instar of Culex quinquefasciatus mosquito larvae The LC50 and LC90 values estimated through the larvicidal activity of BO-ZnO NPs were 76.03, 190.03 ppm respectively. Hence the above findings propose the synthesized BO-ZnO NPs by the ecofriendly method can be used for various environmental and antipathogenic applications.
Assuntos
Anti-Infecciosos , Brassica , Nanopartículas Metálicas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Botrytis , Espectroscopia de Infravermelho com Transformada de Fourier , Escherichia coli , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Anti-Infecciosos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/químicaRESUMO
Chronic osteomyelitis is an inflammatory skeletal disease caused by a bacterial infection that affects the periosteum, bone, and bone marrow. Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent. The bacterial biofilm formed on the necrotic bone is a considerable challenge to treating MRSA-infected osteomyelitis. Here, we developed an all-in-one cationic thermosensitive nanotherapeutic (TLCA) for treating MRSA-infected osteomyelitis. The prepared TLCA particles were positively charged and <230 nm in size, which allowed them to diffuse effectively into the biofilm. The positive charges of the nanotherapeutic accurately targeted the biofilm, and it subsequently regulated the drug release under near-infrared (NIR) light irradiation, thereby efficiently exerting the synergistic effect of NIR light-driven photothermal sterilization and chemotherapy. More than 80% of the antibiotics were abruptly released at 50 °C, which dispersed the biofilm by up to 90%. When applied to MRSA-infected osteomyelitis, with a localized temperature of 50 °C induced by 808 nm laser irradiation, it not only eliminated the bacteria and controlled infection but also inhibited the bone tissue inflammatory response, significantly reducing TNF-α, IL-1ß, and IL-6 levels. In conclusion, we constructed an all-in-one antimicrobial treatment modality that provides a new and effective strategy for the topical treatment of chronic osteomyelitis.