RESUMO
Conditional knockout (cKO) is a genetic technique to inactivate gene expression in specific tissues or cell types in a temporally regulated manner. cKO analysis is essential to investigate gene function while avoiding the confounding effects of global gene deletion. Genetic techniques enabling cKO analysis were developed in mice based on culturable embryonic stem cells that were not generally available in zebrafish, which hampered precise analysis of genetic mechanisms of organ development and regeneration. However, recent advances in genome editing technologies have resolved this limitation, providing a platform for the generation of cKO models in any organism. Here we describe a detailed protocol for the generation of cKO zebrafish using a Cre-dependent genetic switch.
Assuntos
Traumatismos Craniocerebrais , Peixe-Zebra , Animais , Camundongos , Camundongos Knockout , Peixe-Zebra/genética , Ligante de CD40 , Células-Tronco EmbrionáriasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dengyinnaotong (DYNT) is a traditional Chinese medicine-based patent drug officially approved for the treatment of ischemic stroke primarily based on its indigenous application for the treatment of cardiovascular and cerebrovascular diseases in Southwest China. Atherosclerosis is the principal pathology underlying the pathogenesis of ischemic stroke and coronary artery disease. However, whether DYNT is effective at mitigating atherosclerosis remains unknown. AIMS OF THE STUDY: The purpose of the current study is to evaluate the potential impact of DYNT treatment on the atherosclerotic lesions and associated pathological mechanisms. MATERIALS AND METHODS: Histological, immunohistochemical, molecular biological approaches were adopted to investigate the pharmacological impact of DYNT treatment on atherosclerosis and associated pathophysiological alterations in the high fat diet (HFD)-fed ApoE gene deficient (ApoE-/-) mice. RESULTS: DYNT treatment reduced the size of the atherosclerotic plaques, alleviated the necrotic core, lowered the lipid retention, mitigated the macrophagic burden and decreased the expression of proatherogenic chemokine Ccl2 in the atherosclerotic lesions. DYNT treatment also offered partial protection against atherogenic dyslipidemia and mitigated hepatic lipid content as well as fatty liver pathologies in the HFD-fed ApoE-/- mice. Furthermore, DYNT treatment protected against atherosclerosis-associated gut dysbiosis and impairment in the intestinal epithelial barrier. CONCLUSIONS: Our work provides novel preclinical evidence that underpins the multifaceted effects of DYNT in the control of atherosclerosis.
Assuntos
Aterosclerose , AVC Isquêmico , Placa Aterosclerótica , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Camundongos Knockout para ApoE , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/genética , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Lipídeos , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
The alveolar bone, with a high turnover rate, is the most actively-remodeling bone in the body. Orthodontic tooth movement (OTM) is a common artificial process of alveolar bone remodeling in response to mechanical force, but the underlying mechanism remains elusive. Previous studies have been unable to reveal the precise mechanism of bone remodeling in any time and space due to animal model-related restrictions. The signal transducer and activator of transcription 3 (STAT3) is important in bone metabolism, but its role in osteoblasts during OTM is unclear. To provide in vivo evidence that STAT3 participates in OTM at specific time points and in particular cells during OTM, we generated a tamoxifen-inducible osteoblast lineage-specific Stat3 knockout mouse model, applied orthodontic force, and analyzed the alveolar bone phenotype. Micro-computed tomography (Micro-CT) and stereo microscopy were used to access OTM distance. Histological analysis selected the area located within three roots of the first molar (M1) in the cross-section of the maxillary bone as the region of interest (ROI) to evaluate the metabolic activity of osteoblasts and osteoclasts, indicating the effect of orthodontic force on alveolar bone. In short, we provide a protocol for using inducible osteoblast lineage-specific Stat3 knockout mice to study bone remodeling under orthodontic force and describe methods for analyzing alveolar bone remodeling during OTM, thus shedding new light on skeletal mechanical biology.
Assuntos
Fator de Transcrição STAT3 , Técnicas de Movimentação Dentária , Camundongos , Animais , Camundongos Knockout , Fator de Transcrição STAT3/genética , Microtomografia por Raio-X , Remodelação Óssea , Modelos Animais de DoençasRESUMO
BACKGROUND: Many children and young people with autism spectrum disorder (ASD) display touch defensiveness or avoidance (hypersensitivity), or engage in sensory seeking by touching people or objects (hyposensitivity). Abnormal sensory responses have also been noticed in mice lacking ASD-associated genes. Tactile sensory information is normally processed by the somatosensory system that travels along the thalamus to the primary somatosensory cortex. The neurobiology behind tactile sensory abnormalities, however, is not fully understood. METHODS: We employed cortex-specific Foxp1 knockout (Foxp1-cKO) mice as a model of autism in this study. Tactile sensory deficits were measured by the adhesive removal test. The mice's behavior and neural activity were further evaluated by the whisker nuisance test and c-Fos immunofluorescence, respectively. We also studied the dendritic spines and barrel formation in the primary somatosensory cortex by Golgi staining and immunofluorescence. RESULTS: Foxp1-cKO mice had a deferred response to the tactile environment. However, the mice exhibited avoidance behavior and hyper-reaction following repeated whisker stimulation, similar to a fight-or-flight response. In contrast to the wild-type, c-Fos was activated in the basolateral amygdala but not in layer IV of the primary somatosensory cortex of the cKO mice. Moreover, Foxp1 deficiency in cortical neurons altered the dendrite development, reduced the number of dendritic spines, and disrupted barrel formation in the somatosensory cortex, suggesting impaired somatosensory processing may underlie the aberrant tactile responses. LIMITATIONS: It is still unclear how the defective thalamocortical connection gives rise to the hyper-reactive response. Future experiments with electrophysiological recording are needed to analyze the role of thalamo-cortical-amygdala circuits in the disinhibiting amygdala and enhanced fearful responses in the mouse model of autism. CONCLUSIONS: Foxp1-cKO mice have tactile sensory deficits while exhibit hyper-reactivity, which may represent fearful and emotional responses controlled by the amygdala. This study presents anatomical evidence for reduced thalamocortical connectivity in a genetic mouse model of ASD and demonstrates that the cerebral cortex can be the origin of atypical sensory behaviors.
Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Camundongos , Transtorno Autístico/genética , Tato , Córtex Cerebral , Modelos Animais de Doenças , Camundongos Knockout , Proteínas Repressoras , Fatores de Transcrição Forkhead/genéticaRESUMO
Nuclear Cyclin D1 (Ccnd1) is a main regulator of cell cycle progression and cell proliferation. Interestingly, Ccnd1 moves to the cytoplasm at the onset of differentiation in neuronal precursors. However, cytoplasmic functions and targets of Ccnd1 in post-mitotic neurons are unknown. Here we identify the α4 subunit of gamma-aminobutyric acid (GABA) type A receptors (GABAARs) as an interactor and target of Ccnd1-Cdk4. Ccnd1 binds to an intracellular loop in α4 and, together with Cdk4, phosphorylates the α4 subunit at threonine 423 and serine 431. These modifications upregulate α4 surface levels, increasing the response of α4-containing GABAARs, measured in whole-cell patch-clamp recordings. In agreement with this role of Ccnd1-Cdk4 in neuronal signalling, inhibition of Cdk4 or expression of the non-phosphorylatable α4 decreases synaptic and extra-synaptic currents in the hippocampus of newborn rats. Moreover, according to α4 functions in synaptic pruning, CCND1 knockout mice display an altered pattern of dendritic spines that is rescued by the phosphomimetic α4. Overall, our findings molecularly link Ccnd1-Cdk4 to GABAARs activity in the central nervous system and highlight a novel role for this G1 cyclin in neuronal signalling.
Assuntos
Ciclina D1 , Receptores de GABA-A , Camundongos , Animais , Ratos , Receptores de GABA-A/genética , Fosforilação , Ciclina D1/genética , Ácido gama-Aminobutírico , Camundongos Knockout , NeurôniosRESUMO
Purpose: Degeneration of retinal photoreceptors is frequently observed in diverse ciliopathy disorders, and photoreceptor cilium gates the molecular trafficking between the inner and the outer segment (OS). This study aims to generate a homozygous global Cep250 knockout (KO) mouse and study the resulting phenotype. Methods: We used Cep250 KO mice and untargeted metabolomics to uncover potential mechanisms underlying retinal degeneration. Long-term follow-up studies using optical coherence tomography (OCT) and electroretinography (ERG) were performed. Results: OCT and ERG results demonstrated gradual thinning of the outer nuclear layer (ONL) and progressive attenuation of the scotopic ERG responses in Cep250-/- mice. More TUNEL signal was observed in the ONL of these mice. Immunostaining of selected OS proteins revealed mislocalization of these proteins in the ONL of Cep250-/- mice. Interestingly, untargeted metabolomics analysis revealed arginine-related metabolic pathways were altered and enriched in Cep250-/- mice. Mis-localization of a key protein in the arginine metabolism pathway, arginase 1 (ARG1), in the ONL of KO mice further supports this model. Moreover, adeno-associated virus (AAV)-based retinal knockdown of Arg1 led to similar architectural and functional alterations in wild-type retinas. Conclusions: Altogether, these results suggest that dysregulated arginine metabolism contributes to retinal degeneration in Cep250-/- mice. Our findings provide novel insights that increase understanding of retinal degeneration in ciliopathy disorders.
Assuntos
Ciliopatias , Degeneração Retiniana , Animais , Camundongos , Arginina , Camundongos Knockout , RetinaRESUMO
The differentiation of CD4+T cells is a crucial component of the immune response. The spleen and thymus, as immune organs, are closely associated with the differentiation and development of T cells. Previous studies have suggested that BAP31 may play a role in modulating T cell activation, but the specific impact of BAP31 on T cells through macrophages remains uncertain. In this study, we present evidence that BAP31 macrophage conditional knockout (BAP31-MCKO) mice display an enlarged spleen and thymus, accompanied by activated clustering and disrupted differentiation of CD4+T cells. In vitro co-culture studies were conducted to investigate the impact of BAP31-MCKO on the activation and differentiation of CD4+T cells. The examination of costimulatory molecule expression in BMDMs and RAW 264.7 cells, based on the endoplasmic reticulum function of BAP31, revealed an increase in the expression of antigen presenting molecules, particularly MHC-II molecule, in the absence of BAP31 in BMDMs or RAW264.7 cells. These findings suggest that BAP31 plays a role in the activation and differentiation of CD4+T cells by regulating the MHC class II molecule on macrophages. These results provide further support for the importance of BAP31 in developing interaction between macrophages and CD4+T cells.
Assuntos
Antígenos de Histocompatibilidade Classe II , Macrófagos , Animais , Camundongos , Antígenos de Histocompatibilidade Classe II/genética , Camundongos Knockout , Ativação Transcricional , Regulação para CimaRESUMO
Specialized pro-resolving mediators (SPMs) and especially Resolvin E1 (RvE1) can actively terminate inflammation and promote healing during lung diseases such as acute respiratory distress syndrome (ARDS). Although ARDS primarily affects the lung, many ARDS patients also develop neurocognitive impairments. To investigate the connection between the lung and brain during ARDS and the therapeutic potential of SPMs and its derivatives, fat-1 mice were crossbred with RvE1 receptor knockout mice. ARDS was induced in these mice by intratracheal application of lipopolysaccharide (LPS, 10 µg). Mice were sacrificed at 0 h, 4 h, 24 h, 72 h, and 120 h post inflammation, and effects on the lung, liver, and brain were assessed by RT-PCR, multiplex, immunohistochemistry, Western blot, and LC-MS/MS. Protein and mRNA analyses of the lung, liver, and hypothalamus revealed LPS-induced lung inflammation increased inflammatory signaling in the hypothalamus despite low signaling in the periphery. Neutrophil recruitment in different brain structures was determined by immunohistochemical staining. Overall, we showed that immune cell trafficking to the brain contributed to immune-to-brain communication during ARDS rather than cytokines. Deficiency in RvE1 receptors and enhanced omega-3 polyunsaturated fatty acid levels (fat-1 mice) affect lung-brain interaction during ARDS by altering profiles of several inflammatory and lipid mediators and glial activity markers.
Assuntos
Ácidos Graxos Ômega-3 , Síndrome do Desconforto Respiratório , Animais , Camundongos , Encéfalo , Cromatografia Líquida , Inflamação , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos Knockout , Receptores do Leucotrieno B4 , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/genética , Espectrometria de Massas em TandemRESUMO
Purpose: Dry eye disease (DED) is multifactorial and associated with nerve abnormalities. We explored an Aquaporin 5 (AQP5)-deficiency-induced JunB activation mechanism, which causes abnormal lacrimal gland (LG) nerve distribution through Slit2 upregulation and Netrin-1 repression. Methods: Aqp5 knockout (Aqp5-/-) and wild-type (Aqp5+/+) mice were studied. LGs were permeabilized and stained with neuronal class III ß-tubulin, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP), and calcitonin gene-related peptide (CGRP). Whole-mount images were acquired through tissue clearing and 3D fluorescence imaging. Mouse primary trigeminal ganglion (TG) neurons were treated with LG extracts and Netrin-1/Slit2 neutralizing antibody. Transcription factor (TF) prediction and chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR) experiments verified the JunB binding and regulatory effect on Netrin-1 and Slit2. Results: Three-dimensional tissue and section immunofluorescence showed reduced LG nerves in Aqp5-/- mice, with sympathetic and sensory nerves significantly decreased. Netrin-1 was reduced and Slit2 increased in Aqp5-/- mice LGs. Aqp5+/+ mice LG tissue extracts (TEs) promoted Aqp5-/- TG neurons axon growth, but Netrin-1 neutralizing antibody (NAb) could inhibit that promotion. Aqp5-/- mice LG TEs inhibited Aqp5+/+ TG axon growth, but Slit2 NAb alleviated that inhibition. Furthermore, JunB, a Netrin-1 and Slit2 TF, could bind them and regulate their expression. SR11302, meanwhile, reversed the Netrin-1 and Slit2 shifts caused by AQP5 deficiency. Conclusions: AQP5 deficiency causes LG nerve abnormalities. Persistent JunB activation, the common denominator for Netrin-1 suppression and Slit2 induction, was found in Aqp5-/- mice LG epithelial cells. This affected sensory and sympathetic nerve fibers' distribution in LGs. Our findings provide insights into preventing, reversing, and treating DED.
Assuntos
Orientação de Axônios , Aparelho Lacrimal , Netrina-1 , Animais , Camundongos , Anticorpos Neutralizantes , Aquaporina 5/genética , Camundongos Knockout , Netrina-1/genéticaRESUMO
OBJECTIVE: This study investigated the contribution of osteopontin/secreted phosphoprotein 1 (SPP1) to T-cell regulation in initiation of obesity-driven adipose tissue (AT) inflammation and macrophage infiltration and the subsequent impact on insulin resistance (IR) and metabolic-associated fatty liver disease (MAFLD) development. METHODS: SPP1 and T-cell marker expression was evaluated in AT and liver according to type 2 diabetes and MAFLD in human individuals with obesity. The role of SPP1 on T cells was evaluated in Spp1-knockout mice challenged with a high-fat diet. RESULTS: In humans with obesity, elevated SPP1 expression in AT was parallel to T-cell marker expression (CD4, CD8A) and IR. Weight loss reversed AT inflammation with decreased SPP1 and CD8A expression. In liver, elevated SPP1 expression correlated with MAFLD severity and hepatic T-cell markers. In mice, although Spp1 deficiency did not impact obesity, it did improve AT IR associated with prevention of proinflammatory T-cell accumulation at the expense of regulatory T cells. Spp1 deficiency also decreased ex vivo helper T cell, subtype 1 (Th1) polarization of AT CD4+ and CD8+ T cells. In addition, Spp1 deficiency significantly reduced obesity-associated liver steatosis and inflammation. CONCLUSIONS: Current findings highlight a critical role of SPP1 in the initiation of obesity-driven chronic inflammation by regulating accumulation and/or polarization of T cells. Early targeting of SPP1 could be beneficial for IR and MAFLD treatment.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Osteopontina/genética , Linfócitos T CD8-Positivos , Inflamação , Tecido Adiposo , Camundongos KnockoutRESUMO
The pleiotropic effects of high-density lipoprotein (HDL), including its protective properties against sepsis, are attributed to the sphingosine 1-phosphate and apolipoprotein M (ApoM) that are carried on the lipoproteins. In this study, we attempted to elucidate the possible mechanisms underlying the sepsis coagulopathic state by considering the modulation of NETosis. Our results revealed that in a lipopolysaccharide-induced sepsis mouse model, the levels of NETosis markers, such as plasma DNA and histone, were elevated in ApoM-knockout (KO) mice and attenuated in ApoM-overexpressing mice. In ApoM-KO mice, the survival rate decreased and the occurrence rates of coagulopathy and organ injury increased following the administration of histone. Treatment with a conditioned medium of ApoM-overexpressing cells attenuated the observed NETosis in HL-60S cells that differentiated into neutrophils and were inhibited through the suppression of S1P1 or S1P4. The attenuation of PKCδ and PKCα/ß by S1P1 and S1P4 activation may also be involved. In ApoM-overexpressing mice, coagulopathy and organ injuries were attenuated following an injection of histone; these effects were partially inhibited by S1P1, 3, S1P4, or S1P1 antagonists. Furthermore, the exogenous administration of ApoM protected ApoM-KO mice that were challenged with histone from developing NETosis. In conclusion, the ApoM/S1P axis protects against NETosis through the attenuation of PKC activation by S1P1 and S1P4. The development of drugs targeting the ApoM/S1P axis may be beneficial for the treatment of pathological conditions involving uncontrolled NETosis, such as sepsis.
Assuntos
Armadilhas Extracelulares , Histonas , Lisofosfolipídeos , Animais , Camundongos , Apolipoproteínas M , Armadilhas Extracelulares/metabolismo , Camundongos Knockout , EsfingosinaRESUMO
Objective To investigate the long non-coding RNA(lncRNA) MRAK08838 regulates macrophage function to influence the development of asthmatic airway inflammation. Methods MRAK088388 gene knockout (MRAK088388-/-) mouse model was prepared and allergic asthma was induced by dust mite protein Dermatophagoides farinae 1 (Der f1). The mice were sacrificed after 28 days of modeling, and serum was collected to measure IgE and IgG. The FinePointe RC system was used to measure airway hyperresponsiveness and evaluate lung function in mice. Lung tissue was taken for HE staining, and periodic acid-Schiff (PAS) staining was used to evaluate inflammatory infiltration and mucus secretion in mouse lungs. Fluorescence quantitative PCR was used to detect the expression level of lncRNA MRAK08838 in bronchoalveolar lavage fluid (BALF) cells and lung tissue of asthmatic mice. ELISA was used to detect the levels of inflammatory cytokines IFN-γ, IL-4, IL-5, IL-13, IL-10 and IL-17A. Flow cytometry was used to evaluate the phenotype of macrophages in BALF and lung tissue, as well as the proportion of neutrophils, eosinophils, and alveolar macrophages. The changes of the above indicators were detected in mice by adoptive transfer of bone marrow-derived macrophages (BMDM). Results Under the challengle of Der f1, MRAK088388-/- mice showed reduced allergic airway inflammation, including reduced eosinophils in BALF and reduced production of IgE and IgG1. In addition, Der f1-treated MRAK088388-/- mice had fewer M2 macrophages than wild-type asthmatic mice. Wild-type mouse BMDM (M0) and Der f1-treated MRAK088388-/- mice also showed mild inflammatory response. Conclusion Knockout of MRAK088388 alleviates airway inflammation in asthmatic mice by inhibiting M2 polarization of airway macrophages.
Assuntos
Asma , RNA Longo não Codificante , Animais , Camundongos , Camundongos Knockout , RNA Longo não Codificante/genética , Asma/genética , Macrófagos , Imunoglobulina ERESUMO
Nonalcoholic fatty liver disease (NAFLD) is usually characterized with disrupted bile acid (BA) homeostasis. However, the exact role of certain BA in NAFLD is poorly understood. Here we show levels of serum hyodeoxycholic acid (HDCA) decrease in both NAFLD patients and mice, as well as in liver and intestinal contents of NAFLD mice compared to their healthy counterparts. Serum HDCA is also inversely correlated with NAFLD severity. Dietary HDCA supplementation ameliorates diet-induced NAFLD in male wild type mice by activating fatty acid oxidation in hepatic peroxisome proliferator-activated receptor α (PPARα)-dependent way because the anti-NAFLD effect of HDCA is abolished in hepatocyte-specific Pparα knockout mice. Mechanistically, HDCA facilitates nuclear localization of PPARα by directly interacting with RAN protein. This interaction disrupts the formation of RAN/CRM1/PPARα nucleus-cytoplasm shuttling heterotrimer. Our results demonstrate the therapeutic potential of HDCA for NAFLD and provide new insights of BAs on regulating fatty acid metabolism.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR alfa/genética , Ácidos e Sais Biliares , Citoplasma , Camundongos Knockout , Ácidos GraxosRESUMO
BACKGROUND: Lipodystrophy-associated metabolic disorders caused by Seipin deficiency lead to not only severe lipodystrophy but also neurological disorders. However, the underlying mechanism of Seipin deficiency-induced neuropathy is not well elucidated, and the possible restorative strategy needs to be explored. METHODS: In the present study, we used Seipin knockout (KO) mice, combined with transcriptome analysis, mass spectrometry imaging, neurobehavior test, and cellular and molecular assay to investigate the systemic lipid metabolic abnormalities in lipodystrophic mice model and their effects on adult neurogenesis in the subventricular zone (SVZ) and olfactory function. After subcutaneous adipose tissue (AT) transplantation, metabolic and neurological function was measured in Seipin KO mice to clarify whether restoring lipid metabolic homeostasis would improve neurobehavior. RESULTS: It was found that Seipin KO mice presented the ectopic accumulation of lipids in the lateral ventricle, accompanied by decreased neurogenesis in adult SVZ, diminished new neuron formation in the olfactory bulb, and impaired olfactory-related memory. Transcriptome analysis showed that the differentially expressed genes (DEGs) in SVZ of adult Seipin KO mice were significantly enriched in lipid metabolism. Mass spectrometry imaging showed that the levels of glycerophospholipid and diglyceride (DG) were significantly increased. Furthermore, we found that AT transplantation rescued the abnormality of peripheral metabolism in Seipin KO mice and ameliorated the ectopic lipid accumulation, concomitant with restoration of the SVZ neurogenesis and olfactory function. Mechanistically, PKCα expression was up-regulated in SVZ tissues of Seipin KO mice, which may be a potential mediator between lipid dysregulation and neurological disorder. DG analogue (Dic8) can up-regulate PKCα and inhibit the proliferation and differentiation of neural stem cells (NSCs) in vitro, while PKCα inhibitor can block this effect. CONCLUSION: This study demonstrates that Seipin deficiency can lead to systemic lipid disorder with concomitant SVZ neurogenesis and impaired olfactory memory. However, AT restores lipid homeostasis and neurogenesis. PKCα is a key mediator mediating Seipin KO-induced abnormal lipid metabolism and impaired neurogenesis in the SVZ, and inhibition of PKCα can restore the impaired neurogenesis. This work reveals the underlying mechanism of Seipin deficiency-induced neurological dysfunction and provides new ideas for the treatment of neurological dysfunction caused by metabolic disorders.
Assuntos
Metabolismo dos Lipídeos , Lipodistrofia , Camundongos , Animais , Camundongos Knockout , Metabolismo dos Lipídeos/genética , Proteína Quinase C-alfa/genética , Obesidade , Neurogênese/genéticaRESUMO
Astrocytes contribute to brain inflammation in neurological disorders but the molecular mechanisms controlling astrocyte reactivity and their relationship to neuroinflammatory endpoints are complex and poorly understood. In this study, we assessed the role of the calcium channel, Orai1, for astrocyte reactivity and inflammation-evoked depression behaviors in mice. Transcriptomics and metabolomics analysis indicated that deletion of Orai1 in astrocytes downregulates genes in inflammation and immunity, metabolism, and cell cycle pathways, and reduces cellular metabolites and ATP production. Systemic inflammation by peripheral lipopolysaccharide (LPS) increases hippocampal inflammatory markers in WT but not in astrocyte Orai1 knockout mice. Loss of Orai1 also blunts inflammation-induced astrocyte Ca2+ signaling and inhibitory neurotransmission in the hippocampus. In line with these cellular changes, Orai1 knockout mice showed amelioration of LPS-evoked depression-like behaviors including anhedonia and helplessness. These findings identify Orai1 as an important signaling hub controlling astrocyte reactivity and astrocyte-mediated brain inflammation that is commonly observed in many neurological disorders.
Assuntos
Astrócitos , Encefalite , Animais , Camundongos , Depressão/genética , Lipopolissacarídeos , Inflamação/genética , Canais de Cálcio/genética , Camundongos Knockout , Proteína ORAI1/genéticaRESUMO
Synaptogenesis is essential for circuit development; however, it is unknown whether it is critical for the establishment and performance of goal-directed voluntary behaviors. Here, we show that operant conditioning via lever-press for food reward training in mice induces excitatory synapse formation onto a subset of anterior cingulate cortex neurons projecting to the dorsomedial striatum (ACCâDMS). Training-induced synaptogenesis is controlled by the Gabapentin/Thrombospondin receptor α2δ-1, which is an essential neuronal protein for proper intracortical excitatory synaptogenesis. Using germline and conditional knockout mice, we found that deletion of α2δ-1 in the adult ACCâDMS circuit diminishes training-induced excitatory synaptogenesis. Surprisingly, this manipulation does not impact learning but results in a significant increase in effort exertion without affecting sensitivity to reward value or changing contingencies. Bidirectional optogenetic manipulation of ACCâDMS neurons rescues or phenocopies the behaviors of the α2δ-1 cKO mice, highlighting the importance of synaptogenesis within this cortico-striatal circuit in regulating effort exertion.
Assuntos
Condicionamento Operante , Aprendizagem , Animais , Camundongos , Corpo Estriado , Alimentos , Camundongos KnockoutRESUMO
The primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition but the mechanism remains unknown. To understand tectonic's role, we generate a photoreceptor-specific Tctn1 knockout mouse. Loss of Tctn1 results in the absence of the entire tectonic complex and associated MKS proteins yet has minimal effects on the transition zone structure of rod photoreceptors. We find that the protein composition of the photoreceptor cilium is disrupted as non-resident membrane proteins accumulate in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that fluorescent rhodopsin moves faster through the transition zone in photoreceptors lacking tectonic, which suggests that the tectonic complex acts as a physical barrier to slow down membrane protein diffusion in the photoreceptor transition zone to ensure proper removal of non-resident membrane proteins.
Assuntos
Cílios , Proteínas de Membrana , Animais , Camundongos , Proteínas de Membrana/genética , Rodopsina/genética , Neuritos , Corantes , Camundongos KnockoutRESUMO
Acute pancreatitis (AP)associated lung injury (ALI) is a critical complication of AP. Adropin is a regulatory protein of immune metabolism. The present study aimed to explore the immunomodulatory effects of adropin on APALI. For this purpose, serum samples of patients with AP were collected and the expression levels of serum adropin were detected using ELISA. Animal models of AP and adropin knockout (AdroKO) were constructed, and adropin expression in serum and lung tissues was investigated. The levels of fibrosis and apoptosis were evaluated using hematoxylin and eosin staining, Masson's staining and immunohistochemistry of in lung tissue. M1/M2 type macrophages in the lungs were detected using immunofluorescence staining, western blot analysis and reverse transcriptionquantitative PCR. As shown by the results, adropin expression was decreased in AP. In the AdroKO + Larginine (LArg) group, macrophage infiltration, fibrosis and apoptosis were increased. The expression of peroxisome proliferator activated receptor γ (PPARγ) was downregulated, and the macrophages exhibited a trend towards M1 polarization in the AdroKO + LArg group. Adropin exogenous supplement attenuated the levels of fibrosis and apoptosis in the model of AP. Adropin exogenous supplement also increased PPARγ expression by the regulation of the phosphorylation levels, which was associated with M2 macrophage polarization. On the whole, the findings of the present study suggest that adropin promotes the M2 polarization of lung macrophages and reduces the severity of APALI by regulating the function of PPARγ through the regulation of its phosphorylation level.
Assuntos
Lesão Pulmonar , Macrófagos , Animais , Masculino , Camundongos , Lesão Pulmonar/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pancreatite/metabolismo , PPAR gama/metabolismo , FosforilaçãoRESUMO
Pattern recognition receptor-mediated innate immunity is critical for host defense against viruses. A growing number of coding and noncoding genes are found to encode microproteins. However, the landscape and functions of microproteins in responsive to virus infection remain uncharacterized. Here, we systematically identified microproteins that are responsive to vesicular stomatitis virus infection. A conserved and endoplasmic reticulum-localized membrane microprotein, MAVI1 (microprotein in antiviral immunity 1), was found to interact with mitochondrion-localized MAVS protein and inhibit MAVS aggregation and type I interferon signaling activation. The importance of MAVI1 was highlighted that viral infection was attenuated and survival rate was increased in Mavi1-knockout mice. A peptide inhibitor targeting the interaction between MAVI1 and MAVS activated the type I interferon signaling to defend viral infection. Our findings uncovered that microproteins play critical roles in regulating antiviral innate immune responses, and targeting microproteins might represent a therapeutic avenue for treating viral infection.
Assuntos
Imunidade Inata , Interferon Tipo I , Animais , Camundongos , Antivirais , Retículo Endoplasmático , Camundongos Knockout , MitocôndriasRESUMO
The synthesis of fatty acids from acetyl-coenzyme A (AcCoA) is deregulated in diverse pathologies, including cancer. Here, we report that fatty acid accumulation is negatively regulated by nucleoside diphosphate kinases 1 and 2 (NME1/2), housekeeping enzymes involved in nucleotide homeostasis that were recently found to bind CoA. We show that NME1 additionally binds AcCoA and that ligand recognition involves a unique binding mode dependent on the CoA/AcCoA 3' phosphate. We report that Nme2 knockout mice fed a high-fat diet (HFD) exhibit excessive triglyceride synthesis and liver steatosis. In liver cells, NME2 mediates a gene transcriptional response to HFD leading to the repression of fatty acid accumulation and activation of a protective gene expression program via targeted histone acetylation. Our findings implicate NME1/2 in the epigenetic regulation of a protective liver response to HFD and suggest a potential role in controlling AcCoA usage between the competing paths of histone acetylation and fatty acid synthesis.