RESUMO
Diosmin and bromelain are bioactive compounds of plant origin with proven beneficial effects on the human cardiovascular system. We found that diosmin and bromelain slightly reduced total carbonyls levels and had no effect on TBARS levels, as well as slightly increased the total non-enzymatic antioxidant capacity in the RBCs at concentrations of 30 and 60 µg/mL. Diosmin and bromelain induced a significant increase in total thiols and glutathione in the RBCs. Examining the rheological properties of RBCs, we found that both compounds slightly reduce the internal viscosity of the RBCs. Using the MSL (maleimide spin label), we revealed that higher concentrations of bromelain led to a significant decrease in the mobility of this spin label attached to cytosolic thiols in the RBCs, as well as attached to hemoglobin at a higher concentration of diosmin, and for both concentrations of bromelain. Both compounds tended to decrease the cell membrane fluidity in the subsurface area, but not in the deeper regions. An increase in the glutathione concentration and the total level of thiol compounds promotes the protection of the RBCs against oxidative stress, suggesting that both compounds have a stabilizing effect on the cell membrane and improve the rheological properties of the RBCs.
Assuntos
Diosmina , Humanos , Diosmina/farmacologia , Compostos de Sulfidrila/metabolismo , Bromelaínas/farmacologia , Eritrócitos/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Marcadores de SpinRESUMO
Pyroxasulfone (PYS) is an isoxazole herbicide favored for its high activity. However, the metabolic mechanism of PYS in tomato plants and the response mechanism of tomato to PYS are still lacking. In this study, it was found that tomato seedlings had a strong ability to absorb and translocate PYS from roots to shoots. The highest accumulation of PYS was in the apex tissue of the tomato shoots. Using UPLC-MS/MS, five metabolites of PYS were detected and identified in tomato plants, and their relative contents in different parts of tomato plants varied greatly. The serine conjugate, DMIT [5, 5-dimethyl-4, 5-dihydroisoxazole-3-thiol (DMIT)] &Ser, was the most abundant metabolites of PYS in tomato plants. In tomato plants, the conjugation of thiol-containing metabolic intermediates of PYS to serine may mimic the cystathionine ß-synthase-catalyzed condensation of serine and homocysteine (in the pathway sly00260 sourced from KEGG database). This study ground breakingly proposed that serine may play an important role in plant metabolism of PYS and fluensulfone (whose molecular structure is similar to PYS). PYS and atrazine (whose toxicity profile is similar to PYS but not conjugate with serine) produced different regulatory outcomes for endogenous compounds in the pathway sly00260. Differential metabolites in tomato leaves exposed to PYS compared with the control, including amino acids, phosphates, and flavonoids, may play important roles in tomato response to PYS stress. This study provides inspiration for the biotransformation of sulfonyl-containing pesticides, antibiotics and other compounds in plants.
Assuntos
Plântula , Solanum lycopersicum , Plântula/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Isoxazóis/metabolismo , Serina/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
The tripeptide glutathione is found in all eukaryotic cells, and due to the compartmentalization of biochemical processes, its synthesis takes place exclusively in the cytosol. At the same time, its functions depend on its transport to/from organelles and interorgan transport, in which the liver plays a central role. Glutathione is determined as a marker of the redox state in many diseases, aging processes, and cell death resulting from its properties and reactivity. It also uses other enzymes and proteins, which enables it to engage and regulate various cell functions. This paper approximates the role of these systems in redox and detoxification reactions such as conjugation reactions of glutathione-S-transferases, glyoxylases, reduction of peroxides through thiol peroxidases (glutathione peroxidases, peroxiredoxins) and thiol-disulfide exchange reactions catalyzed by glutaredoxins.
Assuntos
Glutationa , Proteínas , Glutationa/metabolismo , Proteínas/metabolismo , Oxirredução , Glutationa Peroxidase/metabolismo , Compostos de Sulfidrila/metabolismo , Glutarredoxinas/metabolismoRESUMO
Thiol-disulfide couple maintains an intracellular redox status. Dynamic thiol-disulfide homeostasis acts crucial parts in metabolic processes involving signal mechanisms, inflammation, antioxidant defense. Thiol-disulfide homeostasis have been implicated in numerous diseases. In this comprehensive review we identified the studies that examined the thiol-disulfide homeostasis in psychiatric disorders. Most cases demonstrated alterations in thiol-disulfide homeostasis and in most of them the thiol-disulfide balance tended to change direction to the disulfide side, that is, to the oxidative side. Currently, the fact that N-acetylcysteine, a thiol-containing compound, is of great interest as a new treatment approach in psychiatric disorders and the role of glutathione, the most abundant thiol, in the brain highlights the importance of evaluating the thiol-disulfide balance in psychiatric disorders.
Assuntos
Transtornos Mentais , Compostos de Sulfidrila , Humanos , Compostos de Sulfidrila/metabolismo , Dissulfetos/metabolismo , Estresse Oxidativo , Homeostase , Biomarcadores/metabolismoRESUMO
We recently discovered that the expression of PRKN, a young-onset Parkinson disease-linked gene, confers redox homeostasis. To further examine the protective effects of parkin in an oxidative stress model, we first combined the loss of prkn with Sod2 haploinsufficiency in mice. Although adult prkn-/-//Sod2± animals did not develop dopamine cell loss in the S. nigra, they had more reactive oxidative species and a higher concentration of carbonylated proteins in the brain; bi-genic mice also showed a trend for more nitrotyrosinated proteins. Because these redox changes were seen in the cytosol rather than mitochondria, we next explored the thiol network in the context of PRKN expression. We detected a parkin deficiency-associated increase in the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in murine brain, PRKN-linked human cortex and several cell models. This shift resulted from enhanced recycling of GSSG back to GSH via upregulated glutathione reductase activity; it also correlated with altered activities of redox-sensitive enzymes in mitochondria isolated from mouse brain (e.g., aconitase-2; creatine kinase). Intriguingly, human parkin itself showed glutathione-recycling activity in vitro and in cells: For each GSSG dipeptide encountered, parkin regenerated one GSH molecule and was S-glutathionylated by the other (GSSG + P-SH [Formula: see text] GSH + P-S-SG), including at cysteines 59, 95 and 377. Moreover, parkin's S-glutathionylation was reversible by glutaredoxin activity. In summary, we found that PRKN gene expression contributes to the network of available thiols in the cell, including by parkin's participation in glutathione recycling, which involves a reversible, posttranslational modification at select cysteines. Further, parkin's impact on redox homeostasis in the cytosol can affect enzyme activities elsewhere, such as in mitochondria. We posit that antioxidant functions of parkin may explain many of its previously described, protective effects in vertebrates and invertebrates that are unrelated to E3 ligase activity.
Assuntos
Glutationa , Proteínas , Adulto , Camundongos , Humanos , Animais , Dissulfeto de Glutationa/metabolismo , Glutationa/metabolismo , Proteínas/metabolismo , Oxirredução , Estresse Oxidativo , Ubiquitina-Proteína Ligases/genética , Antioxidantes , Cisteína/metabolismo , Encéfalo/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Mamíferos/metabolismoRESUMO
In Saccharomyces, the IRC7 gene encodes for a cysteine S-conjugate ß-lyase enzyme which can release polyfunctional thiols from their cysteinylated precursor forms, thereby promoting thiol aroma in beer. This study examined the thiol production of 10 commercial yeast strains in two different media, a hopped yeast extract-peptone-dextrose (YPD) medium and a 100% barley malt wort to explore how differences in yeast strain and medium conditions influence the release of polyfunctional thiols. 3-Sulfanylhexan-1-ol was most affected by medium conditions, and its concentrations were highest in wort fermentations. The higher nitrogen content and pH of the YPD medium relative to the wort fermentations were notable differences, and significant correlations between these variables and the extent of free thiol production were observed. A strong association existed between polyfunctional thiol concentrations and the fermentation-derived, malt, and hop-derived compounds 2-phenylethanol, ß-damascenone, and ß-ionone. The sensory impressions of thiol character in beer were influenced by the presence of other aromatic compounds such as esters and terpene alcohols, and aroma attributes such as "tropical" were not the most suitable for describing beers brewed with yeasts that fully express homozygous IRC7F. Sensory attributes "sweaty", "vegetal", and "overripe fruit" were more strongly associated with these strains.
Assuntos
Odorantes , Saccharomyces , Odorantes/análise , Fermentação , Compostos de Sulfidrila/metabolismo , Leveduras/metabolismo , Saccharomyces/metabolismo , Cerveja/análiseRESUMO
Genipin (GP), the reactive metabolite of geniposide (GE), is responsible for GE-induced hepatotoxicity. As a potential detoxification pathway, the inactivation of GP by glutathione S-transferases (GSTs) has not yet been characterized. In this study, the thiol-GSH conjugates of GP, M532-1 and M532-2 were first identified and the catalytic activities of GSTs were investigated both in vitro and in vivo. GSTA1-1 and GSTA4-4 showed high activity in the formation of both thiol-GSH conjugates, whereas GSTA4-4 specifically catalyzed M532-2 formation in vitro. The active GST isoforms protect against alkylation of N-acetylcysteine (NAC), a classic model nucleophile. GST inhibition attenuated M532-1 formation in rat bile, confirming the in vivo catalytic role of GSTs. In conclusion, this study demonstrated the inactivation of GP by GSTs and implied that interindividual variability of GSTs may be a risk factor for susceptibility to GE-induced hepatotoxicity.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado , Ratos , Animais , Fígado/metabolismo , Glutationa Transferase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
Reactive electrophilic species are ubiquitous in plant cells, where they contribute to specific redox-regulated signaling events. Redox signaling is known to modulate gene expression during diverse biological processes, including plant growth, development, and environmental stress responses. Emerging data demonstrates that transcription factors (TFs) are a main target of cysteine thiol-based oxidative post-translational modifications (OxiPTMs), which can alter their transcriptional activity and thereby convey redox information to the nucleus. Here, we review the significant progress that has been made in characterizing cysteine thiol-based OxiPTMs, their biochemical properties, and their functional effects on plant TFs. We discuss the underlying mechanism of redox regulation and its contribution to various physiological processes as well as still outstanding challenges in redox regulation of plant gene expression.
Assuntos
Cisteína , Compostos de Sulfidrila , Cisteína/genética , Cisteína/química , Cisteína/metabolismo , Compostos de Sulfidrila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Processamento de Proteína Pós-Traducional/genética , Plantas/genética , Plantas/metabolismo , OxirreduçãoRESUMO
Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.
Assuntos
Imunidade Vegetal , S-Nitrosotióis , Plantas/metabolismo , Óxido Nítrico/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas/metabolismo , Oxirredução , S-Nitrosotióis/metabolismoRESUMO
The basolateral amygdala (BLA), which is sensitive to stress, is necessary for reward-seeking behavior and addiction. Regular exercise can produce various positive effects by affecting the BLA. Therefore, we aimed to investigate the effects of chronic stress and treadmill running (TR) on anxiety-like behavior, neuronal activity, lipid peroxidation (measured by malondialdehyde (MDA) levels, a marker for oxidative stress), and total thiol in BLA, in morphine-treated rats. Male Wistar rats were restricted in restraint stress and/or ran on the treadmill and treated with morphine (5 mg/kg) for 21 days. Anxiety-like behavior was evaluated using an elevated plus maze (EPM) and open field tests (OFTs), on day 22. On day 23, neuronal activity in BLA was assessed via single-unit recording. Finally, MDA and total thiol were assessed in BLA. Our results showed that chronic administration of morphine (5 mg/kg) did not affect anxiety-like behavior. However, the morphine-treated rats, subjected to chronic stress and exercise, showed fewer anxiety-like behaviors. Morphine increased BLA's MDA levels but it was prevented by TR. Glutamatergic and GABAergic basal neuronal activities were low in morphine-treated rats but after acute morphine application, there was a significant decrease in GABAergic neuronal activities in the morphine-exercise-stress (Mor-Exe-St) group. The results of this study showed that in morphine-treated rats, stress and exercise or their combination could have either co-directional or opposite effects to the chronic effects of morphine. These results indicate the existence of common pathways similar to endogenous opioids.
Assuntos
Complexo Nuclear Basolateral da Amígdala , Ratos , Masculino , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Morfina/farmacologia , Ratos Wistar , Ansiedade , Estresse Oxidativo , Compostos de Sulfidrila/metabolismo , Compostos de Sulfidrila/farmacologiaRESUMO
Intra-oral halitosis usually results from the production of volatile sulfur compounds, such as methyl mercaptan and hydrogen sulfide, by the tongue microbiota. There are currently no reports on the microbial gene-expression profiles of the tongue microbiota in halitosis. In this study, we performed RNAseq of tongue coating samples from individuals with and without halitosis. The activity of Streptococcus (including S. parasanguinis), Veillonella (including V. dispar) and Rothia (including R. mucilaginosa) was associated with halitosis-free individuals while Prevotella (including P. shahi), Fusobacterium (including F. nucleatum) and Leptotrichia were associated with halitosis. Interestingly, the metatranscriptome of patients that only had halitosis levels of methyl mercaptan was similar to that of halitosis-free individuals. Finally, gene expression profiles showed a significant over-expression of genes involved in L-cysteine and L-homocysteine synthesis, as well as nitrate reduction genes, in halitosis-free individuals and an over-expression of genes responsible for cysteine degradation into hydrogen sulfide in halitosis patients.
Assuntos
Halitose , Sulfeto de Hidrogênio , Humanos , Sulfeto de Hidrogênio/metabolismo , Halitose/metabolismo , Halitose/microbiologia , Língua/microbiologia , Compostos de Sulfidrila/metabolismo , Biofilmes , Redes e Vias MetabólicasRESUMO
The central theme of this enterprise is to find common features, if any, displayed by genetically different antimony (Sb)-resistant viscerotropic Leishmania parasites to impart Sb resistance. In a limited number of clinical isolates (n = 3), we studied the breadth of variation in the following dimensions: (a) intracellular thiol content, (b) cell surface expression of glycan having N-acetyl-D-galactosaminyl residue as the terminal sugar, and (c) gene expression of thiol-synthesizing enzymes (CBS, MST, gamma-GCS, ODC, and TR), antimony-reducing enzymes (TDR and ACR2), and antimonial transporter genes (AQP1, MRPA, and PRP1). One of the isolates, T5, that was genotypically characterized as Leishmania tropica, caused Indian Kala-azar and was phenotypically Sb resistant (T5-LT-SSG-R), while the other two were Leishmania donovani, out of which one isolate, AG83, is antimony sensitive (AG83-LD-SSG-S) and the other isolate, T8, is Sb resistant (T8-LD-SSG-R). Our study showed that the Sb-resistant parasites, regardless of their genotype, showed significantly higher intracellular thiol compared with Sb-sensitive AG83-LD-SSG-S. Seemingly, T5-LT-SSG-R showed about 1.9-fold higher thiol content compared with T8-LD-SSG-R which essentially mirrored cell surface N-acetyl-D-galactosaminyl expression. Except TR, the expression of the remaining thiol-synthesizing genes was significantly higher in T8-LD-SSG-R and T5-LT-SSG-R than the sensitive one, and between the Sb-resistant parasites, the latter showed a significantly higher expression. Furthermore, the genes for Sb-reducing enzymes increased significantly in resistant parasites regardless of genotype compared with the sensitive one, and between two resistant parasites, there was hardly any difference in expression. Out of three antimony transporters, AQP1 was decreased with the concurrent increase in MRPA and PRP1 in resistant isolates when compared with the sensitive counterpart. Interestingly, no difference in expression of the above-mentioned transporters was noted between two Sb-resistant isolates. The enduring image that resonated from our study is that the genetically diverse Sb-resistant parasites showed enhanced thiol-synthesizing and antimony transporter gene expression than the sensitive counterpart to confer a resistant phenotype.
Assuntos
Antiprotozoários , Leishmaniose Visceral , Humanos , Leishmaniose Visceral/tratamento farmacológico , Antimônio/farmacologia , Antimônio/metabolismo , Antimônio/uso terapêutico , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Resistência a Medicamentos/genética , Proteínas de Membrana Transportadoras , Compostos de Sulfidrila/metabolismoRESUMO
Cold stress reduces plant photosynthesis and increases the accumulation of reactive oxygen species (ROS) in plants, thereby dramatically affecting plant growth, crop productivity and quality. Here, we report that lumen thiol oxidoreductase 1 (StLTO1), a vitamin K epoxide reductase (VKOR)-like protein in the thylakoid membrane of Solanum tuberosum L., enhances the cold tolerance of potato plants. Under normal conditions, overexpression of StLTO1 in plants promoted plant growth. In addition, potato plants overexpressing StLTO1 displayed enhanced photosynthetic capacity and increased capacity for scavenging ROS compared to StLTO1 knockdown and wild-type potato plants under cold conditions. Overexpression of StLTO1 in potato plants also improved cold-regulated (COR) gene expression after cold stress. Our results suggest that StLTO1 acts as a positive regulator of cold resistance in potato plants.
Assuntos
Solanum tuberosum , Solanum tuberosum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plantas Geneticamente Modificadas/genética , Oxirredutases/genética , Compostos de Sulfidrila/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
Rapid production of H2O2 is a hallmark of plant responses to diverse pathogens and plays a crucial role in signalling downstream of various receptors that perceive immunogenic patterns. However, mechanisms by which plants sense H2O2 to regulate immunity remain poorly understood. We show that endogenous H2O2 generated upon immune activation is sensed by the thiol peroxidase PRXIIB via oxidation at Cys51, and this is essential for stomatal immunity against Pseudomonas syringae. We further show that in immune-stimulated cells, PRXIIB conjugates via Cys51 with the type 2C protein phosphatase ABA insensitive 2 (ABI2), subsequently transducing H2O2 signal to ABI2. This oxidation dramatically sensitizes H2O2-mediated inhibition of the ABI2 phosphatase activity in vitro and is required for stomatal immunity in plants. Together, our results illustrate a redox relay, with PRXIIB as a sensor for H2O2 and ABI2 as a target protein, that mediates reactive oxygen species signalling during plant immunity.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peroxidase/metabolismo , Compostos de Sulfidrila/metabolismo , Imunidade Vegetal , Oxirredução , Peroxidases/metabolismoRESUMO
Perturbation to the redox state accompanies many diseases and its effects are viewed through oxidation of biomolecules, including proteins, lipids, and nucleic acids. The thiol groups of protein cysteine residues undergo an array of redox post-translational modifications (PTMs) that are important for regulation of protein and pathway function. To better understand what proteins are redox regulated following a perturbation, it is important to be able to comprehensively profile protein thiol oxidation at the proteome level. Herein, we report a deep redox proteome profiling workflow and demonstrate its application in measuring the changes in thiol oxidation along with global protein expression in skeletal muscle from mdx mice, a model of Duchenne Muscular Dystrophy (DMD). In-depth coverage of the thiol proteome was achieved with >18,000 Cys sites from 5,608 proteins in muscle being quantified. Compared to the control group, mdx mice exhibit markedly increased thiol oxidation, where a â¼2% shift in the median oxidation occupancy was observed. Pathway analysis for the redox data revealed that coagulation system and immune-related pathways were among the most susceptible to increased thiol oxidation in mdx mice, whereas protein abundance changes were more enriched in pathways associated with bioenergetics. This study illustrates the importance of deep redox profiling in gaining greater insight into oxidative stress regulation and pathways/processes that are perturbed in an oxidizing environment.
Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Proteoma/metabolismo , Fluxo de Trabalho , Oxirredução , Músculo Esquelético/metabolismo , Cisteína/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
The protein toxin C3bot from Clostridium botulinum is a mono-ADP-ribosyltransferase that selectively intoxicates monocyte-derived cells such as macrophages, osteoclasts, and dendritic cells (DCs) by cytosolic modification of Rho-A, -B, and -C. Here, we investigated the application of C3bot as well as its non-toxic variant C3botE174Q as transporters for selective delivery of cargo molecules into macrophages and DCs. C3bot and C3botE174Q facilitated the uptake of eGFP into early endosomes of human-monocyte-derived macrophages, as revealed by stimulated emission depletion (STED) super-resolution microscopy. The fusion of the cargo model peptide eGFP neither affected the cell-type selectivity (enhanced uptake into human macrophages ex vivo compared to lymphocytes) nor the cytosolic release of C3bot. Moreover, by cell fractionation, we demonstrated that C3bot and C3botE174Q strongly enhanced the cytosolic release of functional eGFP. Subsequently, a modular system was created on the basis of C3botE174Q for covalent linkage of cargos via thiol-maleimide click chemistry. The functionality of this system was proven by loading small molecule fluorophores or an established reporter enzyme and investigating the cellular uptake and cytosolic release of cargo. Taken together, non-toxic C3botE174Q is a promising candidate for the cell-type-selective delivery of small molecules, peptides, and proteins into the cytosol of macrophages and DCs.
Assuntos
Toxinas Botulínicas , Clostridium botulinum , Humanos , Toxinas Botulínicas/química , Clostridium botulinum/metabolismo , Macrófagos/metabolismo , ADP Ribose Transferases/metabolismo , Maleimidas/metabolismo , Compostos de Sulfidrila/metabolismo , Células Dendríticas/metabolismoRESUMO
Disulfide-bonded thiols in malt and hops were first identified as possible precursors of thiols in beer. The presence of disulfide-bonded 3-mercaptohexan-1-ol (3MH) was confirmed in malt and hops by observing an 8.9-9.9 times increase in the 3MH concentration in hopped water and unhopped wort after the reduction using tris(2-carboxyethyl)phosphine (TCEP), a reducing agent specific for disulfide bonds. The presence of disulfide-bonded 4-mercapto-4-methylpentan-2-one (4MMP) was confirmed in hops by observing 2.1 and 5.1 times increase in the 4MMP concentration after reduction in hopped water. Proteins, peptides, and amino acids having sulfhydryl groups or other thiol substances were assumed to form disulfide bonds with polyfunctional thiols in malt and hops. The release of thiols by the reduction of disulfide-bonded thiols during fermentation was first identified. A 65-82% of disulfide-bonded 3MH were reduced during fermentation, and as a result, concentrations of 3MH in hopped water and unhopped wort increased by 9.5-14.2 times during fermentation.
Assuntos
Cerveja , Humulus , Cerveja/análise , Humulus/química , Substâncias Redutoras , Compostos de Sulfidrila/metabolismo , Dissulfetos , Aminoácidos , ÁguaRESUMO
BACKGROUND: One-carbon metabolism, which includes the folate and methionine cycles, involves the transfer of methyl groups which are then utilised as a part of multiple physiological processes including redox defence. During the methionine cycle, the vitamin B12-dependent enzyme methionine synthetase converts homocysteine to methionine. The enzyme S-adenosylmethionine (SAM) synthetase then uses methionine in the production of the reactive methyl carrier SAM. SAM-binding methyltransferases then utilise SAM as a cofactor to methylate proteins, small molecules, lipids, and nucleic acids. RESULTS: We describe a novel SAM methyltransferase, RIPS-1, which was the single gene identified from forward genetic screens in Caenorhabditis elegans looking for resistance to lethal concentrations of the thiol-reducing agent dithiothreitol (DTT). As well as RIPS-1 mutation, we show that in wild-type worms, DTT toxicity can be overcome by modulating vitamin B12 levels, either by using growth media and/or bacterial food that provide higher levels of vitamin B12 or by vitamin B12 supplementation. We show that active methionine synthetase is required for vitamin B12-mediated DTT resistance in wild types but is not required for resistance resulting from RIPS-1 mutation and that susceptibility to DTT is partially suppressed by methionine supplementation. A targeted RNAi modifier screen identified the mitochondrial enzyme methylmalonyl-CoA epimerase as a strong genetic enhancer of DTT resistance in a RIPS-1 mutant. We show that RIPS-1 is expressed in the intestinal and hypodermal tissues of the nematode and that treating with DTT, ß-mercaptoethanol, or hydrogen sulfide induces RIPS-1 expression. We demonstrate that RIPS-1 expression is controlled by the hypoxia-inducible factor pathway and that homologues of RIPS-1 are found in a small subset of eukaryotes and bacteria, many of which can adapt to fluctuations in environmental oxygen levels. CONCLUSIONS: This work highlights the central importance of dietary vitamin B12 in normal metabolic processes in C. elegans, defines a new role for this vitamin in countering reductive stress, and identifies RIPS-1 as a novel methyltransferase in the methionine cycle.
Assuntos
Sulfeto de Hidrogênio , Ácidos Nucleicos , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Carbono/metabolismo , Ditiotreitol/metabolismo , Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Ligases/metabolismo , Lipídeos , Mercaptoetanol/metabolismo , Metionina/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Oxigênio/metabolismo , Substâncias Redutoras/metabolismo , S-Adenosilmetionina/metabolismo , Compostos de Sulfidrila/metabolismo , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Vitaminas/metabolismoRESUMO
Metal and redox homeostasis in cyanobacteria is tightly controlled to preserve the photosynthetic machinery from mismetallation and minimize cell damage. This control is mainly taken by FUR (ferric uptake regulation) proteins. FurC works as the PerR (peroxide response) paralog in Anabaena sp. PCC7120. Despite its importance, this regulator remained poorly characterized. Although FurC lacks the typical CXXC motifs present in FUR proteins, it contains a tightly bound zinc per subunit. FurC: Zn stoichiometrically binds zinc and manganese in a second site, manganese being more efficient in the binding of FurC: Zn to its DNA target PprxA. Oligomerization analyses of FurC: Zn evidence the occurrence of different aggregates ranging from dimers to octamers. Notably, intermolecular disulfide bonds are not involved in FurC: Zn dimerization, dimer being the most reduced form of the protein. Oligomerization of dimers occurs upon oxidation of thiols by H2O2 or diamide and can be reversed by 1,4-Dithiothreitol (DTT). Irreversible inactivation of the regulator occurs by metal catalyzed oxidation promoted by ferrous iron. However, inactivation upon oxidation with H2O2 in the absence of iron was reverted by addition of DTT. Comparison of models for FurC: Zn dimers and tetramers obtained using AlphaFold Colab and SWISS-MODEL allowed to infer the residues forming both metal-binding sites and to propose the involvement of Cys86 in reversible tetramer formation. Our results decipher the existence of two levels of inactivation of FurC: Zn of Anabaena sp. PCC7120, a reversible one through disulfide-formed FurC: Zn tetramers and the irreversible metal catalyzed oxidation. This additional reversible regulation may be specific of cyanobacteria.
Assuntos
Anabaena , Manganês , Manganês/metabolismo , Peróxido de Hidrogênio/metabolismo , Ditiotreitol/metabolismo , Diamida/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Anabaena/genética , Anabaena/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Peróxidos/metabolismo , Dissulfetos/metabolismo , Compostos de Sulfidrila/metabolismoRESUMO
The effect of curcumin (Cur) on cognitive impairment and the possible role of brain tissue oxidative stress, nitric oxide (NO) levels, and brain-derived neurotrophic factor (BDNF) were investigated in juvenile hypothyroid rats. The juvenile rats (21 days old) were allocated into the following groups: (1) control; (2) hypothyroid (0.05% propylthiouracil (PTU) in drinking water); (3-5) hypothyroid-Cur 50, 100, and 150, which in these groups 50, 100, or 150 mg/kg, Cur was orally administered by gavage during 6 weeks. In the hypothyroid rats, the time elapsed and the traveled distance to locate the hidden platform in the learning trials of Morris water maze (MWM) increased, and on the probe day, the amount of time spent in the target quadrant and the distance traveled in there was decreased. Hypothyroidism also decreased the latency and increased the time spent in the darkroom of the passive avoidance (PA) test. Compared with the hypothyroid group, Cur enhanced the performance of the rats in both MWM and PA tests. In addition, Cur reduced malondialdehyde concentration and NO metabolites; however, it increased thiol content as well as the activity of catalase (CAT) and superoxide dismutase enzymes in both the cortex and hippocampus. Cur also increased hippocampal synthesis of BDNF in hypothyroid rats. The beneficial effects of Cur cognitive function in juvenile hypothyroid rats might be attributed to its protective effect against oxidative stress and potentiation of BDNF production.