Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.560
Filtrar
1.
Braz. j. biol ; 84: e257314, 2024. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1355908

RESUMO

Abstract Melon production in the Brazilian semi-arid region is subject to the use of marginal waters with high salinity. However, the use of regulators and bioactivators in seed treatment can mitigate the harmful effects of salts in irrigation water. In this context, the objective was to evaluate the effect of pre-germination treatments with plant regulators and bioactivator in melon seeds for the production of seedlings irrigated with biosaline water from fish farming effluent. For this, two trials with the Goldex and Grand Prix hybrids were carried out separately. A completely randomized design was used in a 4 × 3 factorial scheme (pre-germination treatments × water dilutions). In addition to the control, the seeds were treated with salicylic and gibberellic acids and thiamethoxam. The waters used for irrigation were local-supply water, fish farming effluent (biosaline water) and these diluted to 50%. Physiological and biochemical analyses were performed for fourteen days. Biosaline water (5.0 dS m-1) did not affect the emergence of Goldex melon seedlings, but compromised the establishment of the Grand Prix cultivar. Seed pre-treatments with salicylic and gibberellic acids attenuate the effects of water salinity and promote growth modulations, resulting in more vigorous melon seedlings.


Resumo A produção de meloeiro no semiárido brasileiro está sujeita a utilização de águas marginais com salinidade elevada. Entretanto, a utilização de reguladores e bioativadores no tratamento de sementes podem mitigar os efeitos nocivos dos sais na água de irrigação. Nesse sentido, objetivou-se avaliar o efeito de tratamentos pré-germinativos com fitorreguladores e bioativador em sementes de melão para a produção de mudas irrigadas com água biossalina de efluente de piscicultura. Para isso, dois ensaios com os híbridos Goldex e Grand Prix foram realizados separadamente. Utilizou-se delineamento inteiramente casualizado em esquema fatorial 4 × 3 (tratamentos pré-germinativos × diluições de água). Além do controle, as sementes foram tratadas com os ácidos salicílico e giberélico, e tiametoxam. As águas utilizadas para irrigação foram a de abastecimento local, efluente de piscicultura (água biossalina) e estas diluídas a 50%. Durante quatorze dias foram realizadas as análises fisiológicas e bioquímicas. A água biossalina (5,0 dS m-1) não afetou a emergência de plântulas de meloeiro Goldex, mas prejudicou o estabelecimento da cultivar Grand Prix. Os pré-tratamentos de sementes com os ácidos salicílico e giberélico atenuam os efeitos da salinidade da água e promovem modulações no crescimento, proporcionando mudas de meloeiro mais vigorosas.


Assuntos
Germinação , Cucurbitaceae , Sementes , Água , Plântula
2.
Braz. j. biol ; 83: e253009, 2023. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1339373

RESUMO

Abstract Today, global focus of research is to explore the solution of energy crisis and environmental pollution. Like other agricultural countries, bulk quantities of watermelon peels (WMP) are disposed-off in environment as waste in Pakistan and appropriate management of this waste is the need of hour to save environment from pollution. The work emphasizes the role of ethanologenic yeasts to utilize significant sugars present in WMP for low-cost bioethanol fermentation. Dilute hydrochloric acid hydrolysis of WMP was carried out on optimized conditions employing RSM (response surface methodology) following central composite design (CCD). This experimental design is based on optimization of ethanologenesis involving some key independent parameters such as WMP hydrolysate and synthetic media ratio (X1), incubation temperature (X2) and incubation temperature (X3) for maximal ethanol yield exploiting standard (Saccharomyces cerevisiae K7) as well as experimental (Metchnikowia cibodasensisY34) yeasts. The results revealed that maximal ethanol yields obtained from S. cerevisiae K7 was 0.36±0.02 g/g of reducing sugars whereas M. cibodasensisY34, yielded 0.40±0.01 g ethanol/g of reducing sugars. The yeast isolate M. cibodasensisY34 appeared as promising ethanologen and embodies prospective potential for fermentative valorization of WMP-to-bioethanol.


Resumo Hoje, o foco global da pesquisa é explorar a solução da crise energética e da poluição ambiental. Como em outros países agrícolas, grandes quantidades de cascas de melancia (WMP) são descartadas como resíduos no meio ambiente no Paquistão, mas a gestão adequada desses resíduos é a mais recente solução para salvar o meio ambiente da poluição. O trabalho enfatiza o papel das leveduras etanologênicas para utilizar açúcares significativos presentes no WMP para fermentação de bioetanol de baixo custo. A hidrólise de ácido clorídrico diluído de WMP foi realizada em condições otimizadas empregando RSM (metodologia de superfície de resposta) e seguindo o projeto de composto central (CCD). Este projeto experimental é baseado na otimização da etanologenesis envolvendo alguns parâmetros independentes importantes, como hidrolisado de WMP e razão de meio sintético (X1), temperatura de incubação (X2) e temperatura de incubação (X3) para rendimento máximo de etanol explorando o padrão (Saccharomyces cerevisiae K7) também como leveduras experimentais (Metchnikowia cibodasensis Y34). Os resultados revelaram que os rendimentos máximos de etanol obtidos a partir de S. cerevisiae K7 foi de 0,36 ± 0,02 g / g de açúcares redutores, enquanto M. cibodasensis Y34 rendeu 0,40 ± 0,01 g de etanol / g de açúcares redutores. O isolado de levedura M. cibodasensis Y34 apareceu como um etanologeno promissor e incorpora um potencial prospectivo para a valorização fermentativa de WMP em bioetanol.


Assuntos
Cucurbitaceae , Etanol , Saccharomyces cerevisiae , Água , Biotransformação , Estudos Prospectivos , Fermentação
3.
An Acad Bras Cienc ; 94(2): e20191244, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35544843

RESUMO

The vegetable leaf miner (Liriomyza sativae) is considered one of the main melon pests, causing serious problems for producers in all growing regions. A promising type of pest control has been use of resistant cultivars, in isolation or associated with other types of control. This study aimed to evaluate the resistance of melon genotypes to L. sativae. Twenty-one melon genotypes and one commercial "Goldex" hybrid (susceptibility pattern) were evaluated in two experiments. In the first experiment, we observed the non-preference of L. sativae for oviposition and feeding by quantifying the number of eggs and feeding punctures, both on the adaxial side and on the abaxial face of the leaves. In the second experiment, we observed the antibiosis effect through L. sativae larval and pupal viability. Genotype CNPH 06-1047-341 showed the lowest preference for oviposition (high resistance), with low egg values on both leaf sides (0.3 eggs/plant). In genotypes CNPH 06-1047-313, CNPH 06-1047-346, CNPH 11-1071-27, CNPH 11-1071-39, CNPH 11-1071-43, and CNPH 11-1071-53, we observed a higher preference for the adaxial side, whereas for the other genotypes and the commercial hybrid there was no discrimination between leaf sides. In relation to antibiosis, genotypes CNPH 06-1047-339, CNPH 06-1047-333, CNPH 06-1047-330, CNPH 06-1047-334, CNPH 06-1047-331, CNPH 06-1047-343, CNPH 10-1056-313, CNPH 06-1047-346, and CNPH 06-1047-341 presented lower larval and pupal viability. Genotype CNPH 06-1047-341 was the least preferred for oviposition and feeding and the most promising as a source of resistance to L. sativae.


Assuntos
Cucurbitaceae , Dípteros , Animais , Dípteros/genética , Feminino , Genótipo , Larva , Pupa
4.
J Zhejiang Univ Sci B ; 23(4): 339-344, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35403388

RESUMO

Cucurbitaceae is an important family of flowering plants containing multiple species of important food plants, such as melons, cucumbers, squashes, and pumpkins. However, a highly efficient genetic transformation system has not been established for most of these species (Nanasato and Tabei, 2020). Watermelon (Citrullus lanatus), an economically important and globally cultivated fruit crop, is a model species for fruit quality research due to its rich diversity of fruit size, shape, flavor, aroma, texture, peel and flesh color, and nutritional composition (Guo et al., 2019). Through pan-genome sequencing, many candidate loci associated with fruit quality traits have been identified (Guo et al., 2019). However, few of these loci have been validated. The major barrier is the low transformation efficiency of the species, with only few successful cases of genetic transformation reported so far (Tian et al., 2017; Feng et al., 2021; Wang JF et al., 2021; Wang YP et al., 2021). For example, Tian et al. (2017) obtained only 16 transgenic lines from about 960 cotyledon fragments, yielding a transformation efficiency of 1.67%. Therefore, efficient genetic transformation could not only facilitate the functional genomic studies in watermelon as well as other horticultural species, but also speed up the transgenic and genome-editing breeding.


Assuntos
Citrullus , Cucurbitaceae , Sistemas CRISPR-Cas , Citrullus/genética , Cucurbitaceae/genética , Edição de Genes , Melhoramento Vegetal , Transformação Genética
5.
BMC Plant Biol ; 22(1): 193, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35410167

RESUMO

BACKGROUND: Hami melon (Cucumis melo var. saccharinus) is a popular fruit in China because of its excellent taste, which is largely determined by its physicochemical characteristics, including flesh texture, sugar content, aroma, and nutrient composition. However, the mechanisms by which these characteristics are regulated have not yet been determined. In this study, we monitored changes in the fruits of two germplasms that differed in physicochemical characteristics throughout the fruit development period. RESULTS: Ripe fruit of the bred variety 'Guimi' had significantly higher soluble sugar contents than the fruit of the common variety 'Yaolong.' Additionally, differences in fruit shape and color between these two germplasms were observed during development. Comparative transcriptome analysis, conducted to identify regulators and pathways underlying the observed differences at corresponding stages of development, revealed a higher number of differentially expressed genes (DEGs) in Guimi than in Yaolong. Moreover, most DEGs detected during early fruit development in Guimi were associated with cell wall biogenesis. Temporal analysis of the identified DEGs revealed similar trends in the enrichment of downregulated genes in both germplasms, although there were differences in the enrichment trends of upregulated genes. Further analyses revealed trends in differential changes in multiple genes involved in cell wall biogenesis and sugar metabolism during fruit ripening. CONCLUSIONS: We identified several genes associated with the ripening of Hami melons, which will provide novel insights into the molecular mechanisms underlying the development of fruit characteristics in these melons.


Assuntos
Cucumis melo , Cucurbitaceae , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Frutas , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Açúcares/metabolismo , Transcriptoma
6.
BMC Plant Biol ; 22(1): 173, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382733

RESUMO

BACKGROUND: Siraitia grosvenorii (Swingle) C. Jeffrey, also known as Luohanguo or monk fruit, is a famous traditional Chinese medicine ingredient with important medicinal value and broad development prospects. Diploid S. grosvenorii has too many seeds, which will increase the utilization cost of active ingredients. Thus, studying the molecular mechanism of seed abortion in triploid S. grosvenorii, identifying the abortion-related genes, and regulating their expression will be a new direction to obtain seedless S. grosvenorii. Herein, we examined the submicroscopic structure of triploid S. grosvenorii seeds during abortion. RESULTS: Upon measuring the endogenous hormone content, we found that abscisic acid (ABA) and trans-zeatin (ZR) levels were significantly downregulated after days 15 and 20 of flowering. RNA sequencing of triploid seeds at different developmental stages was performed to identify key genes regulating abortion in triploid S. grosvenorii seeds. Multiple genes with differential expression between adjacent stages were identified; seven genes were differentially expressed across all stages. Weight gene co-expression network analysis revealed that the enhancement of monoterpene and terpene metabolic processes might lead to seed abortion by reducing the substrate flow to ABA and ZR. CONCLUSIONS: These findings provide insights into the gene-regulatory network of seed abortion in triploid S. grosvenorii from different perspectives, thereby facilitating the innovation of the breeding technology of S. grosvenorii.


Assuntos
Cucurbitaceae , Transcriptoma , Cucurbitaceae/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Melhoramento Vegetal , Sementes/genética , Triploidia
7.
Molecules ; 27(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35408736

RESUMO

In this study, the trend of Volatile Organic Compounds (VOCs) in dietary fiber samples from the winter melon (Cucumis Melo var. Inodorus, Yellow Canary type) were investigated. This foodstuff, obtained as a by-product of agri-food production, has gained increasing attention and is characterized by many bioactive components and a high dietary-fiber content. As regards fiber, it is poorly colored, but it may be whitened by applying a bleaching treatment with H2O2. The result is a fibrous material for specific applications in food manufacturing, for example, as a corrector for some functional and technological properties. This treatment is healthy and safe for consumers and widely applied in industrial food processes. In this study, a method based on headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the characterization of the aromatic profile of the dried raw materials. Furthermore, VOC variation was investigated as function of the bleaching treatment with H2O2. The bleached samples were also analyzed after a long storage period (24 months), to assess their stability over time. As a result, the VOC fraction of the fresh raw fiber showed nine classes of analytes; these were restricted to seven for the bleached fiber at t0 time, and further reduced to four classes at the age of 24 months. Alcohols were the main group detected in the fresh raw sample (33.8 % of the total chromatogram area), with 2,3-butanediol isomers as the main compounds. These analytes decreased with time. An opposite trend was observed for the acids (9.7% at t0), which increased with time and became the most important class in the 24-month aged and bleached sample (57.3%).


Assuntos
Cucurbitaceae , Compostos Orgânicos Voláteis , Cucurbitaceae/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Peróxido de Hidrogênio/análise , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
8.
Genes (Basel) ; 13(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35328015

RESUMO

Benincasa hispida (wax gourd) is an important Cucurbitaceae crop, with enormous economic and medicinal importance. Here, we report the de novo assembly and annotation of the complete chloroplast genome of wax gourd with 156,758 bp in total. The quadripartite structure of the chloroplast genome comprises a large single-copy (LSC) region with 86,538 bp and a small single-copy (SSC) region with 18,060 bp, separated by a pair of inverted repeats (IRa and IRb) with 26,080 bp each. Comparison analyses among B. hispida and three other species from Benincaseae presented a significant conversion regarding nucleotide content, genome structure, codon usage, synonymous and non-synonymous substitutions, putative RNA editing sites, microsatellites, and oligonucleotide repeats. The LSC and SSC regions were found to be much more varied than the IR regions through a divergent analysis of the species within Benincaseae. Notable IR contractions and expansions were observed, suggesting a difference in genome size, gene duplication and deletion, and the presence of pseudogenes. Intronic gene sequences, such as trnR-UCU-atpA and atpH-atpI, were observed as highly divergent regions. Two types of phylogenetic analysis based on the complete cp genome and 72 genes suggested sister relationships between B. hispida with the Citrullus, Lagenaria, and Cucumis. Variations and consistency with previous studies regarding phylogenetic relationships are discussed. The cp genome of B. hispida provides valuable genetic information for the detection of molecular markers, research on taxonomic discrepancies, and the inference of the phylogenetic relationships of Cucurbitaceae.


Assuntos
Cucurbitaceae , Genoma de Cloroplastos , Evolução Biológica , Cloroplastos/genética , Cucurbitaceae/genética , Filogenia
9.
Genes (Basel) ; 13(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35328021

RESUMO

YABBY transcription factors play important roles in plant growth and development. However, little is known about YABBY genes in Cucurbitaceae. Here, we identified 59 YABBY genes from eight cucurbit species, including cucumber (C. sativus L.), melon (C. melon L.), watermelon (C. lanatus), wax gourd (B. hispida), pumpkin (C. maxima), zucchini (C. pepo L.), silver-seed gourd (C. argyrosperma), and bottle gourd (L. siceraria). The 59 YABBY genes were clustered into five subfamilies wherein the gene structures and motifs are conserved, suggesting similar functions within each subfamily. Different YABBY gene numbers in eight cucurbit species indicated that gene loss or duplication events exist in an evolutionary process across Cucurbitaceae. The cis-acting elements analysis implied that the YABBYs may be involved in plant development, and phytohormone, stress, and light responses. Importantly, YABBY genes exhibited organ-specific patterns in expression in cucumber. Furthermore, a gene CsaV3_6G038650 was constitutively expressed at higher levels at different fruit development stages and might play a crucial role in cucumber fruit development. Collectively, our work will provide a better understanding for further function identifications of YABBY genes in Cucurbitaceae.


Assuntos
Citrullus , Cucumis sativus , Cucurbitaceae , Citrullus/genética , Cucumis sativus/genética , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo
10.
J Dairy Sci ; 105(5): 3758-3769, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35248379

RESUMO

Monk fruit extract (MFE) is widely used as a sweetener in foods. In this study, the effects of the consumption of MFE-sweetened synbiotic yogurt on the lipid biomarkers and metabolism in the livers of type 2 diabetic rats were evaluated. The results revealed that the MFE-sweetened symbiotic yogurt affected the phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerol, lysophosphatidic acids, lysophosphatidylcholines, lysophosphatidylethanolamines, lysophosphatidylglycerols, lysophosphatidylinositols, lysophosphatidylserines, and fatty acid-hydroxy fatty acids biomarkers in the livers of type 2 diabetic rats. In addition, the consumption of the MFE-sweetened synbiotic yogurt significantly altered 12 hepatic metabolites, which are involved in phenylalanine metabolism, sphingolipid metabolism, bile secretion, and glyoxylate and dicarboxylate metabolism in the liver. Furthermore, a multiomics (metabolomic and transcriptomic) association study revealed that there was a significant correlation between the MFE-sweetened synbiotic yogurt and the metabolites and genes involved in fatty acid biosynthesis, bile secretion, and glyoxylate and dicarboxylate metabolism. The findings of this study will provide new insights on exploring the function of sweeteners for improving type 2 diabetes mellitus liver lipid biomarkers.


Assuntos
Cucurbitaceae , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Doenças dos Roedores , Simbióticos , Animais , Biomarcadores/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/veterinária , Ácidos Graxos/metabolismo , Frutas/química , Glioxilatos/metabolismo , Glioxilatos/farmacologia , Metabolismo dos Lipídeos , Lipídeos/farmacologia , Fígado/metabolismo , Extratos Vegetais/farmacologia , Ratos , Doenças dos Roedores/metabolismo , Edulcorantes/análise , Iogurte/análise
11.
Sci Rep ; 12(1): 4936, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322050

RESUMO

Powdery mildew is a major disease in melon, primarily caused by Podosphaera xanthii (Px). Some melon varieties were resistant to powdery mildew, while others were susceptible. However, the candidate genes associated with resistance and the mechanism of resistance/susceptibility to powdery mildew in melon remain unclear. In this study, disease-resistant melon cultivar TG-1 and disease-susceptible melon cultivar TG-5 were selected for comparative transcriptome analysis. The results suggested that the numbers of differentially expressed genes (DEGs) in TG-5 was always more than that in TG-1 at each of the four time points after Px infection, indicating that their responses to Px infection may be different and that the active response of TG-5 to Px infection may be earlier than that of TG-1. Transcription factors (TFs) analysis among the DEGs revealed that the bHLH, ERF, and MYB families in TG-1 may play a vital role in the interaction between melon and powdery mildew pathogens. GO enrichment analysis of these DEGs in TG-5 showed that the SBP, HSF, and ERF gene families may play important roles in the early stage of melon development after Px infection. Finally, we speculated on the regulatory pathways of melon powdery mildew and found PTI and ABA signaling genes may be associated with the response to Px infection in melon.


Assuntos
Cucumis melo , Cucurbitaceae , Ascomicetos , Cucumis melo/genética , Cucurbitaceae/genética , Erysiphe , Perfilação da Expressão Gênica , Doenças das Plantas/genética
12.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210294, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35306898

RESUMO

Microscopically dimorphic sex chromosomes in plants are rare, reducing our ability to study them. One difficulty has been the paucity of cultivatable species pairs for cytogenetic, genomic and experimental work. Here, we study the newly recognized sisters Coccinia grandis and Coccinia schimperi, both with large Y chromosomes as we here show for Co. schimperi. We built genetic maps for male and female Co. grandis using a full-sibling family, inferred gene sex-linkage, and, with Co. schimperi transcriptome data, tested whether X- and Y-alleles group by species or by sex. Most sex-linked genes for which we could include outgroups grouped the X- and Y-alleles by species, but some 10% instead grouped the two species' X-alleles. There was no relationship between XY synonymous-site divergences in these genes and gene position on the non-recombining part of the X, suggesting recombination arrest shortly before or after species divergence, here dated to about 3.6 Ma. Coccinia grandis and Co. schimperi are the species pair with the most heteromorphic sex chromosomes in vascular plants (the condition in their sister remains unknown), and future work could use them to study mechanisms of Y chromosome enlargement and parallel degeneration, or to test Haldane's rule about lower hybrid fitness in the heterogametic sex. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Assuntos
Cromossomos de Plantas , Cucurbitaceae , Cromossomos de Plantas/genética , Cucurbitaceae/genética , Evolução Molecular
13.
Carbohydr Polym ; 284: 119206, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35287917

RESUMO

Quercetin-chitosan (QCS) polysaccharide was synthesized via non-radical reaction using L-valine-quercetin as the precursor. QCS was systematically characterized and demonstrated amphiphilic properties with self-assembling ability. In-vitro activity studies confirmed that quercetin grafting does not diminish but rather increases antimicrobial activity of the original chitosan (CS) and provided the modified polysaccharide with antioxidative properties. QCS applied as a coating on fresh-cut fruit reduced microbial spoilage and oxidative browning of coated melon and apple, respectively. Notably, QCS-based coatings prevented moisture loss, a major problem with fresh produce (2%, 12% and 18% moisture loss for the QCS-coated, CS-coated and uncoated fruit, respectively). The prepared QCS polysaccharide provides advanced bioactivity and does not involve radical reactions during its synthesis, therefore, it has good potential for use as a nature-sourced biocompatible active material for foods and other safety-sensitive applications.


Assuntos
Quitosana , Cucurbitaceae , Antioxidantes/farmacologia , Polissacarídeos/farmacologia , Quercetina/farmacologia
14.
Food Res Int ; 154: 111045, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35337586

RESUMO

Melon peels are by-products derived from food processing industries, representing potential sources of new ingredients in particular dietary fibre and phenolic compounds, which in synergy could exert beneficial effects on human health. The objective of this study was to evaluate the accessibility of bioactive compounds from melon peels throughout gastrointestinal digestion and evaluate their prebiotic effect when submitted to in vitro human faecal fermentation. Melon peels flour obtained from solid fraction showed an increase in antioxidant capacity at the gastric and intestinal phase, which was corroborated by the total phenolic content (126.91%) increase and the identified individual phenolics (tyrosol, luteolin-6-glycoside, chlorogenic and caffeic acids). Also, melon peels flour positively impacted the gut microbiota diversity, showing a similar ratio of Firmicutes/Bacteroidetes compared to the positive control (FOS) and promoted the production of short-chain fatty acids, mainly acetate > propionate > butyrate. Thus, these findings demonstrate that melon peels have antioxidant and prebiotic potential attributed to the phenolic compounds and the production of beneficial fatty acids, which could improve human gut health.


Assuntos
Cucumis melo , Cucurbitaceae , Antioxidantes , Digestão , Fermentação , Farinha , Humanos , Prebióticos
16.
Planta ; 255(4): 91, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35320421

RESUMO

MAIN CONCLUSION: The proteome and its time-dependent effects reveal the importance of stress response (including expression regulation of heat-shock proteins) and fatty acid metabolism in cold adaptation and preservation of Hami melon. To better understand the molecular mechanism of how Hami melons respond to low-temperature stress, this study investigated the relevant physiological characteristics, catalytic antibody activity, and quantitative proteomics of Hami melon (Jiashi muskmelon) during low-temperature storage. Jiashi muskmelon was stored inside two refrigerators set at 21 °C (control group) and 3 °C, respectively, for 24 days. Low-temperature storage led to a significantly reduced decay rate, weight loss rate, and loss of relative conductivity. It also maintained fruit firmness, inhibited the production rate of malondialdehyde and H2O2, and induced over-expression of antioxidant enzyme and ATPase. A total of 1064 differentially expressed proteins (DEPs) were identified during low-temperature storage. Stimulation response was the main process in response to low-temperature. To further verify the proteome data, we selected four heat-shock proteins (HSP) displaying relatively high expression levels. Real-time fluorescence PCR results confirmed that HmHSP90 I, HmHSP90 II, HmHSP70, and HmsHSP were significantly up-regulated upon low-temperature induction. These proteins may protect the Hami melon from physiological and cellular damage due to the low-temperature stress by acting alone or synergistically. Additionally, the main enrichment term of the fatty acid metabolism-related DEPs was fatty acid beta oxidation at 21 °C in contrast to fatty acid biosynthesis processes at 3 °C. It is speculated that Hami melon enhances low-temperature adaptability by slowing down the oxidative degradation of fatty acids and synthesizing new fatty acids at low temperatures. This study provides new insights into the mechanism of low-temperature adaptation and preservation in post-harvest Hami melon during cold storage.


Assuntos
Cucurbitaceae , Temperatura Baixa , Cucurbitaceae/genética , Peróxido de Hidrogênio , Proteoma
17.
Genomics ; 114(2): 110306, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131474

RESUMO

Melon is a popular fruit vegetable crop worldwide with diverse morphological variation. We report a high-density genetic map of melon and nine major QTLs with physical region ranging from 43.47 kb to 1.89 Mb. Importantly, two seed-related trait QTLs were repeatedly detected in two environments, and the mapping region was narrowed to 522 kb according to a regional linkage analysis. A total of 40 annotated genes were screened for nonsynonymous variations, of which EVM0009818, involved in cytokinin-activated signaling, was differentially expressed in the young fruits of parents based on RNA-seq. Selective sweep analysis identified 152 sweep signals for seed size, including the two seed-related QTLs and nine homologs that have been verified to regulate seed size in Arabidopsis or rice. This work illustrates the power of a joint analysis combining resequencing-based genetic map for QTL mapping and a combination of KASP genotyping and RNA-seq analysis to facilitate QTL fine mapping.


Assuntos
Cucurbitaceae , Frutas , Mapeamento Cromossômico , Cucurbitaceae/genética , Frutas/anatomia & histologia , Frutas/genética , Fenótipo , Locos de Características Quantitativas , Sementes/genética
18.
Food Chem ; 383: 132327, 2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35158129

RESUMO

The effects of CO2 pressurization combined with ultrasound-assisted immersion freezing (CO2USIF) on improving the freezing quality of honeydew melon were studied. The cut melon samples were first subjected to 0.2, 0.5 and 0.8 MPa CO2 pressure for 2 h respectively, and then frozen by an ultrasound-assisted freezing device. The results indicated that the CO2 pressurization affected the water state and reduced the freezable water content. Cryo-observed results showed the ice crystal area of the 0.5CO2USIF sample was 66.6% smaller than that of the SF, and 60.8% smaller than that of the IF. The drip loss of 0.5CO2USIF sample was 58.2% lower than that of SF. The indexes of vitamin C, flavor, texture and color of CO2USIF samples were kept better. The SEM results showed that the cell structures of CO2USIF samples were better maintained. These demonstrated that CO2USIF technology has application potential in improving the quality of frozen food.


Assuntos
Dióxido de Carbono , Cucurbitaceae , Congelamento , Água/química
19.
Molecules ; 27(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35209076

RESUMO

Herpetospermum pedunculosum (Ser.) C. B. Clarke (Family Cucurbitaceae) is a dioecious plant and has been used as a traditional Tibetan medicine for the treatment of hepatobiliary diseases. The component, content, and difference in volatile compounds in the female and male buds of H. pedunculosum were explored by using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology and multivariate statistical analysis. The results showed that isoamyl alcohol was the main compound in both female and male buds and its content in males was higher than that in females; 18 compounds were identified in female buds including 6 unique compounds such as (E)-4-hexenol and isoamyl acetate, and 32 compounds were identified in male buds, including 20 unique compounds such as (Z)-3-methylbutyraldehyde oxime and benzyl alcohol. (Z)-3-methylbutyraldehyde oxime and (E)-3-methylbutyraldehyde oxime were found in male buds, which only occurred in night-flowering plants. In total, 9 differential volatile compounds between female and male buds were screened out, including isoamyl alcohol, (Z)-3-methylbutanal oxime, and 1-nitropentane based on multivariate statistical analysis such as principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA). This is the first time to report the volatile components of H. pedunculosum, which not only find characteristic difference between female and male buds, but also point out the correlation between volatile compounds, floral odor, and plant physiology. This study enriches the basic theory of dioecious plants and has guiding significance for the production and development of H. pedunculosum germplasm resources.


Assuntos
Cucurbitaceae/química , Cromatografia Gasosa-Espectrometria de Massas , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/isolamento & purificação , Flores/química , Análise Multivariada
20.
Phytochemistry ; 197: 113110, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35114573

RESUMO

Using high-resolution chromatography we resolved monovinyl (MV)- and divinyl (DV)-protochlorophylls (Pchls) and detected all of their side-chain homologues in the inner seed coat of Cucurbita maxima, C. pepo and their varieties. Furthermore, we analyzed other less common representatives of the Cucurbitaceae family that were found to accumulate mostly MV-Pchls. All these species and varieties showed the characteristic composition of individual Pchls. Additionally, we also detected all of the corresponding protopheophytins, which accounted for between 1.1 and 35.5% of Pchls and are supposed to be degradation products of Pchls, formed during seed storage. A pigment composition analysis of C. maxima seedlings performed during deetiolation revealed that chlorophyll (Chl) a content increased gradually, while the levels of Pchl-GG and Chl-GG, a precursor of Chl a, were low and did not change significantly. However, when the seedlings were incubated with the precursor of tetrapyrrole biosynthesis (δ-aminolevulinic acid) before illumination, the Chl-GG content increased dramatically, while synthesis of Chl a was inhibited. These data indicate that in C. maxima seedlings, Chl a is not synthesized from geranylgeranyl-pyrophoshate via Chl-GG, but rather directly from phytyl-pyrophosphate. Phylogenetic analysis of Chl synthase genes revealed that many species, including those of the Cucurbitaceae family, have two or more Chl synthase genes. This suggests that these additional genes, at least in some species, might encode isoforms involved in Pchl synthesis.


Assuntos
Cucurbitaceae , Clorofila/análogos & derivados , Clorofila/química , Clorofila A , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA