Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.382
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009900

RESUMO

This paper proposes an energy management strategy (EMS) for a hybrid stand-alone plant destined to supply controllable loads. The plant is composed of photovoltaic panels (PV), a wind turbine, a diesel generator, and a battery bank. The set of the power sources supplies controllable electrical loads. The proposed EMS aims to ensure the power supply of the loads by providing the required electrical power. Moreover, the EMS ensures the maximum use of the power generated by the renewable sources and therefore minimizes the use of the genset, and it ensures that the batteries bank operates into the prefixed values of state of charge to ensure their safe operation. The EMS provides the switching control of the switches that link the plant components and decides on the loads' operation. The simulation of the system using measured climatic data of Mostoles (Madrid, Spain) shows that the proposed EMS fulfills the designed objectives.


Assuntos
Fontes de Energia Elétrica , Centrais Elétricas , Simulação por Computador , Eletricidade , Espanha
2.
Opt Lett ; 47(2): 417-420, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030623

RESUMO

An electrical characterization approach with a newly, to the best of our knowledge, defined electrical anisotropy (η) was proposed to characterize and enhance the anisotropy signals of DNA molecules. This approach utilizes L-shaped aluminum gratings on a gallium nitride PiN electronic sensor system to adjust and improve the η signals. Using this approach, the η signals of DNA molecules can be adjusted more easily and efficiently by changing the electrical parameters of the sensor. For instance, the η modes of DNA were enhanced more than 22 times with the change of the incident power and the reverse bias voltage of the PiN structure.


Assuntos
DNA , Eletrônica , Anisotropia , DNA/genética , Eletricidade
3.
Food Chem ; 368: 130809, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34450498

RESUMO

Cold plasma processing is a technique that uses electricity and reactive carrier gases, such as oxygen, nitrogen, or helium, to inactivate enzymes, destroy microorganisms, preserve food, and maintain quality without employing chemical antimicrobial agents.The review collates the latest information on the interaction mechanism and impact of non-thermal plasma, as an emerging processing technology, on selected physical properties, low-molecular-weight functional components, and bioactive properties of food. Significant changes observed in the physicochemical and functional properties. For example, changes in pH, total soluble solids, water and oil absorption capacities, sensory properties such as color, aroma, and texture, bioactive components (e.g., polyphenols, flavonoids, and antioxidants), and food enzymes, antinutrients, and allergens were elaborated in the present manuscript. It was highlighted that the plasma reactive species result in both constructive and antagonistic outcomes on specific food components, and the associated mechanism was different in each case. However, the design's versatility, characteristic non-thermal nature, better economic standards, and safer environmental factors offer matchless benefits for cold plasma over conventional processing methods. Even so, a thorough insight on the impact of cold plasma on functional and bioactive food constituents is still a subject of imminent research and is imperative for its broad recognition as a modern non-conventional processing technique.


Assuntos
Gases em Plasma , Alérgenos , Eletricidade , Alimentos , Manipulação de Alimentos
4.
Chemosphere ; 287(Pt 4): 132439, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34606889

RESUMO

The rising global population and their food habits result in food wastage and cause an obstacle in its treatment and disposal. Due to the rapid shift in the lifestyle of the human population and urbanization, almost one-third of the food produced is wasted from various sectors like domestic sources, agricultural sectors, and industrial sectors. These food resources squandered are rich in organic biomolecules which can cause complications upon direct disposal in the environment. Conventional disposal methods like composting, landfills and incineration demand high costs besides causing severe environmental and health issues. To overcome these demerits of the conventional methods and to avoid the loss of rich organic food resources, there is an immediate need for a sustainable and eco-friendly solution for the valorization of the food wastes. Microbial fuel cells (MFCs) are gaining attention, due to their ideal approach in the production of electricity and parallel treatment of organic food wastes. The MFCs are significant as an innovative approach using microorganisms and oxidizing the organic food wastes into bio-electricity. In this review, the recent advancements and practices of the MFCs in the field of food waste treatment and management along with electricity production are discussed. The major outcome of this work highlights the setting up of MFC for the treatment of higher volumes of food waste residues and enhancing the bioelectricity production in an optimal condition. For further improvements in the food waste treatments using MFCs, greater understanding and more research needs are to be focused on the commercialization, different operational modes, operational types, and low-cost fabrication coupled with careful examination of scale-up factors.


Assuntos
Fontes de Energia Bioelétrica , Eliminação de Resíduos , Eletricidade , Eletrodos , Alimentos , Humanos , Incineração
5.
J Environ Manage ; 301: 113890, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624576

RESUMO

Universal energy access is one of the targets of the Sustainable Development Goals (SDGs), and thus the deployment of electricity grids is expected to expand globally in the coming decades. However, the installation of power lines is not biodiversity-friendly. In particular, electrocution on power pylons is a major cause of bird mortality worldwide, including for some severely endangered species. Over the last decades, different studies have improved our understanding of the factors influencing the risk of electrocution in birds, but until now spatial gaps in our knowledge of these impacts and the factors driving global patterns of bird electrocution have not been assessed. In this study, we evaluated data from a total of 114 studies that provided information on bird mortality rates on power lines, and we analyzed the factors driving electrocution rates for all bird species, and then for all raptors and large eagles separately. Our results showed a high spatial distribution bias, as more than 80% of the studies were carried out in developed countries, mostly in Europe and North America. By contrast, no systematic studies have been found for Oceania and very few for South America and Africa. Europe showed the highest electrocution rates for birds, South America for raptor species and Africa for eagles. Socio-economic factors best-explained bird and raptor electrocution rates, while climate-related factors were the most influential for eagles. Contrary to our expectations, factors related to pylon design were the least influential on overall electrocution rates. Variables related to study design showed highly variable levels of influence. This could be due to the lack of standardized protocols. Although bird electrocution has been extensively studied, there are large areas where no studies have been carried out or for which data are inaccessible. This could be because in these areas the power distribution network is still sparse, or that most studies are not public or accessible to the international community. Researchers and managers should promote the publication of studies, as awareness is the first step to solving these problems. The factors identified could be applied globally to the design and planning of power grids and the identification of mortality hotspots. This would help mitigate the creation of new mortality hotspots, especially in developing countries where the installation of new power lines has been growing exponentially in recent years.


Assuntos
Aves , Espécies em Perigo de Extinção , Animais , Biodiversidade , Eletricidade , Europa (Continente)
6.
J Environ Manage ; 301: 113832, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624578

RESUMO

Biomass-fuelled Combined Heat and Power Generation (CHP) systems can efficiently convert chemical energy contained in biomass into electricity and heat. Currently there is a large number of abandoned forests and biomass of agroforestry origin that is not being used. The use of residual biomass as a source of energy in CHP systems is presented as a particularly attractive alternative for energy obtention. This paper presents the results of a biomass boiler coupled to an Organic Rankine Cycle (ORC). Three residual biomasses, named pruning vine, pruning kiwi and gorse have been selected due to their potentiality and availability in the Galicia-North Portugal Euroregion. For this purpose, micro-cogeneration tests at bench scale were performed, based fundamentally on varying dissipation conditions in the low-grade temperature range (below 100 °C). Micro-cogeneration performance was assessed based on the electrical power and efficiency obtained, along with the global efficiency achieved (electrical plus thermal). Combustion measurements comprised gaseous emissions analyses and determination of the efficiency of the process. Micro-cogeneration results obtained show that differences in temperature between the hot and the cold source have a significant influence. The higher the temperature difference, the higher the electrical power and efficiency, as well as the higher global performance obtained, with values close to the maximum of the ORC employed (i.e 4 kWe, 9% and 96% respectively). Thus, the technical feasibility of the system to simultaneously obtain heat and electricity from low grade heat sources in small-scale applications was demonstrated. Regarding to combustion, parameters regulated by European emission standards are under the limits using the biofuels (residual biomasses) studied. Thereby, the suitability of those biomasses in thermochemical valorization processes was demostrated.


Assuntos
Biocombustíveis , Temperatura Alta , Biomassa , Eletricidade , Temperatura
7.
Environ Pollut ; 292(Pt A): 118357, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653583

RESUMO

Electric and magnetic fields characterized by high efficiency, low consumption and environment-friendly performance have recently generated interest as a possible measure to enhance the performance of the biological treatment process used to remove refractory organics. Few studies have been carried out to-date regarding the simultaneous application of electric and magnetic fields on biofilm process to degrade diclofenac. In this study, 3DEM-BAF was designed to evaluate the electrio-magnetic superposition effect on diclofenac removal performance, kinetics, community structure and synergistic mechanism. The results show that 3DEM-BAF could significantly increase the average removal rate of diclofenac by 65.30 %, 57.46 %, 9.48 % as compared with that of BAF, 3DM-BAF, 3DE-BAF, respectively. The diclofenac degradation kinetic constants and dehydrogenase activity of 3DEM-BAF were almost 6.72 and 2.53 times higher than those of BAF. Microorganisms of 3DEM-BAF in the Methylophilus and Methyloversatilis genera were distinctively enriched, which was attributed to the screening function of electric field and propagation effect of magnetic field. Moreover, three processes were found to contribute to diclofenac degradation, namely electro-magnetic-adsorption, electro-chemical oxidation and electro-magnetic-biodegradation. Thus, the simultaneous application of electric and magnetic fields on biofilm process was demonstrated to be a promising technique as well as a viable alternative in diclofenac degradation enhancement.


Assuntos
Biodegradação Ambiental , Diclofenaco , Campos Eletromagnéticos , Eletricidade , Cinética , Águas Residuárias , Poluentes Químicos da Água/análise
8.
J Environ Sci (China) ; 111: 292-300, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949359

RESUMO

The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%-80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.


Assuntos
Membranas Artificiais , Purificação da Água , Eletricidade , Compostos Orgânicos , Ultrafiltração
9.
J Hazard Mater ; 424(Pt A): 127358, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34879559

RESUMO

Sulfide oxidizing bacteria (SOB) are widely applied in industry to convert toxic H2S into elemental sulfur. Haloalkaliphilic planktonic SOB can remove sulfide from solution under anaerobic conditions (SOB are 'charged'), and release electrons at an electrode (discharge of SOB). The effect of this electron shuttling on product formation and biomass growth is not known. Here, we study and demonstrate a continuous process in which SOB remove sulfide from solution in an anaerobic 'uptake chamber', and shuttle these electrons to the anode of an electrochemical cell, in the absence of dissolved sulfide. Two experiments over 31 and 41 days were performed. At a sulfide loading rate of 1.1 mmolS/day, electricity was produced continuously (3 A/m2) without dissolved sulfide in the anolyte. The main end product was sulfate (56% in experiment 1% and 78% in experiment 2), and 87% and 77% of the electrons in sulfide were recovered as electricity. It was found that the current density was dependent on the sulfide loading rate and not on the anode potential. Biological growth occurred, mainly at the anode as biofilm, in which the deltaproteobacterial genus Desulfurivibrio was dominating. Our results demonstrate a novel strategy to produce electricity from sulfide in an electrochemical system.


Assuntos
Elétrons , Sulfeto de Hidrogênio , Bactérias , Reatores Biológicos , Eletricidade , Oxirredução , Sulfetos
10.
Bioresour Technol ; 344(Pt B): 126189, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748975

RESUMO

A coupled process of biomass pretreatment for increasing cellulose digestibility and direct conversion of biomass to electricity has been developed with ferric or ferricyanide ions as the anode electron carriers, and Fe(NO3)3 activated by HNO3 as the cathode electron carriers. Pretreated substrates are subjected to enzymatic hydrolysis for release of fermentable sugars, while the pretreatment liquor is employed as anolyte for electricity generation in a liquid flow fuel cell (LFFC). Pretreatment of sugarcane bagasse with 2 M FeCl3 in anode reactor removes âˆ¼ 100% hemicelluloses and obtains 76% enzymatic glucan conversion (EGC), while pretreatment with 0.1 M K3[Fe(CN)6] in 0.5 M KOH achieves 78% lignin removal, 95.8% EGC and 85.1% xylan conversion. From 1000 g bagasse, 171.3 g fermentable sugars is produced with co-generation of 101.4 W·h electricity based on FeCl3 pretreatment, while 519 g fermentable sugars and 28.9 W·h electricity are obtained based on K3[Fe(CN)6] pretreatment.


Assuntos
Lignina , Saccharum , Biomassa , Eletricidade , Elétrons , Hidrólise , Íons , Ferro
11.
Biochim Biophys Acta Biomembr ; 1864(1): 183811, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34744023

RESUMO

Bipolar cancellation is the phenomenon in which the permeability of cell membranes subjected to high intensity short pulsed electric field (ns-µs range) is reduced or eliminated when the system is subjected to bipolar instead of monopolar pulses. Although several studies have tried to explain bipolar cancellation, the underlying mechanisms remain unclear. Very few articles study bipolar cancellation by means of molecular dynamics (MD) simulation. In this paper, we investigated the molecular mechanisms underlying the difference in electroporation induced by bipolar and monopolar picosecond electric pulses (EPs) using MD simulation. The electric field gradients and electric forces on water molecules of the two pulses were analyzed in detail for the first time. For a certain pulse width, when the field intensity is relatively small, the direction of bipolar electric force on the interfacial water molecule reverses as the bipolar EPs reverse, while the electric force on interfacial water molecules of the cathode side remains in the same direction as that of applied monopolar EPs. The bipolar electric force reversal delays the water protrusion and increases the pore formation time. Therefore, this phenomenon could correspond to bipolar cancellation. When the field intensity is relatively large, although the bipolar electric force direction still reverses, half of the total time of the monopolar EPs has no electric fields. The electric forces of monopolar no-field half-cycles are much smaller than those of the bipolar EPs. Therefore, the pore formation time of bipolar EPs reduces, and this phenomenon is called bipolar enhancement. The occurrence of bipolar cancellation or bipolar enhancement depends on conditions such as the width and intensity of the pulse.


Assuntos
Permeabilidade da Membrana Celular/efeitos da radiação , Eletroporação , Água/química , Membrana Celular , Eletricidade/efeitos adversos , Eletrodos , Simulação de Dinâmica Molecular
12.
Sci Total Environ ; 811: 152240, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34896145

RESUMO

Herein pyrolysis, torrefaction and hydrothermal carbonization of olive tree pruning were compared from an economic perspective. For this economic comparison a hypothetical industrial plant of 1250 kg/h of capacity was selected, and the profitability analysis was performed through the discounted cash flow method. A baseline scenario was defined, which serves for basis of later comparison. Results show that under these circumstances, none of the alternatives are profitable, with net present values between -37 M€ and -45 M€. Therefore, different scenarios were studied regarding either the reduction of the associate costs or the improvement of the revenues to analyze the negative economic outputs obtained in the baseline scenario. From the revenues side, breakeven prices for the different solid products between 1.14 and 1.35 €/kg are needed to reach profitability. To reach such values, either subsidies from governments or greater selling product prices are required. When examining the associated costs share, the energy consumption is the main cost factor (representing between 70 and 90% of the total, depending on the technology). This means that a variation on the rest of the parameters will not significantly affect the overall performance. Covering the total investment needed for the plants would still present negative net present values (around -34 M€ for the three alternatives). Similarly, even if the price of electricity could be reduced to 0.02 €/kWh, none of the alternatives would reach profitability. This study reveals the importance of finding economic solutions to evolve towards circular economy societies.


Assuntos
Olea , Pirólise , Biomassa , Eletricidade
13.
Sci Total Environ ; 811: 152415, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34923006

RESUMO

Electric field-assisted aerobic composting (EAC) has been recently believed as a novel and effective process for the resource utilization of organic solid waste. However, the effect of electric field in composting process needs to be further clarified. Herein, moisture migration and compost maturity along electric-field-direction (from anode to cathode) in EAC was first to be explored. It was found that moisture content and compost maturity changed regularly from anode to cathode. At the end of composting, the moisture content of S3 (cathodic zone) was 30% and 62% higher than that of S2 (middle zone) and S1 (anodic zone), respectively. The germination index (a key parameter for compost maturity) in S3 (138.92%) was significantly higher than that of S2 (104.98%) and S1 (84.45%). However, temperatures in S3 were lower than that of S1 and S2, indicating the moisture content played a more important role than temperature for compost maturity in EAC. Furthermore, the microbial activities in S3 were also higher than that of S1 and S2, supporting the trend of compost maturity. This pioneering study demonstrates the electric field can drive moisture gradient migration to control the directional differentiation of compost maturity, showing a great application potential in aerobic composting.


Assuntos
Compostagem , Eletricidade , Solo , Resíduos Sólidos , Temperatura
14.
Soft Matter ; 18(3): 609-616, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34929022

RESUMO

The heart beating phenomenon of room temperature liquid metal (LM) mercury has attracted much attention in the past years, but its research and application are limited because of the low vapor pressure and high toxicity. Here, a fundamental scientific finding is reported that the non-toxic eutectic gallium indium (EGaIn) alloy droplets beat periodically at a certain frequency based on a floating electrode under the stimulation of the direct current (DC) field. The essential characteristics of heart beating are the displacement and the projected area change of the LM droplet. The mechanism of this phenomenon is the self-regulation of interfacial tension caused by chemical oxidation, chemical corrosion, and continuous electrowetting. In this article, a series of experiments are also carried out to examine the effects of different factors on the heartbeat, such as voltage, the volume of the droplet, the droplet immersion depth, the electrolyte solution concentration, the distance of electrodes, and the type of floating electrode. Finally, the heartbeat state and application boundary of the LM droplet under different conditions are summarized by imitating the human life process. The periodic changes of the LM droplet under an external DC electric field provide a new method to simulate the beating of the heart artificially, and can be applied to the research of organ chip fluid pumping in the future.


Assuntos
Eletroumectação , Gálio , Eletricidade , Eletrodos , Frequência Cardíaca , Humanos
15.
Chemosphere ; 286(Pt 1): 131619, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34346343

RESUMO

For wastewater treatment, sediment microbial fuel cells (SMFCs) have advantages over traditional microbial fuel cells in cost (due to their membrane-less structure) and operation (less intensive maintenance). Nevertheless, the technical obstacles of SMFCs include their high internal electrical resistance due to sediment in the anode chamber and slow oxygen reduction reaction (ORR) in the cathode chamber, which is responsible for their low power density (PD) (0.2-50 mW/m2). This study evaluated several SMFC improvements, including anode and cathode chamber amendment, electrode selection, and scaling the chamber size up to obtain optimally constructed single-chamber SMFCs to treat fat, oil, and grease (FOG) trap effluent. The chemical oxygen demand (COD) removal efficiency, PD, and electrical energy conversion efficiency concerning theoretically available chemical energy from FOG trap effluent treatment (%ECWW) were examined. Packing biochar in the anode chamber reduced its electrical resistance by 5.76 times, but the improvement in PD was trivial. Substantial improvement occurred when packing the cathode chamber with activated carbon (AC), which presumably catalyzed the ORR, yielding a maximum PD of 109.39 mW/m2, 959 times greater than without AC in the cathode chamber. This SMFC configuration resulted in a COD removal efficiency of 85.80 % and a %ECWW of 99.74 % in 30 days. Furthermore, using the most appropriate electrode pair and chamber volume increased the maximum PD to 1787.26 mW/m2, around 1.7 times greater than the maximum PD by SMFCs reported thus far. This optimally constructed SMFC is low cost and applicable for household wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Hidrocarbonetos
16.
Chemosphere ; 286(Pt 1): 131657, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34351279

RESUMO

The photocatalytic fuel cell (PFC) is a promising energy conversion technology for effective solar energy utilization, wastewater treatment, and electricity generation by photoelectrochemical reactions. Nevertheless, the discharging current output and stability of the PFC are still plagued by the low photoelectron conversion efficiency and time-varying light intensity, respectively. Herein, we integrated a RuO2 capacitive layer and a TiO2 photocatalytic layer into a capacitive photoanode, finally designing a PFC with the capacitive photoanode. Not only can the successful integration of the capacitive layer augment the discharging current, but it can also balance the solar intensity fluctuation by the ability of electron storage. The capacitive photoanode showed a high areal capacitance of 1040.7 mFcm-2 at a current density of 0.5 mAcm-2, was continuously charged and discharged for 1000 cycles, and maintained 87 % of the original capacitance after cycles. The superior rate capability, high capacitance, and good cycle performance of the capacitive photoanode originate from the "crack mud" structure in the capacitive layer. The discharging current of the capacitive photoanode was 32.0 mAcm-2 under one sun illumination, and the electrochemical performance of the capacitive photoanode was better than that of the conventional TiO2 photoanode. The capacitive photoanode PFC possessed a maximum short-circuit current of 300.0 µA⋅cm-2 at the beginning of discharge, which is independent of the light intensity. The capacitive photoanode PFC adopts a new working mode and provides a unique solution for the practical application of PFC.


Assuntos
Energia Solar , Purificação da Água , Eletricidade , Eletrodos , Luz
17.
Chemosphere ; 286(Pt 2): 131732, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34364227

RESUMO

This study used a response surface method to develop a deoxidizing anode, which was introduced into microbial fuel cells (MFCs) to treat isopropanol (IPA) wastewater and waste gas. By embedding a deoxidizing agent (DA) into the anode of MFCs, a hypoxic environment can be created to enable anaerobic electrogens to be effectively attached to the anode surface and grow. Consequently, MFC power generation performance can be enhanced. The optimal coke and conductive carbon black ratio of an anode and percentage of DA added were 3.61 g/g and 3.15 %, respectively. The research design concurrently achieved the maximum deoxygenation efficiency (0.86 mg O2/bead), minimum disintegration ratio (3.51 %), and minimum resistance (30.2 Ω). The regression model had high prediction power (R2 > 0.93) for anode performance. As determined through multi-objective optimization, the results highly satisfied the target expectation (desirability = 0.82). The optimized deoxidizing anode was filled into an air-cathode MFC, which had a higher IPA removal efficiency (1.15-fold) and voltage output (1.24-fold) than an MFC filled with coke. The results for the trickling-bed MFC filled with a deoxidizing anode revealed that when the inlet concentration was 0.74 g/m3, the voltage output and power density were highest at 416.3 mV and 486.6 mW/m3, respectively. The deoxidizing anode developed has the potential to increase the MFC voltage output and the pollutant removal.


Assuntos
Fontes de Energia Bioelétrica , 2-Propanol , Eletricidade , Eletrodos , Águas Residuárias
18.
Chemosphere ; 286(Pt 3): 131856, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34399268

RESUMO

The development in urbanization, growth in industrialization and deficiency in crude oil wealth has made to focus more for the renewable and also sustainable spotless energy resources. In the past two decades, the concepts of microbial fuel cell have caught more considerations among the scientific societies for the probability of converting, organic waste materials into bio-energy using microorganisms catalyzed anode, and enzymatic/microbial/abiotic/biotic cathode electro-chemical reactions. The added benefit with MFCs technology for waste water treatment is numerous bio-centered processes are available such as sulfate removal, denitrification, nitrification, removal of chemical oxygen demand and biological oxygen demand and heavy metals removal can be performed in the same MFC designed systems. The various factors intricate in MFC concepts in the direction of bioenergy production consists of maximum coulombic efficiency, power density and also the rate of removal of chemical oxygen demand which calculates the efficacy of the MFC unit. Even though the efficacy of MFCs in bioenergy production was initially quietly low, therefore to overcome these issues few modifications are incorporated in design and components of the MFC units, thereby functioning of the MFC unit have improvised the rate of bioenergy production to a substantial level by this means empowering application of MFC technology in numerous sectors including carbon capture, bio-hydrogen production, bioremediation, biosensors, desalination, and wastewater treatment. The present article reviews about the microbial community, types of substrates and information about the several designs of MFCs in an endeavor to get the better of practical difficulties of the MFC technology.


Assuntos
Fontes de Energia Bioelétrica , Microbiota , Análise da Demanda Biológica de Oxigênio , Eletricidade , Eletrodos , Elétrons , Águas Residuárias
19.
Chemosphere ; 288(Pt 1): 132386, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34606888

RESUMO

The rapid growth in population has increased the demand for potable water. Available technologies for its generation are the desalination of sea water through reverse osmosis, electrodialysis etc., which are energy and cost intensive. In this context, microbial desalination cell (MDC) presents a low-cost and sustainable option which can simultaneously treat wastewater, desalinate saline water, produce electrical energy and recover nutrients from wastewater. This review paper is focussed on presenting a detailed analysis of MDCs starting from the principle of operation, microbial community analysis, basic architecture, evolution in design, operational challenges, effect of process parameters, scale-up studies, application in multiple arenas and future prospects. After thorough review, it can be inferred that MDCs can be used as a stand-alone option or pre-treatment step for conventional desalination techniques without the application of external energy. MDCs have been used in multiple applications ranging from desalination, remediation of contaminated water, recovery of energy and nutrients from wastewater, softening of hardwater, biohydrogen production to degradation of waste engine oil. Although, MDCs have been used for multiple applications, still a number of operational challenges have been reported viz., interference of co-existing ions during desalination, membrane fouling, pH imbalance and limited potential of exoelectrogens. However, the re-circulation of anolytes with electrodialysis chamber has led to the maintenance of optimal pH for favourable microbial growth leading to improvement in the overall performance of MDCs. In future, genetic engineering may be used for improving the electrogenic activity of microbial community, next generation materials may be used as anode and cathode, varied sources of wastewater may be explored as anolytes, life cycle analysis and exergy analysis may be carried out to study the impact on environment and detailed pilot scale studies have to be carried out for assessing the feasibility of operation at large scale.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Salinidade , Água do Mar , Águas Residuárias
20.
J Colloid Interface Sci ; 608(Pt 1): 564-574, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626996

RESUMO

Many-body forces play a prominent role in structure and dynamics of matter, but their role is not well understood in many cases due to experimental challenges. Here, we demonstrate that a novel experimental system based on rotating electric fields can be utilised to deliver unprecedented degree of control over many-body interactions between colloidal silica particles in water. We further show that we can decompose interparticle interactions explicitly into the leading terms and study their specific effects on phase behaviour. We found that three-body interactions exert critical influence over the phase diagram domain boundaries, including liquid-gas binodal, critical and triple points. Phase transitions are shown to be reversible and fully controlled by the magnitude of external rotating electric field governing the tunable interactions. Our results demonstrate that colloidal systems in rotating electric fields are a unique laboratory to study the role of many-body interactions in physics of phase transitions and in applications, such as self-assembly, offering exciting opportunities for studying generic phenomena inherent to liquids and solids, from atomic to protein and colloidal systems.


Assuntos
Coloides , Laboratórios , Eletricidade , Transição de Fase , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA