Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270.843
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Hazard Mater ; 421: 126723, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34325294

RESUMO

Environmental cadmium, with a high dietary intake and long biological half-life, is a severe health risk by harming physiological function directly or through gut microbiota. However, the toxicity mechanisms of environmental cadmium on microbes and host systems remain unclear. Herein, we established three C. elegans and E. coli cultivated systems to investigate the vital role of microorganisms in cadmium-induced lipid toxicity and depict the interaction between environmental cadmium, bacteria, and the host. We found that only nematodes in the system with live bacteria, rather than UV-killed bacteria or no bacteria, could be induced to fat accumulation by cadmium exposure, suggesting that bacteria mediated the effect of environmental cadmium on body fat. Cadmium caused perturbation of metabolite in bacteria, most notably oleic acid, elevated the synthesis genes expression, and enhanced the bacterial oleic acid production, which further promoted the expression of lipid metabolism-related genes and fat deposition in C. elegans regardless of the cultivated system. Finally, we showed the potential protective effect of Vitamin D3 which prevented cadmium- or oleic acid-induced fat storage significantly. In conclusion, this study illustrates the mechanism underlying cadmium-induced lipid accumulation in body through bacterial metabolites and reveals the interplay between environmental cadmium, microorganisms, and the host.


Assuntos
Cádmio , Caenorhabditis elegans , Animais , Bactérias/genética , Cádmio/toxicidade , Escherichia coli , Ácido Oleico
2.
Chemosphere ; 287(Pt 2): 132131, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34492413

RESUMO

Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Cobre , Escherichia coli , Troca Iônica , Testes de Sensibilidade Microbiana , Prata/farmacologia , Staphylococcus aureus
3.
Chemosphere ; 287(Pt 2): 132137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34496335

RESUMO

Uranium extraction and recovery play a critical role in guaranteeing the sustainable nuclear energy supply and protecting the environmental safety. The ideal uranium sorbents possess high adsorption capacity, excellent selectivity and reusability, as well as outstanding antimicrobial property, which are greatly desired for the real application of uranium extraction from seawater. To address this challenge, a novel magnetic core-shell adsorbent was designed and fabricated by a facile method. The obtained amidoximed Fe3O4@TiO2 particles (Fe3O4@TiO2-AO) achieved equilibrium in 2 h and the maximum adsorption capacity calculated from Langmuir model is 217.0 mg/g. The adsorption kinetics followed the pseudo-second-order model. Meanwhile, the Fe3O4@TiO2-AO exhibited great selectivity when competitive metal ions and anions coexisted. In addition, the magnetic Fe3O4@TiO2-AO could be conveniently separated and collected by an external magnetic field, the regeneration efficiency maintained at 78.5% even after ten adsorption-desorption cycles. In natural seawater, the uranium uptake reached 87.5 µg/g in 33 days. Furthermore, the TiO2 contained adsorbent showed effective photo induced bactericidal properties against both E. coli and S. aureus. The Fe3O4@TiO2-AO with great U(VI) adsorption performance is highly promising in uranium extraction and reclamation.


Assuntos
Urânio , Adsorção , Antibacterianos , Escherichia coli , Oximas , Água do Mar , Staphylococcus aureus , Titânio
4.
Chemosphere ; 287(Pt 3): 132271, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34547560

RESUMO

In this study, novel biogenic silver (AgNPs) and gold nanoparticles (AuNPs) were developed using a green approach with Ganoderma lucidum (GL) extract. The optimization of synthesis conditions for the best outcomes was conducted. The prepared materials were characterized and their applicability in catalysis, antibacterial and chemical sensing was comprehensively evaluated. The GL-AgNPs crystals were formed in a spherical shape with an average diameter of 50 nm, while GL-AuNPs exhibited multi-shaped structures with sizes ranging from 15 to 40 nm. As a catalyst, the synthesized nanoparticles showed excellent catalytic activity (>98% in 9 min) and reusability (>95% after five recycles) in converting 4-nitrophenol to 4-aminophenol. As an antimicrobial agent, GL-AuNPs were low effective in inhibiting the growth of bacteria, while GL-AgNPs expressed strong antibacterial activity against all the tested strains. The highest growth inhibition activity of GL-AgNPs was observed against B. subtilis (14.58 ± 0.35 mm), followed by B. cereus (13.8 ± 0.52 mm), P. aeruginosa (12.38 ± 0.64 mm), E. coli (11.3 ± 0.72 mm), and S. aureus (10.41 ± 0.31 mm). Besides, GL-AgNPs also demonstrated high selectivity and sensitivity in the colorimetric detection of Fe3+ in aqueous solution with a detection limit of 1.85 nM. Due to the suitable thickness of the protective organic layer and the appropriate particle size, GL-AgNPs validated the triple role as a high-performance catalyst, antimicrobial agent, and nanosensor for environmental monitoring and remediation.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Antibacterianos/farmacologia , Catálise , Colorimetria , Escherichia coli , Compostos Férricos , Ouro , Química Verde , Íons , Testes de Sensibilidade Microbiana , Extratos Vegetais , Prata , Staphylococcus aureus
5.
Chemosphere ; 287(Pt 3): 132334, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563766

RESUMO

In previous works, a low-cost predisinfection column that combined coagulation-flocculation and GAC filtration was proposed for combination with electrodisinfection in the successful treatment of highly faecal polluted surface water. In this work, this column is adapted for the treatment of pore water by transforming the coagulation chamber into a chemical reactor with lime and replacing the GAC of the filter with ion exchange resins. This adapted system can soften water, remove nitrate and condition water for very efficient electrochemical disinfection, where 4 logs and 3 logs in the removal of E. coli and P. aeruginosa, respectively, were reached using commercial electrochemical cells, i.e., CabECO ® or MIKROZON®. The availability and low cost of the technology are strong points for usage in poor areas of developing countries.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfecção , Escherichia coli , Filtração , Poluentes Químicos da Água/análise
6.
Food Chem ; 371: 131130, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34583179

RESUMO

A quinoline-naphthalene duo-based Schiff base probe (R) was synthesized and characterized by the usual spectroscopic and single-crystal X-ray crystallographic techniques. Probe R detects Al3+ and HSO3- ions via the fluorescent turn-on approach by dual pathways i.e., i) when probe R interacts with Al3+, the restriction of CN single bond rotation, blocking of both photoinduced electron transfer (PET) and CN isomerization were observed, and ii) when the sensor R interacts with HSO3-, imine (CH = N) bond was cleaved via hydrolysis and produced the respective aldehyde and amine behaving as a chemodosimeter. The binding stoichiometric ratio of R + Al3+ (1:1) was confirmed by Job's plot, emission titration profile, NMR, and mass spectrometric analyses. This probe R is highly selective to both Al3+ -ions and HSO3- -ions, without any interference of other potentially competing cations and anions. Limit of detection (LOD) and quantification (LOQ) of R with Al3+ and HSO3- were downed to nanomolar concentrations, which is much lower than the recommended level of drinking water/food fixed by the World Health Organization (WHO). Furthermore, probe R was utilized in the detection of Al3+ and HSO3- ions in highly contaminated real samples, bioimaging in E. coli cells, multiple-targeting molecular logic gate, and in bovine serum albumin (BSA) binding.


Assuntos
Alumínio , Quinolinas , Cátions , Escherichia coli , Corantes Fluorescentes , Naftalenos , Espectrometria de Fluorescência , Sulfitos
7.
Environ Pollut ; 292(Pt B): 118406, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34710519

RESUMO

Antimicrobial resistance (AMR) is a serious problem for public and animal health, and also for the environment. Monitoring and reporting the occurrence of AMR determinants and bacteria with the potential to disseminate is a priority for health surveillance programs around the world and critical to the One Health concept. Wildlife is a reservoir of AMR, and human activities can strongly influence their resistome. The main goal of this work was to study the resistome of wild boar faecal microbiome, one of the most important game species in Europe using metagenomic and culturing approaches. The most abundant genes identified by the high-throughput qPCR array encode mobile genetic elements, including integrons, which can promote the dissemination of AMR determinants. A diverse set of genes (n = 62) conferring resistance to several classes of antibiotics (ARGs), some of them included in the WHO list of critically important antimicrobials were also detected. The most abundant ARGs confer resistance to tetracyclines and aminoglycosides. The phenotypic resistance of E. coli and Enterococcus spp. were also investigated, and together supported the metagenomic results. As the wild boar is an omnivorous animal, it can be a disseminator of AMR bacteria and ARGs to livestock, humans, and the environment. This study supports that wild boar can be a key sentinel species in ecosystems surveillance and should be included in National Action Plans to fight AMR, adopting a One Health approach.


Assuntos
Microbiota , Sus scrofa , Animais , Antibacterianos , Escherichia coli , Fezes , Genes Bacterianos , Humanos , Suínos
8.
Theriogenology ; 177: 103-115, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688970

RESUMO

The neonatal period in dogs remains associated with high mortality rates. Sepsis is the main cause of neonatal losses during the first three weeks of life. Additionally, failure in the clinical assessment and early diagnosis of sick newborns is still common, leading to inadequate care, which contributes to a high mortality rate. Thus, the objective of this study was to describe the incidence of sepsis in canine newborns, the clinical aspects involved, the main isolated bacterial agents and mortality rates to facilitate clinicians' early recognition of this condition. Of the 152 litters and 762 neonates evaluated, 14.8% (113/762) had sepsis or septic shock, and the mortality rate among affected puppies was 25.6% (29/113). Among the puppies with sepsis that died, early mortality (0-2 days of age) occurred in 69% (20/29) of affected neonates, and late mortality (3-30 days of age) occurred in 31% (9/29) of affected neonates. Significant differences (p < 0.0001) in clinical parameters (heart and respiratory rates, blood glucose, body temperature, peripheral oxygen saturation and reflexes) were noted among healthy neonates and neonates with sepsis and septic shock. The main and most relevant clinical signs were apathy, a reduced sucking reflex, diarrhea, the neonatal triad, failure to gain weight, bradycardia, dyspnea, cyanotic mucous membranes, body erythema, reduced peripheral oxygen saturation, cyanosis and tissue necrosis in the extremities. The mother may have been the main source of infection for 87.6% (99/113) of neonates with sepsis. Most infections were transmitted during pregnancy (68%, 77/113) in cases of neonatal sepsis. The major source of infection for neonates was the uterus, followed by breast milk and maternal oropharyngeal secretions. The most frequently isolated bacterial agent was Escherichia coli, accounting for 25.6% (29/113) of sepsis cases. The morbidity and mortality of neonatal sepsis in dogs is high. The clinical evaluation and diagnosis of sepsis in neonates differ from those in adult animals. Thus, knowledge of the neonatal particularities of sepsis is essential for proper clinical management and greater survival of these patients.


Assuntos
Doenças do Cão , Sepse Neonatal , Sepse , Animais , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Cães , Escherichia coli , Feminino , Incidência , Sepse Neonatal/epidemiologia , Sepse Neonatal/veterinária , Gravidez , Sepse/epidemiologia , Sepse/veterinária
9.
J Colloid Interface Sci ; 607(Pt 2): 1825-1835, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34688975

RESUMO

Metal chalcogenides have been intensively investigated as antibacterial agents due to their unique structures and superior photoactivities. Herein, various structures of copper sulfide (CuS), a metal chalcogenide, such as microspheres (MSs), nanosheets (NSs), and nanoparticles (NPs), were developed in this work for antibacterial applications. A hydrothermal process was utilized to synthesize CuS MSs, CuS NSs, and CuS NPs. Under simulated solar light and near-infrared (NIR) light irradiation, the antibacterial behaviors, reactive oxygen species (ROS) production, and light-driven antibacterial mechanisms of CuS MSs, CuS NSs, and CuS NPs were demonstrated with the bacterium Escherichia coli (E. coli). Bacterial growth curves and ROS generation tests indicated that CuS NSs and CuS NPs had higher light-driven antibacterial activities than that of CuS MSs. ROS of hydroxyl (·OH) and superoxide anion radicals (O2-) were investigated via an electron spin resonance (ESR) spectroscopic analysis by respectively incubating CuS MSs, CuS NSs, and CuS NPs with E. coli under simulated solar light irradiation. Furthermore, E. coli incubated with CuS NPs and CuS NSs showed substantial bacterial degradation after NIR laser irradiation, which was attributed to their photothermal killing effects. Light-driven antibacterial mechanisms of CuS NSs and CuS NPs were investigated, and we discovered that under simulated solar and NIR light irradiation, CuS NSs and CuS NPs produced photoinduced electrons, and the copper ions and photoinduced electrons then reacted with atmospheric moisture to produce hydroxide and superoxide anion radicals and heat, resulting in bacterial mortality.


Assuntos
Cobre , Nanopartículas , Antibacterianos/farmacologia , Cobre/farmacologia , Escherichia coli , Sulfetos
10.
Chemosphere ; 286(Pt 2): 131720, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34364226

RESUMO

Hexafluoropropylene oxide dimer acid (HFPO-DA), an alternative of perfluorooctanoic acid (PFOA), has been detected frequently in environmental media worldwide. It has been reported that HFPO-DA is equal to or more toxic than PFOA, as well as more recalcitrant to degradation. In this study, the efficient degradation of HFPO-DA was achieved by the thermally activated persulfate (TAP) system, but the influence of co-contaminants in the field can be significant. The degradation pathways of HFPO-DA were proposed through an integrated approach of experiment and density functional theory (DFT) calculations. CF3CF2COO- and CF3COO-, were the stable intermediates identified by ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS). Electron transfer, decarboxylation, H abstraction, HF elimination using H2O as a catalyst and hydrolysis occurred in different steps of HFPO-DA degradation process, with -COO- as the initial oxidative site attacked by SO4-. In addition, the acute toxicity assessment for HFPO-DA degradation in the TAP system performed by Escherichia coli suggested that HFPO-DA was degraded to a level having no adverse effect on the growth of E. coli, and no more toxic intermediates were formed. Overall, this work provides insights for the degradation of HFPO-DA contamination by the TAP system.


Assuntos
Fluorcarbonetos , Óxidos , Escherichia coli , Oxirredução
11.
Ann Lab Med ; 42(2): 203-212, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635614

RESUMO

Background: Extraintestinal pathogenic Escherichia coli (ExPEC) causes various infections, including urinary tract infection (UTI), sepsis, and neonatal meningitis. ExPEC strains have virulence factors (VFs) that facilitate infection by allowing bacterial cells to migrate into and multiply within the host. We compared the microbiological characteristics of ExPEC isolates from blood and urine specimens from UTI patients. Methods: We conducted a single-center, prospective study in an 855-bed tertiary-care hospital in Korea. We consecutively recruited 80 hospitalized UTI patients with E. coli isolates, which were isolated from blood and/or urine, and urine alone between March 2019 and May 2020. We evaluated the 80 E. coli isolates for the presence of bacterial genes encoding the sequence types (STs), antimicrobial resistance, and VFs using whole-genome sequencing (WGS). Results: We found no significant differences in STs, antimicrobial resistance patterns, or VFs between isolates from blood and urine specimens. ST131, a pandemic multidrug-resistant clone present in both blood and urine, was the most frequent ST (N=19/80, 24%), and ST131 isolates carried more virulence genes, especially, tsh and espC, than non-ST131 isolates. The virulence scores of the ST131 group and the ST69, ST95, and ST1193 groups differed significantly (P<0.05). Conclusions: We found no STs and VFs associated with bacteremia in WGS data of E. coli isolates from UTI patients. ST131 was the most frequent ST among UTI causing isolates and carried more VF genes than non-ST131 isolates.


Assuntos
Bacteriemia , Infecções por Escherichia coli , Infecções Urinárias , Antibacterianos/farmacologia , Bacteriemia/diagnóstico , Escherichia coli/genética , Infecções por Escherichia coli/diagnóstico , Humanos , Estudos Prospectivos , Infecções Urinárias/diagnóstico , Fatores de Virulência/genética
12.
Sci Total Environ ; 802: 149798, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34454142

RESUMO

Rapid changes in microbial water quality in surface waters pose challenges for production of safe drinking water. If not treated to an acceptable level, microbial pathogens present in the drinking water can result in severe consequences for public health. The aim of this paper was to evaluate the suitability of data-driven models of different complexity for predicting the concentrations of E. coli in the river Göta älv at the water intake of the drinking water treatment plant in Gothenburg, Sweden. The objectives were to (i) assess how the complexity of the model affects the model performance; and (ii) identify relevant factors and assess their effect as predictors of E. coli levels. To forecast E. coli levels one day ahead, the data on laboratory measurements of E. coli and total coliforms, Colifast measurements of E. coli, water temperature, turbidity, precipitation, and water flow were used. The baseline approaches included Exponential Smoothing and ARIMA (Autoregressive Integrated Moving Average), which are commonly used univariate methods, and a naive baseline that used the previous observed value as its next prediction. Also, models common in the machine learning domain were included: LASSO (Least Absolute Shrinkage and Selection Operator) Regression and Random Forest, and a tool for optimising machine learning pipelines - TPOT (Tree-based Pipeline Optimization Tool). Also, a multivariate autoregressive model VAR (Vector Autoregression) was included. The models that included multiple predictors performed better than univariate models. Random Forest and TPOT resulted in higher performance but showed a tendency of overfitting. Water temperature, microbial concentrations upstream and at the water intake, and precipitation upstream were shown to be important predictors. Data-driven modelling enables water producers to interpret the measurements in the context of what concentrations can be expected based on the recent historic data, and thus identify unexplained deviations warranting further investigation of their origin.


Assuntos
Água Potável , Qualidade da Água , Monitoramento Ambiental , Escherichia coli , Microbiologia da Água
13.
J Colloid Interface Sci ; 606(Pt 2): 1284-1298, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492466

RESUMO

2D/2D heterojunction photocatalysts with excellent photocatalytic activity highlight considerable potential in water disinfection. Here, an oxidized Sb/g-C3N4 2D/2D nanosheets heterojunction (Sb-SbOx/CNS) was constructed based on a facile one-step liquid-phase exfoliation method using concentrated sulfuric acid. By doing so, bulk Sb and g-C3N4 were exfoliated simultaneously and then, intercalated each other. Compared with CNS and Sb-SbOx, the obtained Sb-SbOx/CNS demonstrated better photocatalytic disinfection activity towards Escherichia coli K-12 (E. coli K-12) under visible light irradiation. The 5% oxidized Sb/g-C3N4 2D/2D nanosheets heterojunction (5.0% Sb-SbOx/CNS) exhibited the best photocatalytic performance and admirable cycling stability, which was ascribed to the unique structure where the interfacial charge separation was strengthened by the strong coupling effect between Sb-SbOx and CNS. Meanwhile, the fundamental mechanism of photocatalytic disinfection was also proposed. The photogenerated ROS (reactive oxygen species) violently attacked the E. coli K-12 membrane, creating massive and irreparable holes on the cell membrane. The leakage of cations (K+, Na+, Ca2+ and Mg2+), adenosine triphosphate, total soluble sugar and protein accelerated the destruction of E. coli K-12. Trapping experiments suggested that the photocatalytic disinfection process against E. coli K-12 was dominated by h+ generated on 5.0% Sb-SbOx/CNS. This work offers a new promising way to modify the 2D/2D heterojunction featuring efficient photocatalytic disinfection performance.


Assuntos
Desinfecção , Escherichia coli K12 , Catálise , Escherichia coli , Luz
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120283, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34428635

RESUMO

In this work, we report in situ nonlinear microscopic images on plasmon-enhanced coherent anti-Stokes Raman scattering (CARS) and plasmon-Induced two-photon excited fluorescence (TPEF)of non-fluorescent microorganism. Our unique synthesized Au@Ag nanorods provide with two distinct surface-plasmon resonance (SPR) at 400 and 800 nm, respectively, which can efficiently induce linear fluorescence signals of E. coli but also enhance the nonlinear optical spectroscopy signals of TPEF, and coherent anti-Stokes Raman scattering (CARS) imaging of E. coli and S. aureus. Furthermore, calculations with complete active space self-consistent field (CASSCF) reveals the hot electrons of SPs can efficiently induce the biological fluorescence of non-fluorescent flavin nucleotides on the surface of E. coli. This novel mechanism is expected to guide the development and application of new microbial detection reagents. Gram-negative and Gram-positive bacteria can be well distinguished by nonlinear microscopic imaging of the CARS signal at 1589 cm-1. Benefit by the strong penetrability of non-linear optical signals, it is expected to realize in situ real-time detection and classification of pathogenic microbial infections in vivo.


Assuntos
Escherichia coli , Análise Espectral Raman , Fótons , Coloração e Rotulagem , Staphylococcus aureus
15.
Wiad Lek ; 74(9 cz 1): 2109-2111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34725285

RESUMO

OBJECTIVE: The aim: Study of antibacterial activity of the preparations, containing antiseptic dioxidine and antibiotic levofloxacin in vitro on standard strains of main optional-anaerobic pathogens of purulent-inflammatory processes of surgical wounds S. aureus, E. coli, P. aeruginosa and definition of more effective ones on them. PATIENTS AND METHODS: Materials and methods: Solutions of dioxidine 1.2 %, dioxidine 1.2% with decamethaxin, Dioxisole, water soluble ointment with dioxidine 1.2% and levofloxacin 0.1% with decamethaxin were used in experiment. Antibacterial activity was studied on standard strains of S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Distinguishing and identification of pure cultures of bacteria was done according to generally accepted microbiological methods. Determination of purulent-inflammatory processes pathogens sensitivity was done by disco-diffuse method on Mueller-Hinton medium. Antibacterial activity of solutions and ointments was studied with the help of agar diffusion method ("well" method) according to methodic recommendations. Each investigation was repeated 6 times. Method of variation statistics was used for the research results analysis. RESULTS: Results: All antibacterial preparations under study are effective and highly effective on S. aureus АТСС 25923, E. coli АТСС 25922, P. aeruginosa АТСС 27853. Solution with 1.2 % dioxidine with decamethaxin and ointment with 0.1 % levofloxacin and decamethaxin have larger growth retardation zones towards S. aureus and P. aeruginosa. E. coli strains are more sensitive to the solution of Dioxisole and ointment with 1.2 % dioxidine. CONCLUSION: Conclusions: All strains are sensitive, most of them are highly sensitive, up to 5 antibacterial preparations under study in vitro.


Assuntos
Levofloxacino , Staphylococcus aureus , Antibacterianos/farmacologia , Escherichia coli , Humanos , Levofloxacino/farmacologia , Quinoxalinas
16.
Environ Sci Technol ; 55(22): 15484-15494, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34730345

RESUMO

Arsenic (As) biomethylation is an important component of the As biogeochemical cycle, which produces methylarsenite [MAs(III)] as an intermediate product. Its high toxicity is used by some microbes as an antibiotic to kill off other microbes and gain a competitive advantage. Some aerobic microbes have evolved a detoxification mechanism to demethylate MAs(III) via the dioxygenase C-As lyase ArsI. How MAs(III) is demethylated under anoxic conditions is unclear. We found that nitrate addition to a flooded paddy soil enhanced MAs(III) demethylation. A facultative anaerobe Bacillus sp. CZDM1 isolated from the soil was able to demethylate MAs(III) under anoxic nitrate-reducing conditions. A putative C-As lyase gene (BcarsI) was identified in the genome of strain CZDM1. The expression of BcarsI in the As-sensitive Escherichia coli AW3110 conferred the bacterium the ability to demethylate MAs(III) under anoxic nitrate-reducing condition and enhanced its resistance to MAs(III). Both Bacillus sp. CZDM1 and E. coli AW3110 harboring BcarsI could not demethylate MAs(III) under fermentative conditions. Five conserved amino acid resides of cysteine, histidine, and glutamic acid are essential for MAs(III) demethylation under anoxic nitrate-reducing conditions. Putative arsI genes are widely present in denitrifying bacteria, with 75% of the sequenced genomes containing arsI, also possessing dissimilatory nitrate reductase genes narG or napA. These results reveal a novel mechanism in which MAs(III) is demethylated via ArsI by coupling to denitrification, and such a mechanism is likely to be common in an anoxic environment such as paddy soils and wetlands.


Assuntos
Antibacterianos , Solo , Desmetilação , Desnitrificação , Escherichia coli/genética
17.
Syst Appl Microbiol ; 44(6): 126276, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34735803

RESUMO

Planctomycetes of the family Gemmataceae are strictly aerobic chemo-organotrophs that display a number of hydrolytic capabilities. A member of this family, Telmatocola sphagniphila SP2T, is the first described planctomycete with experimentally proven ability for growth on cellulose. In this study, the complete genome sequence of strain SP2T was obtained and the genome-encoded determinants of its cellulolytic potential were analyzed. The T. sphagniphila SP2T genome was 6.59 Mb in size and contained over 5200 potential protein-coding genes. The search for enzymes that could be potentially involved in cellulose degradation identified a putative cellulase that contained a domain from the GH44 family of glycoside hydrolases. Homologous enzymes were also revealed in the genomes of two other Gemmataceae planctomycetes, Zavarzinella formosa A10T and Tuwongella immobilis MBLW1T. The gene encoding this predicted cellulase in strain SP2T was expressed in E. coli and the hydrolytic activity of the recombinant enzyme was confirmed in tests with carboxymethyl cellulose but not with crystalline cellulose, xylan, mannan or laminarin. This is the first experimentally characterized cellulolytic enzyme from planctomycetes.


Assuntos
Escherichia coli , Planctomycetales , Planctomycetales/genética
18.
Immunity ; 54(11): 2439-2441, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758333

RESUMO

In this issue of Immunity, Vega-Pérez et al. (2021) reveal the formation of a dynamic multicellular aggregate within a fibrin scaffold consisting of large peritoneal macrophages, B1 cells, neutrophils, and monocytes during antibacterial immunity in the peritoneum. Anticoagulants targeting thrombin or peritoneal macrophage depletion by clodronate impaired efficient control of E. coli infection.


Assuntos
Escherichia coli , Fibrina , Animais , Coagulação Sanguínea , Camundongos , Camundongos Endogâmicos C57BL , Monócitos
19.
J Agric Food Chem ; 69(46): 13881-13894, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34763421

RESUMO

Colanic acid has promising applications in food, cosmetic, and healthcare fields. In this study, a recombinant WQM003/pRAU was constructed by deleting genes lon and hns and overexpressing genes rcsA and galU in E. coli MG1655Δ(L-Q). After systematic optimization of fermentation conditions, colanic acid yield in WQM003/pRAU reached 19.79 g/L, the highest yield reported so far. The colanic acid produced by WQM003/pRAU was purified and its structure and physical properties were determined. This colanic acid shows a triple-helical structure and is stable up to 102 °C, and its melting temperature is 253.9 °C. This colanic acid shows a sphere-like chain conformation in aqueous solution. The viscosity of this colanic acid solution is related to concentration, shear rate, salt, temperature, and pH. At high concentrations, this colanic acid shows both viscous and elastic behaviors. These results suggest that the colanic acid produced by WQM003/pRAU has broad application prospects.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Polissacarídeos
20.
Front Cell Infect Microbiol ; 11: 781068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34778114

RESUMO

The molecular epidemiology and biological characteristics of Escherichia coli associated with hemorrhagic pneumonia (HP) mink from five Chinese Provinces were determined. From 2017 to 2019, 85 E. coli strains were identified from 115 lung samples of mink suffering from HP. These samples were subjected to serotyping, antimicrobial susceptibility, detection of virulence genes, phylogenetic grouping, whole-genome sequencing, drug resistant gene, multilocus sequence typing (MLST) and biofilm-forming assays. E. coli strains were divided into 18 serotypes. Thirty-nine E. coli strains belonged to the O11 serotype. Eighty-five E. coli strains were classified into seven phylogenetic groups: E (45.9%, 39/85), A (27.1%, 23/85), B1 (14.1%, 12/85), B2 (3.7%, 3/85), D (3.7%, 3/85), F (2.4%, 2/85) and clade I (1.2%, 1/85). MLST showed that the main sequence types (STs) were ST457 (27/66), All E. coli strains had ≥4 virulence genes. The prevalence of virulence was 98.8% for yijp and fimC, 96.5% for iucD, 95.3% for ompA, 91.8% for cnf-Ⅰ, 89.4% for mat, 82.3% for hlyF, and 81.2% for ibeB. The prevalence of virulence genes iss, cva/cvi, aatA, ibeA, vat, hlyF, and STa was 3.5-57.6%. All E. coli strains were sensitive to sulfamethoxazole, but high resistance was shown to tetracycline (76.5%), chloramphenicol (71.8%), ciprofloxacin (63.5%) and florfenicol (52.9%), resistance to other antibiotics was 35.3-16.5%. The types and ratios of drug-resistance genes were tet(A), strA, strB, sul2, oqxA, blaTEM-1B, floR, and catA1 had the highest frequency from 34%-65%, which were consistent with our drug resistance phenotype tetracycline, florfenicol, quinolones, chloramphenicol, the bla-NDM-I and mcr-I were presented in ST457 strains. Out of 85 E. coli strains, six (7.1%) possessed a strong ability, 12 (14.1%) possessed a moderate ability, and 64 (75.3%) showed a weak ability to form biofilm. Our data will aid understanding of the epidemiological background and provide a clinical basis for HP treatment in mink caused by E. coli.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Extraintestinal Patogênica , Pneumonia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , China/epidemiologia , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Vison , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Pneumonia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA