Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74.819
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Total Environ ; 803: 150081, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500283

RESUMO

Dioecious plant species presented sexual differences in metal accumulation and allocation between male and female conspecifics that grown on metal contaminated soil. As the Elemental defense hypothesis postulates that metals accumulated in plant tissues could protect plants from herbivory, whether such sexual dimorphism in response to metal stress of a dioecious plant will lead to differences in herbivore resistance between male and female conspecifics is still unknown. In this study, we used female and male siblings of Populus deltoides to investigate the effect of plant sex on the growth and feeding preferences of four leaf herbivores and a root herbivore under soil cadmium (Cd) stress. The results showed that the male plants accumulated significantly higher Cd in the leaves while the females allocated more Cd in the roots. Leaf herbivores fed on male leaves grew worse than those fed on female leaves under Cd exposure, while the root herbivore showed the opposite results. In addition, all leaf herbivores strongly preferred the leaves from Cd-stressed female plants than male ones. The quantification of gene expression further showed that Cd stress could significantly upregulate more genes involved in Cd uptake, transport and detoxification pathways in male leaves and female roots. In combination with the correlation tests, we postulated that such sexual differences in herbivore resistance between the two plant sexes was most likely due to the different Cd allocation patterns in plant leaves and roots.


Assuntos
Populus , Cádmio/toxicidade , Herbivoria , Folhas de Planta , Raízes de Plantas , Populus/genética , Solo
2.
Food Chem ; 370: 131012, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500293

RESUMO

Peumus boldus is an endemic tree species from Chile whose leaves have been the focus of study for decades given that their infusions are reported to relieve rheumatic symptoms, headache, dyspepsia, urinary tract inflammation, and symptoms of other illnesses. These health properties have been studied mainly using leaves and bark, then it is relevant to know more about these properties in different parts of the plant. Considering the importance of P. boldus fruits in the diet of some rural populations, we analyzed their properties to explore its impact on the Chilean population health. Liquid chromatography and mass spectrometry analysis confirmed the presence of alkaloids such as boldine, although aporphine N-methyl-laurotetanine was the most abundant. In addition, flavonoids catechin, chrysin and quercetin were also found in the extract. Cytotoxicity and anti-inflammatory activities of the fruit extract were invitro tested by using a murine macrophage cell model, observing that a diluted fraction of the extract was not cytotoxic, but showed anti-inflammatory activity, which is likely attributed to antioxidants activities. By means of quantum chemical calculations, we calculated the redox potential of the respective alkaloids and flavonoids found in the extract. Results suggest a synergistic effect between alkaloids and flavonoids, where boldine and N-methyl-laurotetanine showed similar antioxidant properties. Finally, we present a description of the oxidation mechanisms for both groups of molecules which will sustain P. boldus fruit biological properties, in order to give this kind of fruits scientific value focusing on human health.


Assuntos
Peumus , Animais , Antioxidantes/farmacologia , Frutas , Humanos , Camundongos , Extratos Vegetais/farmacologia , Folhas de Planta
3.
Food Chem ; 370: 131017, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507213

RESUMO

The decrease in the use of K fertilizers may be relevant for developing countries that depend on imports, as well as for specific groups such as patients with chronic kidney disease, who have restricted K in their diets. However, the decrease in the use of K affects plant yield, requiring the study of alternatives to mitigate nutritional stress. Sodium is a beneficial element that can mitigate K deficiency, but studies on kale plants are lacking. We investigated the role of Na in kale grown with and without K in nutrient feed solution. Four treatments were used: abundant K, abundant K plus Na, deficient K, and deficient K plus Na. Low Na (2 mmol L-1) attenuated the symptoms of K deficiency in kale by minimizing leaf water loss and increasing pigment content, leaf area, and plant dry mass. The synergism between K and Na negatively affected the growth of kale plants.


Assuntos
Brassica , Fertilizantes , Humanos , Folhas de Planta , Sódio , Água
4.
Sci Total Environ ; 803: 150122, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525692

RESUMO

Loss of plant diversity affects mountain ecosystem properties and processes, yet few studies have focused on the impact of plant function type deficiency on mixed litter humification. To fill this knowledge gap, we conducted a 1279-day litterbag decomposition experiment with six plant functional types of foliar litter to determine the temporal dynamic characteristics of mixed litter humification in a coniferous forest (CF) and an alpine shrubland (AS). The results indicated that the humus concentrations, the net accumulations and their relative mixed effects (RME) of most types were higher in CF than those in AS at 146 days, and humus net accumulations fell to approximately -80% of the initial level within 1279 days. The RME of the total humus and humic acid concentrations exhibited a general change from synergistic to antagonistic effects over time, but the mixing of single plant functional type impeded the formation of fulvic acid due to consistently exhibited antagonistic effects. Ultimately, correlation analysis indicated that environmental factors (temperature, snow depth and freeze-thaw cycles) significantly hindered litter humification in the early stage, while some initial quality factors drove this process at a longer scale. Among these aspects, the concentrations of zinc, copper and iron, as well as acid-unhydrolyzable residue (AUR):nitrogen and AUR:phosphorous, stimulated humus accumulation, while water-soluble extractables, potassium, magnesium and aluminium hampered it. Deficiencies in a single plant functional type and vegetation type variations affected litter humification at the alpine treeline, which will further affect soil carbon sequestration, which is of great significance for understanding the material circulation of alpine ecosystems.


Assuntos
Ecossistema , Folhas de Planta , Florestas , Estações do Ano , Neve , Solo
5.
Chemosphere ; 286(Pt 2): 131770, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34364234

RESUMO

Antibiotic compounds have caused serious environmental concerns. In this study, we developed an effective technology for treatment of chlortetracycline (CTC), a widely used antibiotic compound. A natural heteroatom-doped spent tea leaves-based biochar (STLB) with excellent adsorption and catalytic property was prepared by simple thermal treatment. An adsorption-promoted persulfate-based advanced oxidation process (PS-AOP) using STLB was studied for CTC removal. The results showed that the as-prepared STLB presented favorable adsorption affinity towards CTC with the maximum adsorption capacity of 627 mg g-1. Meanwhile, CTC enriched on the surface of STLB was good for in-situ decomposition of CTC and nearly 97.4 % of CTC was removed within 30 min of pre-adsorption and 60 min of subsequent degradation. The STLB had excellent recyclability and wide pH tolerance range of 3.0-9.0 in combined pre-adsorption and PS-AOP. Reactive oxygen species analysis confirmed that CTC degradation was mainly due to non-radical (singlet oxygen, 1O2) and radicals (SO4- and OH). This study suggests that STLB is a promising adsorption-enhanced PS activator for the treatment of refractory wastewater and also provides a strategy of waste control by spent tea leaves.


Assuntos
Clortetraciclina , Poluentes Químicos da Água , Adsorção , Carvão Vegetal , Folhas de Planta/química , Chá , Água , Poluentes Químicos da Água/análise
6.
Chemosphere ; 286(Pt 3): 131893, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34403903

RESUMO

Facile and modest synthesis of significantly effective and less-cost catalysts for environmental pollutant degradation and oxygen evolution holds substantial potential in environmental and energy fields. Hereby, Trimetallic organic frameworks (TriMOF) consisting of Fe, Co, and Zn synergized on the surface of activated carbon (AC) from pineapple leaves tend to show exponential catalytic activity due to the more excellent ionic conductivity, catalytic stability and multiple active sites provided by different metal precursors. Furthermore, the developed nanocomposite was coated on the stainless-steel electrode substrate at room temperature, delivering greater electrocatalytic surface area and numerous active sites. The oxidation reaction kinetics drives the catalytic reduction of 4-nitrophenol to 4-aminophenol with a minimal time of 12 min @ >97 % efficiency. Furthermore, on electrocatalytic oxidation of water splitting process due to the presence of multiple metallic, active sites, the overpotential is at 370 mV having Tafel slope of 40 mV/dec and electrochemically active surface area of is 9.9 mF/cm2. This superior catalytic reduction of 4-nitrophenol and electrocatalytic water oxidation process is attributed to the developed composite's active centre and conductivity.


Assuntos
Ananas , Poluentes Ambientais , Carvão Vegetal , Oxigênio , Folhas de Planta
7.
J Sci Food Agric ; 102(1): 233-240, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34081335

RESUMO

BACKGROUND: The oil palm tree produces 90% of wastes and the limited usage of these wastes causes a major disposal problem in the mills. Nevertheless, these by-products have a large amount of nutritional components. Thus, the present study aimed to determine the physicochemical and functional properties of protein hydrolysates (PH) from oil palm leaves (OPL) extracted using different concentrations of Alcalase (0-10%) at 2 h of hydrolysis time. RESULTS: Fourier transform infrared spectral analyses showed that the enzymatic hydrolysis altered functional groups of OPL where a secondary amine was present in the PH. Changes were also observed in the thermal stability where the enthalpy heat obtained for PH (933.93-1142.57 J g-1 ) was much lower than OPL (7854.11 J g-1 ). The results showed that the PH extracted by 8% Alcalase exhibited absolute zeta potential, as well as a high emulsifying activity index (70.64 m2  g-1 of protein) and emulsion stability index (60.58 min). Furthermore, this PH showed higher solubility (96.32%) and emulsifying properties compared to other PHs. It is also comparable with commercial plant proteins, indicating that 8% Alcalase is an optimum concentration for hydrolysis. CONCLUSION: In summary, the physicochemical and functional properties of PH extracted from OPL showed good functional properties, suggesting that it can be used as an alternative plant protein in food industries. © 2021 Society of Chemical Industry.


Assuntos
Arecaceae/química , Folhas de Planta/química , Proteínas de Plantas/química , Biocatálise , Emulsões/química , Concentração de Íons de Hidrogênio , Hidrólise , Peso Molecular , Proteínas de Plantas/isolamento & purificação , Hidrolisados de Proteína/química , Hidrolisados de Proteína/isolamento & purificação , Solubilidade , Subtilisinas/química
8.
J Sci Food Agric ; 102(1): 341-349, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111305

RESUMO

BACKGROUND: Neonicotinoids are widely used insecticides, and tea is a popular non-alcoholic beverage in Taiwan. However, the levels of neonicotinoids in Taiwanese tea leaves remain unclear. Therefore, this study aims to understand the characteristics of neonicotinoid and metabolite residues in Taiwanese tea leaves. METHODS: In this study, 12 tea leaf samples were collected in Taiwan and extracted by solid-phase extraction before analysis by liquid chromatography-tandem mass spectrometry. In addition, the levels of neonicotinoids were compared with the maximum residue level standards from other countries. RESULTS: In Taiwanese tea leaves, five neonicotinoids and seven metabolites were detected. Different tea species influenced the levels of neonicotinoids and their metabolites in the present study. Moreover, the levels of neonicotinoids and their metabolites in partially fermented leaves were higher than in completely fermented leaves. In Jin-Xuan tea, the levels of neonicotinoids and their metabolites in most winter-harvested teas were lower than in summer-harvested teas. CONCLUSION: The residue levels of neonicotinoids and their metabolites were detectable in Taiwanese tea leaves. Moreover, different tea species, manufacturing processes, and harvest seasons might influence the levels of these pesticides. Therefore, the government should monitor the use of neonicotinoids. © 2021 Society of Chemical Industry.


Assuntos
Camellia sinensis/química , Inseticidas/análise , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Cromatografia Líquida , Contaminação de Alimentos/análise , Folhas de Planta/química , Extração em Fase Sólida , Taiwan , Espectrometria de Massas em Tandem , Chá/química
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120460, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34637985

RESUMO

The feasibility analysis of fluorescence hyperspectral imaging technology was studied for the detection of lead content in lettuce leaves. Further, Monte Carlo optimized wavelet transform stacked auto-encoders (WT-MC-SAE) was proposed for dimensionality reduction and depth feature extraction of fluorescence spectral data. The fluorescence hyperspectral images of 2800 lettuce leaf samples were selected and the whole lettuce leaf was used as the region of interest (ROI) to extract the fluorescence spectrum. Five different pre-processing algorithms were used to pre-process the original ROI spectral data including standard normalized variable (SNV), first derivative (1st Der), second derivative (2ndDer), third derivative (3rd Der) and fourth derivative (4th Der). Moreover, wavelet transform stacked auto-encoders (WT-SAE) and WT-MC-SAE were used for data dimensionality reduction, and support vector machine regression (SVR) was used for modeling analysis. Among them, 4th Der tends to be the most useful fluorescence spectral data for Pb content detection at 0.067 âˆ¼ 1.400 mg/kg in lettuce leaves, with Rc2 of 0.9802, RMSEC of 0.02321 mg/kg, Rp2 of 0.9467, RMSEP of 0.04017 mg/kg and RPD of 3.273, and model scale (the number of nodes in the input layer, hidden layer and output layer) was 407-314-286-121-76 under the fifth level of wavelet decomposition. Further studies showed that WT-MC-SAE realizes the depth feature extraction of the fluorescence spectrum, and it is of great significance to use fluorescence hyperspectral imaging to realize the quantitative detection of lead in lettuce leaves.


Assuntos
Aprendizado Profundo , Metais Pesados , Algoritmos , Chumbo , Análise dos Mínimos Quadrados , Alface , Folhas de Planta , Tecnologia
10.
Sci Total Environ ; 806(Pt 1): 150357, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560454

RESUMO

Authorities around the world have committed to limiting the use of chemical pesticides by reducing doses, among other strategies. Nevertheless, different dose expression models and decision support systems (DSSs) for dose adjustment coexist for high growing crops (3D crops). Among them, leaf wall area (LWA) and tree row volume (TRV) models have recently been proposed by the European and Mediterranean Plant Protection Organization (EPPO) for pre-registration trials. In this paper, the background and technical bases of six dose adjustment DSSs in fruit crops (PACE, AGMET, DOSA3D, OMAX and PULVARBO) and four in grape orchards (AGMET, OPTIDOSE, DOSAVIÑA and DOSA3D) are described and compared. The discussion leads to the conclusion that LWA and TRV represents a substantial improvement compared to the former crop ground area-based dose expression model. However, total leaf area is the most important parameter for dose adjustment, while sprayer efficiency is also a key factor. Additionally, it is suggested that deposition on leaves (mean values and variability) should be reported in pesticide efficacy evaluations in order to establish the required doses independently from the dose expression mode. The DOSA3D system, based on leaf area index estimation, was found to be the most conservative DSS regarding the spraying volume ratio to TRV because low spraying efficiencies are considered. Instead, AGMET was found to be the most effective for dose adjustment. However, despite the differences between the recommendations, all the analysed DSSs are useful tools for rational decision making about spraying volume rate and pesticide doses at national level. Their use should be promoted by the competent authorities.


Assuntos
Praguicidas , Vitis , Agricultura , Produtos Agrícolas , Praguicidas/análise , Folhas de Planta/química
11.
Chemosphere ; 287(Pt 4): 132374, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34592211

RESUMO

Cadmium (Cd) remobilization in leaves is affected by whether Cd is stored in nonlabile subcellular compartments, which might be regulated by silicon (Si) application. However, the underlying mechanism is still far from being completely understood. In this research, the Cd distribution pattern in leaves and a Cd-binding characterization in the cell wall of the low-Cd rice line YaHui2816 were investigated through one hydroponic experiment with 10 µM Cd in solutions. Foliar Si application was further adopted to explore its influence on the Cd accumulation in the cell walls of leaves in YaHui2816. Most of the Cd (69.4%) was distributed in the cell walls of YaHui2816 leaves, whereas the isolated cell walls of leaves from YaHui2816 exhibited a lower capacity for Cd chemisorption than the contrasting line C268A, which was resulted from its fewer relative peak areas of functional groups in the cell wall, such as carboxyl CO and OH stretching. Foliar Si application significantly increased the Cd concentration in leaves and various cell wall fractions (pectin, hemicellulose 1 and residue) by 191% and 137-160%, respectively. RNA-seq analysis revealed that foliar Si application depressed the expression of the metal transporters OsZIP7 and OsZIP8, up-regulated the expression of genes participating in the glutathione metabolism and the cellulose synthesis. Overall, the influence of foliar Si application on Cd-accumulation in the cell wall of leaves in a low-Cd rice line was demonstrated in this research, which inspires further avenues to ensure the food safety of rice grains.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Parede Celular/química , Oryza/genética , Folhas de Planta/química , Silício , Poluentes do Solo/análise
12.
Chemosphere ; 287(Pt 4): 132276, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34601372

RESUMO

Phytoconstituents of plants had enormous therapeutic potential against the wounds on skin. Plants like Tecoma stans, Manilkara zapota and Cassia fistula were some which had the ability to heal the wounds. However, there was limited research in Cassia fistula flowers and its synergism with plants on wound healing and its mechanism. Qualitative analysis was performed to confirm the presence of phytoconstituents like flavonoids, saponins and tannins in solvents:aqueous ethanol and methanol. All three components showed their attributes towards wound healing. Results of antimicrobial activity clearly stated that, methanol extract of the Cassia fistula flowers at increasing concentration, showed the maximum zone of inhibition of 27 mm at 100 µl (antibacterial assay) and 18 mm at 100 µl (anti-fungal assay). They had higher potential against the selective microbes Staphylococcus aureus and Aspergillus niger. The combination of C. fistula flowers and C. fistula leaves; C. fistula flowers and M. zapota leaves showed maximum zone of inhibition of 23 mm and 21 mm for anti-bacterial; 22 mm and 23 mm for antifungal at 100 µl respectively. The C. fistula flowers along with the Manilkara zapota leaves and C. fistula leaves enhanced the antimicrobial nature than the individual plants. The antimicrobial properties present in the plants would engage them in future for developing an improved medicine for wound healing. Thus a polyherbal plant solution containing equal proportions of plants, tested for the antibacterial activity, succeeded by showing its higher inhibition of 25 mm at 100 µl.This concluded that the synergism of plants had higher efficiency in microbial activity than the individual samples hence proving the plants attributes towards the wound healing.


Assuntos
Anti-Infecciosos , Bignoniaceae , Plantas Medicinais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Folhas de Planta
13.
Chemosphere ; 287(Pt 4): 132453, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34610372

RESUMO

Tetracycline (TC) is one of the antibiotics that is found in wastewaters. TC is toxic, carcinogenic, and teratogenic. In this study, the tetracycline was removed from water by adsorption using dioxide silicon nanoparticles (SiO2 NPs) biosynthesized from the extract of Nerium oleander leaves. These nanoparticles were characterized using SEM-EDX, BET-BJH, FTIR-ATR, TEM, and XRD. The influences of various factors such as pH solution, SiO2 NPs dose, adsorption process time, initial TC concentration, and ionic strength on adsorption behaviour of TC onto SiO2 NPs were investigated. TC adsorption on SiO2 NPs could be well described in the pseudo-second-order kinetic model and followed the Langmuir isotherm model with a maximum adsorption capacity was 552.48 mg/g. At optimal conditions, the experimental adsorption results indicated that the SiO2 NPs adsorbed 98.62% of TC. The removal of TC using SiO2 NPs was 99.56% at conditions (SiO2 NPs dose = 0.25 g/L, C0 = 25 mg/L, and t = 40 min) based on Box-Behnken design (BBD) combined with response surface methodology (RSM) modelling. Electrostatic interaction governs the adsorption mechanism is attributed. The reusability of SiO2 NPs was tested, and the performance adsorption was 85.36% after the five cycles. The synthesized SiO2 NPs as promising adsorbent has a potential application for antibiotics removal from wastewaters.


Assuntos
Nanopartículas , Nerium , Poluentes Químicos da Água , Adsorção , Antibacterianos , Concentração de Íons de Hidrogênio , Cinética , Extratos Vegetais , Folhas de Planta/química , Dióxido de Silício , Tetraciclina , Poluentes Químicos da Água/análise
14.
Chemosphere ; 287(Pt 1): 131937, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34454226

RESUMO

Abbottabad is a famous tourist destination due to its greenery and location. However, rapid increase in population and unplanned urbanization cause various environmental problems. Among different environmental stress, vehicular emission is the major issue for the survival and sustainability of plant species. This study aimed to investigate the effects of atmospheric pollution (caused by vehicular emission) on the anatomical, biochemical and morphological aspects of plant species present alongside the roads of Abbottabad, Pakistan. The plants were also collected from control sites (away from road-sites) for comparison. The results showed that various morphological characteristics of plant species including petiole length, vein-to-vein difference between leaves and length to breadth ratio of leaves were adversely affected by air pollution. The stomatal index varies in plant species because of variations in the numbers of epidermal cells. The air pollution tolerance index (APTI) of plant leaves from contaminated areas was reported to be higher as compared to control (non-contaminated) areas. Consequently, the findings from this study confirmed that plant species growing alongside of Abbottabad roads has greater tolerance than plant species growing in solitude areas away from road sites (control sites). Among different studied plants, Juglans regia, Morus nigra, Xanthium strumarium, Prunus armenica, Diospterus lotus and Populus ciliata have highest APTI and found to be more suitable for plantation in Abbottabad.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Folhas de Planta/química , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
15.
Chemosphere ; 287(Pt 1): 131915, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34455121

RESUMO

Carbon quantum dots (CQDs) synthesized from biological sources play a significant role in biomedical and environmental applications, including bioimaging, biosensing, metal ions detection and electrocatalytic oxidations. Herein, we synthesized blue-emitting carbon quantum dots using maple tree leaves via a one-step hydrothermal process to detect Cesium ions selectively. The synthesized CQDs' functional group composition, morphology, and pH stability was analytical and morphologically investigated. The maple leaves derived carbon quantum dots (M-CQDs) exhibited blue fluorescence, and their sizes ranged from 1 to 10 nm. They exhibited emission at 445 nm upon excitation at 360 nm. M-CQDs PL intensity was highly stable for about 100 d without any changes and confirmed that the as-prepared CQDs could be used as a probe for Cesium ion sensing. M-CQDs were effectively used as Cesium sensing probes based on the electron transfer process and simultaneously used as a catalyst for glycerol electrooxidation. The PL intensity of M-CQDs was quenched while adding the varies concentration of Cesium ions in the linear range from 100 µM to 100 nM with the detection limit of (LOD) 160 nM, simultaneously electrocatalytic oxidation of glycerol showed an onset potential of 1.32 V at a current density of 10 mA/cm2.


Assuntos
Acer , Pontos Quânticos , Carbono , Césio , Glicerol , Folhas de Planta , Árvores
16.
Chemosphere ; 287(Pt 1): 132073, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34478964

RESUMO

Fomesafen is an herbicide used in soybean production, and sugar beet is a sensitive crop to fomesafen. When the herbicide is sprayed in the field, it is easy to cause floating and depositing on non-target crops, resulting in crop poisoning and reducing yield. There are few on the phenomenon and mechanism of fomesafen herbicide drift on sugar beet. There are few reports on the phenomenon and mechanism of ether herbicide migration on phytotoxicity of sugar beet. Therefore, in this experiment, indoor potted plants were used to simulate the dose of fomesafen drift deposited on sugar beet in the field to study the effects of fomesafen on the growth, photosynthetic system, and physiological indexes of seedlings for sugar beet were studied. The results showed that fomesafen at the dose of 225 g a.i. ha-1 significantly inhibited the plant height, root length, and biomass of sugar beet. Compared with the control, the net photosynthetic rate, stoma conductance, transpiration rate, and total chlorophyll pigment content of leaves were reduced by 77.16%, 83.84%, 64.00%, and 28.13%, respectively. Treatment with a dose of 225 g a.i. ha-1 also damaged the photosynthetic system II of the leaves, lowering the performance index on absorption energy, maximum quantum yield and, the energy of electron transfer, causing photoinhibition and photodamage. In addition, fomesafen significantly increased the content of malondialdehyde and the activity of peroxidase in leaves of sugar beet, reducing the activities of superoxide dismutase and catalase. Overall, this study is helpful to understand the drift and deposition of fomesafen on sugar beet and to discuss the phytotoxicity risk and dose of fomesafen on the beet, as a result of controlling the dose of fomesafen sprayed in the field.


Assuntos
Beta vulgaris , Benzamidas , Clorofila , Folhas de Planta , Açúcares
17.
Sci Total Environ ; 805: 150163, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536858

RESUMO

Trees have the potential to improve urban air quality as leaves and needles capture air pollutants from the air, but further empirical data has been requested to quantify these effects. We measured the concentration of 32 polycyclic aromatic hydrocarbons (PAHs) in leaves of pin oak (Quercus palustris) and needles of black pine (Pinus nigra) in the City of Gothenburg, Sweden, during the summer of 2018. Oak leaves were collected twice (June, September), while one-year-old (C + 1) and three-year-old (C + 3) pine needles were sampled in June to study the temporal development of leaf/needle PAH concentrations. Specific leaf area (SLA) was estimated, which permitted calculation of leaf/needle area-based PAH content that were compared with the mass-based concentration. In addition, the air concentration of PAHs and NO2 was measured using passive samplers. There was a strong correlation between air concentrations of PAH and NO2, indicating that the pollutants to a large degree originate from the same sources. In the oak leaves there was a significant decrease in low molecular mass PAHs (L-PAH, mainly gaseous) between June and September, but a significant increase in high molecular mass PAHs (H-PAH, mainly particle-bound). There was a strong correlation between L-PAH concentration in leaves and in air indicating an influence of equilibrium processes between ambient air and leaf. In the pine needles, there was a significant increase of both L-PAH and H-PAH in three-year-old needles compared to one-year-old needles. Pine was superior to oak in accumulating PAHs from the air, especially for L-PAHs when comparing area-based content. However, H-PAH concentrations were higher in oak leaves compared to pine needles on a leaf mass basis, emphasizing the importance of how concentrations are expressed. The results from this study can contribute to the development of urban planning strategies regarding the effect of vegetation on air quality.


Assuntos
Poluentes Atmosféricos , Pinus , Hidrocarbonetos Policíclicos Aromáticos , Quercus , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Folhas de Planta/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Suécia
18.
Sci Total Environ ; 805: 150219, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34536866

RESUMO

Knowledge on the response of trees to the urban heat island (UHI) effect and soil sealing is currently limited, yet of vital importance in an era characterized by both climate change and urbanization. We investigated the physiological and phenological leaf plasticity of Tilia×euchlora trees to the UHI effect and soil sealing and explored the potential of leaf optical traits to quantify the magnitude of leaf plasticity. Temporal changes of leaf water content (LWC), specific leaf area (SLA), total chlorophyll (Chl) and carotenoids (Car) content, Car:Chl ratio and leaf reflectance for 46 Tilia×euchlora trees were measured along a soil sealing and urbanization gradient. The leaf functional traits displayed trait-specific temporal patterns during the growing season. We observed higher LWC and SLA but lower Chl and Car contents in the coolest zones. We found earlier autumn downregulation in Chl and Car content at paved sites compared to unsealed sites (maximum difference = 13 days). The magnitude of plasticity in relation to the UHI and soil sealing varied in leaf functional traits with largest variation observed in Chl (38%), followed by Car:Chl (31%), Car (29%), SLA (26%) and LWC (8%). The proposed spectral indices calculated using leaf reflectance measurements were able to track the spatiotemporal variations and phenology in the leaf functional traits. Our results clearly demonstrate the leaf plasticity of Tilia×euchlora trees, which provides Tilia×euchlora trees the necessary capacity to adapt to rapid changes in the urban environment. More importantly, we demonstrated the suitability of leaf optical traits to serve as a proxy of leaf functional traits for studying the spatiotemporal response of urban trees to environmental factors, which opens up new possibilities for large scale ecological studies using remote sensing.


Assuntos
Temperatura Alta , Tilia , Cidades , Folhas de Planta , Árvores
19.
Food Chem ; 372: 131173, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34601424

RESUMO

The variation of proximate compositions, amino acids, carotenoids, chlorophyll, and total cyanide contents in cassava leaves was studied to identify the most suitable leaves for human consumption. The cassava leaves from 4 cultivars were analysed at 3 leaf positions as well as at 2 plant ages. The leaves of 'Rayong 5' cultivar from the middle position at 6 months after planting contained the highest crude protein, amino acids, carotenoids, and chlorophyll. The total cyanide content was high and therefore, an effective detoxification method is needed. Protein from the cassava leaves was rich in glutamine, aspartic acid, and leucine, but low in methionine and cysteine. Additionally, cassava leaves were found to be a rich source of carotenoids and chlorophyll. This study provided the evidences that cassava leaves can be an alternative source as protein supplement and for carotenoids and chlorophyll extraction and paves the way to valorise this abundant agricultural by-product.


Assuntos
Manihot , Carotenoides/análise , Clorofila , Cianetos , Humanos , Folhas de Planta/química , Tailândia
20.
Food Chem ; 372: 130780, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34624778

RESUMO

Proanthocyanidins is flavan-3-ol polymers with many activities which attracted a lot of attention. However, most of the proanthocyanidins come from fruits and seeds, resulting in higher costs. The extraction of proanthocyanidins from leaves that were trimmed as wastes from fruit trees is of good economic benefits. The proanthocyanidins in persimmon leaves and loquat leaves were extracted and purified. The purity of persimmon and loquat leaves were 85.33 ± 0.11% and 88.45 ± 0.96% with yield of 3.40% and 2.37% respectively. Detailed structure information was analyzed. Persimmon leaves proanthocyanidins mainly consist of catechin with B-type link along with a small portion of gallocatechin, catechin gallate and A-type link. Loquat leaves proanthocyanidins consist of catechin, gallocatechin, gallocatechin gallate and afzelechin with B-type link along with a small portion of A-type link. The α-amylase inhibition effect of the two leaves was analyzed. Persimmon leaves proanthocyanidins and loquat leaves proanthocyanidins were two mixed-type inhibitors to α-amylase.


Assuntos
Catequina , Diospyros , Eriobotrya , Proantocianidinas , Frutas , Folhas de Planta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA