Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.901
Filtrar
1.
Braz. j. biol ; 84: e257739, 2024. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1355883

RESUMO

Abstract Under salt stress conditions, plant growth is reduced due to osmotic, nutritional and oxidative imbalance. However, salicylic acid acts in the mitigation of this abiotic stress by promoting an increase in growth, photosynthesis, nitrogen metabolism, synthesis of osmoregulators and antioxidant enzymes. In this context, the objective was to evaluate the effect of salicylic acid doses on the growth and physiological changes of eggplant seedlings under salt stress. The experiment was conducted in a greenhouse, where the treatments were distributed in randomized blocks using a central composite matrix Box with five levels of electrical conductivity of irrigation water (CEw) (0.50; 1.08; 2.50; 3.92 and 4.50 dS m-1), associated with five doses of salicylic acid (SA) (0.00; 0.22; 0.75; 1.28 and 1.50 mM), with four repetitions and each plot composed of three plants. At 40 days after sowing, plant height, stem diameter, number of leaves, leaf area, electrolyte leakage, relative water content, and total dry mass were determined. ECw and SA application influenced the growth and physiological changes of eggplant seedlings. Increasing the ECw reduced growth in the absence of SA. Membrane damage with the use of SA remained stable up to 3.9 dS m-1 of ECw. The relative water content independent of the CEw increased with 1.0 mM of SA. The use of SA at the concentration of 1.0 mM mitigated the deleterious effect of salinity on seedling growth up to 2.50 dS m-1 of ECw.


Resumo Em condições de estresse salino, o crescimento das plantas é reduzido, em virtude, do desequilíbrio osmótico, nutricional e oxidativo. Contudo, o ácido salicílico atua na mitigação desse estresse abiótico por promover incremento no crescimento, fotossíntese, metabolismo do nitrogênio, síntese de osmorreguladores e enzimas antioxidantes. Nesse contexto, objetivou-se avaliar o efeito de doses de ácido salicílico sobre o crescimento e alterações fisiológicas de mudas de berinjela sob estresse salino. O experimento foi conduzido em casa de vegetação, onde os tratamentos foram distribuídos em blocos ao acaso utilizando uma matriz composta central Box com cinco níveis de condutividade elétrica da água de irrigação (CEa) (0,50; 1,08; 2,50; 3,92 e 4,50 dS m-1), associada a cinco doses de ácido salicílico (AS) (0,00; 0,22; 0,75; 1,28 e 1,50 mM), com quatro repetições e cada parcela composta por três plantas. Aos 40 dias após a semeadura, foram determinados a altura da planta, diâmetro do caule, número de folhas, área foliar, vazamento de eletrólito, teor relativo de água e massa seca total. A CEa e a aplicação de AS influenciaram no crescimento e nas alterações fisiológicas das mudas de berinjela. O aumento da CEa reduziu o crescimento na ausência de AS. O dano de membrana com o uso de AS manteve-se estável até 3,9 dS m-1 de CEa. O conteúdo relativo de água independentemente da CEa aumentou com 1 mM de SA. O uso de AS na concentração de 1 mM mitigou o efeito deletério da salinidade no crescimento das mudas até 2,50 dS m-1 de CEa.


Assuntos
Ácido Salicílico/farmacologia , Solanum melongena/metabolismo , Fotossíntese , Estresse Fisiológico , Folhas de Planta/metabolismo , Plântula , Salinidade , Tolerância ao Sal , Antioxidantes/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2178-2186, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531734

RESUMO

The present study investigated the main components of fenugreek(Trigonella foenum-graecum L.) leaf flavonoids(FLFs) and their antioxidant activity. FLFs were prepared and enriched by solvent extraction, and the flavonoids were characterized by high-performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS). The protective effect of FLFs against H_2O_2-induced stress damage to L02 hepatocytes was also investigated. Firstly, the cell viability was measured by MTT assay. The oxidative stress injury model was induced by H_2O_2 in L02 cells. The release of lactate dehydrogenase(LDH), the content of reduced glutathione(GSH) and malondialdehyde(MDA), and the activities of superoxide dismutase(SOD) and catalase(CAT) were measured by assay kits. Hoechst fluorescence staining was performed to observe the cell apoptosis. The expression levels of c-Jun N-terminal kinase(JNK), extracellular signal-regulated kinase 1/2(ERK1/2), nuclear factor erythroid-2 related factor 2(Nrf2), heme oxygenase 1(HO-1), and their phosphorylated proteins were detected by Western blot. Based on the MS fragment ion information and data in databases, FLFs contained eight flavonoids with quercetin and kaempferol as the main aglycons. The cell viabi-lity assay revealed that as compared with the conditions in the H_2O_2 treatment group, 3.125-25 µg·mL~(-1) FLFs could increase the viability of L02 cells, reduce LDH release and MDA content in a dose-dependent manner, potentiate the activities of SOD, CAT, and GSH, decrease the phosphorylation of JNK and ERK1/2 proteins, and up-regulate the expression of Nrf2 and HO-1. The results of fluorescence staining showed that the nucleus of the H_2O_2 treatment group showed concentrated and dense strong blue fluorescence, while the blue fluorescence intensity of the FLFs group decreased significantly. FLFs showed a protective effect against H_2O_2-induced oxidative damage in L02 cells, and the underlying mechanism is associated with the enhancement of cell capability in clearing oxygen free radicals and the inhibition of apoptosis by the activation of the MAPKs/Nrf2/HO-1 signaling pathway. The antioxidant effect of fenugreek leaf is related to its rich flavonoids.


Assuntos
Fator 2 Relacionado a NF-E2 , Trigonella , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Flavonoides/farmacologia , Hepatócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Folhas de Planta/metabolismo , Superóxido Dismutase/metabolismo , Espectrometria de Massas em Tandem , Trigonella/metabolismo
3.
Sci Rep ; 12(1): 7451, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523988

RESUMO

Microbial life in soil is fueled by dissolved organic matter (DOM) that leaches from the litter layer. It is well known that decomposer communities adapt to the available litter source, but it remains unclear if they functionally compete or synergistically address different litter types. Therefore, we decomposed beech, oak, pine and grass litter from two geologically distinct sites in a lab-scale decomposition experiment. We performed a correlative network analysis on the results of direct infusion HR-MS DOM analysis and cross-validated functional predictions from 16S rRNA gene amplicon sequencing and with DOM and metaproteomic analyses. Here we show that many functions are redundantly distributed within decomposer communities and that their relative expression is rapidly optimized to address litter-specific properties. However, community changes are likely forced by antagonistic mechanisms as we identified several natural antibiotics in DOM. As a consequence, the decomposer community is specializing towards the litter source and the state of decomposition (community divergence) but showing similar litter metabolomes (metabolome convergence). Our multi-omics-based results highlight that DOM not only fuels microbial life, but it additionally holds meta-metabolomic information on the functioning of ecosystems.


Assuntos
Ecossistema , Microbiota , 2,5-Dimetoxi-4-Metilanfetamina/metabolismo , Microbiota/genética , Folhas de Planta/metabolismo , Plantas/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Solo , Microbiologia do Solo
4.
Methods Mol Biol ; 2489: 395-420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35524061

RESUMO

Metabolic engineering of heterologous hosts requires coexpression of multiple genes, often more than ten for a single pathway. Traditional approaches to create genetic constructs for this purpose are highly inflexible and suffer from very low throughput. In this book chapter, we describe a powerful method to overcome this bottleneck, namely, combinatorial co-expression in the Australian tobacco plant Nicotiana benthamiana. This system is based on Agrobacterium tumefaciens-mediated transient gene expression, often called agroinfiltration. Herein, instead of creating complex multigenic constructs, coexpression is achieved by simply mixing different plasmid-bearing Agrobacterium strains without the need for different selection markers. We present a practical guide for coexpressing multiple biosynthetic genes followed by GC-MS analysis, using production of the plant triterpene ß-amyrin as an example. Our chapter provides a guideline to harness the potential of this versatile expression system in the natural product community for studying and engineering metabolic pathways.


Assuntos
Agrobacterium tumefaciens , Tabaco , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Austrália , Engenharia Metabólica/métodos , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Tabaco/metabolismo
5.
Methods Mol Biol ; 2469: 193-200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508840

RESUMO

Plant organs are built of different cell types, characterized by specific transcription programs and metabolic profiles. The possibility of isolation of such cell types to perform differential transcriptomic, proteomic and metabolomic analyses is highly important to understand many aspects of plant physiology, namely, the structure and regulation of economically valuable specialized metabolic pathways. Here, we describe the isolation of idioblast leaf protoplasts of the medicinal plant Catharanthus roseus by fluorescence-activated cell sorting, taking advantage of the differential autofluorescence properties of those specialized cells.


Assuntos
Catharanthus , Células Vegetais , Citometria de Fluxo , Regulação da Expressão Gênica de Plantas , Células Vegetais/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteômica
6.
Methods Mol Biol ; 2469: 231-237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508843

RESUMO

Mimosine is a nonprotein amino acid biosynthesized from OAS (O-acetylserine) and 3H4P (3-hydroxy-4-pyridone or its tautoisomer 3,4-dihydroxypyridine). This amino acid constitutively occurs in all parts of Leucaena leucocephala (Lam.) de Wit plants and is found at higher concentrations in seeds and leaves. This metabolite has several useful activities, such as antioxidant, allelochemical, insecticidal, antimicrobial, metal chelating, and antitumor. Mimosine is well studied in biomedical research due its ability to inhibit cells in the late G1 phase and to induce cell apoptosis. Two simple methods of mimosine extraction from leucaena leaves, pulverized and whole maceration, are described herein in detail.


Assuntos
Fabaceae , Mimosina , Aminoácidos/metabolismo , Fabaceae/metabolismo , Mimosina/química , Mimosina/metabolismo , Mimosina/farmacologia , Folhas de Planta/metabolismo , Sementes/metabolismo
7.
PLoS One ; 17(5): e0267989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511959

RESUMO

The addition of supplemental light (SL) is an effective way to offset insufficient lighting. Although it is commonly believed that SL increases leaf photosynthesis and therefore improves yield and fruit flavor, the mechanism underlying the effects of SL on the photosystem II (PSII) apparatus remains unclear, and SL leads to high energy consumption. In order to save energy, we investigated the physiological status of the PSII apparatus, plant growth parameters and fruit parameters under two types of overhead SL with a low daily energy consumption of 0.0918 kWh m-2. The results showed that SL significantly increased the leaf chlorophyll content from full unfolding to yellowing. However, a remarkable increase in the absorption flux per cross-section (ABS/CS), the quantum yield of electron transport (φEo) and the performance index (PIabs) was observed only in a relatively short period of the leaf life cycle. SL also enhanced the fruit yield and quality. The obviously increased ΔVK and ΔVJ components of the chlorophyll fluorescence induction kinetic (OJIP) curve, along with the significantly decreased PIabs from days 40-60 after unfolding in the SL-treated groups, resulted in more rapid leaf aging and earlier fruit ripening compared with the control plants (CK). Therefore, an energy-friendly SL strategy can alter the physiological status of the PSII apparatus, affecting yield and fruit quality and maturity.


Assuntos
Lycopersicon esculentum , Complexo de Proteína do Fotossistema II , Clorofila/farmacologia , Luz , Lycopersicon esculentum/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo
8.
BMC Plant Biol ; 22(1): 228, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508980

RESUMO

BACKGROUND: Anthocyanins, which account for color variation and remove reactive oxygen species, are widely synthesized in plant tissues and organs. Using targeted metabolomics and nanopore full-length transcriptomics, including differential gene expression analysis, we aimed to reveal potato leaf anthocyanin biosynthetic pathways in different colored potato varieties. RESULTS: Metabolomics analysis revealed 17 anthocyanins. Their levels varied significantly between the different colored varieties, explaining the leaf color differences. The leaves of the Purple Rose2 (PurpleR2) variety contained more petunidin 3-O-glucoside and malvidin 3-O-glucoside than the leaves of other varieties, whereas leaves of Red Rose3 (RedR3) contained more pelargonidin 3-O-glucoside than the leaves of other varieties. In total, 114 genes with significantly different expression were identified in the leaves of the three potato varieties. These included structural anthocyanin synthesis-regulating genes such as F3H, CHS, CHI, DFR, and anthocyanidin synthase and transcription factors belonging to multiple families such as C3H, MYB, ERF, NAC, bHLH, and WRKY. We selected an MYB family transcription factor to construct overexpression tobacco plants; overexpression of this factor promoted anthocyanin accumulation, turning the leaves purple and increasing their malvidin 3-o-glucoside and petunidin 3-o-glucoside content. CONCLUSIONS: This study elucidates the effects of anthocyanin-related metabolites on potato leaves and identifies anthocyanin metabolic network candidate genes.


Assuntos
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Humanos , Metabolômica , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Fatores de Transcrição/genética , Transcriptoma
9.
Ying Yong Sheng Tai Xue Bao ; 33(4): 957-962, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35543047

RESUMO

To reveal molecular mechanisms underlying photosynthesis responses of Dahurian larch (Larix gmelinii) to environmental changes, we used the high-throughput sequencing technology to sequence the transcriptome of larch leaves from four latitudinal sites with different environmental conditions, and compared differential expression genes (DEGs). The four sites from high- to low-latitude were Tahe (52°52' N), Songling (50°72' N), Heihe (49°22' N), and Dailing (47°08' N). A total of 282428811 clean reads were sequenced out, among which the abundace of DEGs were 16915, 18812, 28536, 20635, 29957 and 23617 for the Tahe-Songling, Tahe-Heihe, Tahe-Dailing, Songling-Heihe, Songling-Dailing, and Heihe-Dailing comparisons, respectively. The expression of nine Psb genes family (i.e., PsbB, PsbK, PsbO, PsbP, PsbQ, PsbS, PsbW, Psb27, and Psb28) encoding Photosystem Ⅱ and that of three genes (ATPF1A,atpA, ATPF1G, atpG, and ATPF1D, atpH) encoding F-type ATPase, which were involved in photosynthesis pathway, were significantly up-regulated with increasing environmental differences among the sites. A similar up-regulation pattern occurred for the expression of genes encoding glutamine synthetase (glnA, GLUL), nitrate reductase (NR), and carbonic anhydrase (cynT, can) that were involved in nitrogen metabolism pathway. The numbers of DEGs and up-regulated genes increased with the increases in environmental changes among the sites, resulting in inter-site divergence of photosynthetic capacity of larch trees.


Assuntos
Larix , Perfilação da Expressão Gênica , Larix/genética , Nitrogênio/metabolismo , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma
10.
Sci Rep ; 12(1): 7232, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508503

RESUMO

Foliar nyctinasty, a circadian rhythmic movement in plants, is common among leguminous plants and has been widely studied. Biological studies on nyctinasty have been conducted using Samanea saman as a model plant. It has been shown that the circadian rhythmic potassium flux from/into motor cells triggers cell shrinking/swelling to cause nyctinastic leaf-folding/opening movement in S. saman. Recently, 12-hydroxyjasmonic acid glucoside (JAG) was identified as an endogenous chemical factor causing leaf-folding of S. saman. Additionally, SPORK2 was identified as an outward-rectifying potassium channel that causes leaf-movement in the same plant. However, the molecular mechanism linking JAG and SPORK2 remains elusive. Here, we report that JAG induces leaf-folding through accumulation of reactive oxygen species in the extensor motor cells of S. saman, and this occurs independently of plant hormone signaling. Furthermore, we show that SPORK2 is indispensable for the JAG-triggered shrinkage of the motor cell. This is the first report on JAG, which is believed to be an inactivated/storage derivative of JA, acting as a bioactive metabolite in plant.


Assuntos
Fabaceae , Glucosídeos , Fabaceae/metabolismo , Glucosídeos/farmacologia , Folhas de Planta/metabolismo , Plantas/metabolismo , Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Planta ; 255(6): 121, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538157

RESUMO

MAIN CONCLUSION: The novel C-methyltransferase, MaMT1, could catalyze the conversion of piperidine to 2-methylpiperidine, which may be involved in the methylation step of DNJ biosynthesis in mulberry leaves. Mulberry (Morus alba L.) is a worldwide crop with medicinal, feeding and nutritional value, and 1-deoxynojirimycin ((2R, 3R, 4R, 5S)-2-hydroxymethyl-3, 4, 5-trihydroxypiperidine, DNJ) alkaloid, a potent α-glucosidase inhibitor, is its main active ingredient. Our previous researches clarified the biosynthetic pathway of DNJ from lysine to Δ1-piperideine, but its downstream pathway is unclear. Herein, eight differential methyltransferases (MTs) genes were screened from transcriptome profiles of mulberry leaves with significant differences in DNJ content (P < 0.01). Subsequently, MaMT1 (OM140666) and MaMT2 (OM140667) were hypothesized as candidate genes related to DNJ biosynthesis by correlation analysis of genes expression levels and DNJ content of mulberry leaves at different dates. Functional characterization of MaMT1 and MaMT2 were performed by cloning, prokaryotic expression and enzymatic reaction in vitro, and it showed that MaMT1 protein could catalyze the conversion of piperidine to 2-methylpiperidine. Moreover, molecular docking confirmed the interaction of MaMT1 protein with piperidine and S-adenosyl-L-methionine (SAM), indicating that MaMT1 had C-methyltransferase activity, while MaMT2 did not. The above results suggested that MaMT1 may be involved in the methylation step of DNJ alkaloid biosynthesis in mulberry leaves, which is a breakthrough in the analysis of DNJ alkaloid biosynthetic pathway. It is worth mentioning that the novel MaMT1, annotated as serine hydroxymethyltransferase, could rely on SAM to perform C-methyltransferase function. Therefore, our findings contribute new insights into the research of DNJ alkaloid biosynthesis and C-methyltransferase family.


Assuntos
Alcaloides , Morus , 1-Desoxinojirimicina/análise , 1-Desoxinojirimicina/metabolismo , 1-Desoxinojirimicina/farmacologia , Alcaloides/metabolismo , Clonagem Molecular , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Simulação de Acoplamento Molecular , Morus/genética , Morus/metabolismo , Folhas de Planta/metabolismo , Transcriptoma
12.
Sci Rep ; 12(1): 6736, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468979

RESUMO

Moderate leaf rolling helps to form the ideotype of rice. In this study, six independent OsRUS1-GFP overexpression (OsRUS1-OX) transgenic rice lines with rapid and dynamic leaf rolling phenotype in response to sunlight were constructed. However, the mechanism is unknown. Here, RNA-Seq approach was utilized to identify differentially expressed genes between flag leaves of OsRUS1-OX and wildtype under sunlight. 2920 genes were differentially expressed between OsRUS1-OX and WT, of which 1660 upregulated and 1260 downregulated. Six of the 16 genes in GO: 0009415 (response to water stimulus) were significantly upregulated in OsRUS1-OX. The differentially expressed genes between WT and OsRUS1-OX were assigned to 110 KEGG pathways. 42 of the 222 genes in KEGG pathway dosa04075 (Plant hormone signal transduction) were differentially expressed between WT and OsRUS1-OX. The identified genes in GO:0009415 and KEGG pathway dosa04075 were good candidates to explain the leaf rolling phenotype of OsRUS1-OX. The expression patterns of the 15 genes identified by RNA-Seq were verified by qRT-PCR. Based on transcriptomic and qRT-PCR analysis, a mechanism for the leaf rolling phenotype of OsRUS1-OX was proposed. The differential expression profiles between WT and OsRUS1-OX established by this study provide important insights into the molecular mechanism behind the leaf rolling phenotype of OsRUS1-OX.


Assuntos
Oryza , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Transcriptoma
13.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457125

RESUMO

Arundo donax has been recognized as a promising crop for biomass production on marginal lands due to its superior productivity and stress tolerance. However, salt stress negatively impacts A. donax growth and photosynthesis. In this study, we tested whether the tolerance of A. donax to salinity stress can be enhanced by the addition of 5-aminolevulinic acid (ALA), a known promoter of plant growth and abiotic stress tolerance. Our results indicated that root exposure to ALA increased the ALA levels in leaves along the A. donax plant profile. ALA enhanced Na+ accumulation in the roots of salt-stressed plants and, at the same time, lowered Na+ concentration in leaves, while a reduced callose amount was found in the root tissue. ALA also improved the photosynthetic performance of salt-stressed apical leaves by stimulating stomatal opening and preventing an increase in the ratio between abscisic acid (ABA) and indol-3-acetic acid (IAA), without affecting leaf methanol emission and plant growth. Supply of ALA to the roots reduced isoprene fluxes from leaves of non-stressed plants, while it sustained isoprene fluxes along the profile of salt-stressed A. donax. Thus, ALA likely interacted with the methylerythritol 4-phosphate (MEP) pathway and modulate the synthesis of either ABA or isoprene under stressful conditions. Overall, our study highlights the effectiveness of ALA supply through soil fertirrigation in preserving the young apical developing leaves from the detrimental effects of salt stress, thus helping of A. donax to cope with salinity and favoring the recovery of the whole plant once the stress is removed.


Assuntos
Ácido Aminolevulínico , Reguladores de Crescimento de Plantas , Ácido Abscísico/metabolismo , Ácido Aminolevulínico/metabolismo , Butadienos , Hemiterpenos , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Estresse Salino
14.
BMC Plant Biol ; 22(1): 219, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35477355

RESUMO

BACKGROUND: Mentha canadensis L. has important economic value for the production of essential oils, which are synthesised, secreted and stored in peltate glandular trichomes. As a typical multicellular secretory trichome, glandular trichomes are important biological factories for the synthesis of some specialised metabolites. However, little is known about the molecular mechanism of glandular trichome development in M. canadensis. RESULTS: In this study, the R2R3-MYB transcription factor gene McMIXTA was isolated to investigate its function in glandular trichome development. Bioinformatics analysis indicated that McMIXTA belonged to the subgroup 9 R2R3-MYB, with a R2R3 DNA-binding domain and conserved subgroup 9 motifs. A subcellular localisation assay indicated that McMIXTA was localised in the nucleus. Transactivation analysis indicated that McMIXTA was a positive regulator, with transactivation regions located between positions N253 and N307. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that McMIXTA formed a complex with McHD-Zip3, a trichome development-related HD-ZIP IV transcription factor. Overexpression of McMIXTA in Mentha × piperita L. caused an increase in peltate glandular trichomes density of approximately 25% on the leaf abaxial surface. CONCLUSIONS: Our results demonstrated that the subgroup 9 R2R3-MYB transcription factor McMIXTA has a positive effect on regulating peltate glandular trichome development and the MIXTA/HD-ZIP IV complexes might be conserved regulators for glandular trichome initiation. These results provide useful information for revealing the regulatory mechanism of multicellular glandular trichome development.


Assuntos
Mentha , Óleos Voláteis , Óleos Voláteis/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tricomas/metabolismo
15.
BMC Genomics ; 23(1): 325, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461216

RESUMO

BACKGROUND: Ginsenoside, as the main active substance in ginseng, has the function of treating various diseases. However, the ginsenosides content of cultivated ginseng is obviously affected by the growth years, but the molecular mechanism is not clear. In addition, there are significant differences in morphology and physiology between wild ginseng and cultivated ginseng, and the effect of growth years on ginsenoside synthesis not yet understood in wild ginseng. RESULTS: Transcriptome sequencing on the roots, stems and leaves of cultivated ginseng and wild ginseng with different growth years was performed in this study, exploring the effect of growth years on gene expression in ginseng. The number of differentially expressed genes (DEGs) from comparison groups in cultivated ginseng was higher than that in wild ginseng. The result of weighted gene co-expression network analysis (WGCNA) showed that growth years significantly affected the gene expression of Mitogen-activated protein kinases (MAPK) signaling pathway and terpenoid backbone biosynthesis pathway in cultivated ginseng, but had no effects in wild ginseng. Furthermore, the growth years had significant effects on the genes related to ginsenoside synthesis in cultivated ginseng, and the effects were different in the roots, stems and leaves. However, it had little influence on the expression of genes related to ginsenoside synthesis in wild ginseng. Growth years might affect the expression of genes for ginsenoside synthesis by influencing the expression of these transcription factors (TFs), like my elob lastosis (MYB), NAM, ATAF1 and 2, and CUC2 (NAC), APETALA2/ethylene-responsive factor (AP2/ERF), basic helix-loop-helix (bHLH) and WRKY, etc., thereby affecting the content of ginsenosides. CONCLUSIONS: This study complemented the gaps in the genetic information of wild ginseng in different growth periods and helped to clarify the potential mechanisms of the effect of growth years on the physiological state in wild ginseng and cultivated ginseng, which also provided a new insight into the mechanism of ginsenoside regulation.


Assuntos
Ginsenosídeos , Panax , Panax/genética , Panax/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409334

RESUMO

LEAFY (LFY) plays an important role in the flowering process of plants, controlling flowering time and mediating floral meristem differentiation. Owing to its considerable importance, the mango LFY gene (MiLFY; GenBank accession no. HQ585988) was isolated, and its expression pattern and function were characterized in the present study. The cDNA sequence of MiLFY was 1152 bp, and it encoded a 383 amino acid protein. MiLFY was expressed in all tested tissues and was highly expressed in flowers and buds. Temporal expression analysis showed that MiLFY expression was correlated with floral development stage, and two relative expression peaks were detected in the early stages of floral transition and floral organ differentiation. Moreover, 35S::GFP-MiLFY fusion protein was shown to be localized to the nucleus of cells. Overexpression of MiLFY in Arabidopsis promoted early flowering and the conversion of lateral meristems into terminal flowers. In addition, transgenic plants exhibited obvious morphological changes, such as differences in cauline leaf shape, and the number of lateral branches. When driven by the MiLFY promoter, GFP was highly expressed in leaves, floral organs, stems, and roots, during the flowering period. Exogenous gibberellin (GA3) treatment downregulated MiLFY promoter expression, but paclobutrazol (PPP333) upregulated it. Bimolecular fluorescence complementation (BiFC) assays showed that the MiLFY protein can interact with zinc-finger protein 4 (ZFP4) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (MiSOC1D). Taken together, these results indicate that MiLFY plays a pivotal role in controlling mango flowering, and that it is regulated by gibberellin and paclobutrazol.


Assuntos
Arabidopsis , Mangifera , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas , Mangifera/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
17.
BMC Genomics ; 23(1): 310, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439938

RESUMO

BACKGROUND: Leaf colour mutations are universally expressed at the seedling stage and are ideal materials for exploring the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in plants. RESULTS: In this research, we analysed the different degrees of albinism in apple (Malus domestica) seedlings, including white-leaf mutants (WM), piebald leaf mutants (PM), light-green leaf mutants (LM) and normal leaves (NL) using bisulfite sequencing (BS-seq) and RNA sequencing (RNA-seq). There were 61,755, 79,824, and 74,899 differentially methylated regions (DMRs) and 7566, 3660, and 3546 differentially expressed genes (DEGs) identified in the WM/NL, PM/NL and LM/NL comparisons, respectively. CONCLUSION: The analysis of the methylome and transcriptome showed that 9 DMR-associated DEGs were involved in the carotenoid metabolism and flavonoid biosynthesis pathway. The expression of different transcription factors (TFs) may also influence the chlorophyll biosynthesis pathway, carotenoid metabolism and the flavonoid biosynthesis pathway in apple leaf mutants. This study provides a new method for understanding the differences in the formation of apple seedlings with different degrees of albinism.


Assuntos
Albinismo , Malus , Albinismo/genética , Albinismo/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Epigenoma , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malus/genética , Malus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plântula/genética , Plântula/metabolismo , Transcriptoma
18.
Sci Rep ; 12(1): 6500, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35444199

RESUMO

Nitric oxide (NO) has been proven to be involved in the regulation of many physiological processes in plants. Though the contribution of NO in plant response to drought has been demonstrated in numerous studies, this phenomenon remains still not fully recognized. The research presented here was performed to decipher the role of NO metabolism in drought tolerance and the ability to recover after stress cessation in two closely related species of forage grasses, important for agriculture in European temperate regions: Festuca arundinacea and F. glaucescens. In both species, two genotypes with distinct levels of drought tolerance were selected to compare their physiological reactions to simulated water deficit and further re-watering, combined with a simultaneous application of NO scavenger, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The results clearly indicated a strong relationship between scavenging of NO in leaves and physiological response of both analyzed grass species to water deficit and re-watering. It was revealed that NO generated under drought was mainly located in mesophyll cells. In plants with reduced NO level a higher photosynthetic capacity and delay in stomatal closure under drought, were observed. Moreover, NO scavenging resulted also in the increased membrane permeability and higher accumulation of ROS in cells of analyzed plants both under drought and re-watering. This phenomena indicate that lower NO level might reduce drought tolerance and the ability of F. arundinacea and F. glaucescens to recover after stress cessation.


Assuntos
Festuca , Lolium , Secas , Festuca/genética , Lolium/genética , Óxido Nítrico/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Poaceae/metabolismo , Estresse Fisiológico/genética , Água/metabolismo
19.
Mol Cells ; 45(5): 294-305, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35422451

RESUMO

E3 ligase BRUTUS (BTS), a putative iron sensor, is expressed in both root and shoot tissues in seedlings of Arabidopsis thaliana. The role of BTS in root tissues has been well established. However, its role in shoot tissues has been scarcely studied. Comparative transcriptome analysis with shoot and root tissues revealed that BTS is involved in regulating energy metabolism by modulating expression of mitochondrial and chloroplast genes in shoot tissues. Moreover, in shoot tissues of bts-1 plants, levels of ADP and ATP and the ratio of ADP/ATP were greatly increased with a concomitant decrease in levels of soluble sugar and starch. The decreased starch level in bts-1 shoot tissues was restored to the level of shoot tissues of wild-type plants upon vanadate treatment. Through this study, we expand the role of BTS to regulation of energy metabolism in the shoot in addition to its role of iron deficiency response in roots.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Metabolismo Energético/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta , Amido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Food Funct ; 13(9): 5287-5298, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35441628

RESUMO

The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-ß-Glcp-1 → 4-ß-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-ß-Galp-1 → 2-ß-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.


Assuntos
Morus , Prebióticos , Glucose , Oligossacarídeos/metabolismo , Folhas de Planta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA