Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.505
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Adv Skin Wound Care ; 35(2): 109-111, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35050919

RESUMO

OBJECTIVE: Phototherapy is a well-established therapy in dermatology. However, there is limited evidence regarding phototherapy for the treatment of generalized pruritus of unknown origin (GPUO). The objective of this study was to assess the efficacy and safety of narrowband ultraviolet B (NB-UVB) phototherapy in patients with GPUO. METHODS: Researchers conducted a retrospective review of the treatment outcomes of patients with GPUO who were treated with NB-UVB between 2004 and 2019 at their facility. RESULTS: Investigators included 67 patients diagnosed with GPUO treated with NB-UVB. Complete remission was achieved in more than 70% of the patients. No serious adverse events were documented. CONCLUSIONS: For patients with GPUO, NB-UVB may be a safe and effective treatment option.


Assuntos
Terapia Ultravioleta , Humanos , Fototerapia , Prurido/diagnóstico , Prurido/etiologia , Prurido/terapia , Estudos Retrospectivos , Resultado do Tratamento
2.
Artigo em Alemão | MEDLINE | ID: mdl-35021238

RESUMO

Circadian dysrhythmia affects the majority of ICU patients and has far-reaching effects on organ functioning. At the level of the central nervous system, circadian misalignment facilitates executive cognitive dysfunction and the development of ICU delirium. The pathophysiological mechanisms, especially in the cohort of critically ill patients, appear to be complex, multilayered and far from understood. Results from preliminary research indicate that multidimensional, patient-specific chronotherapeutic concepts developed specifically for the ICU setting may help improve the healing process of patients. Circadian lighting therapy might be a promising intervention in this context.


Assuntos
Estado Terminal , Delírio , Delírio/prevenção & controle , Humanos , Unidades de Terapia Intensiva , Fototerapia , Fatores de Risco
3.
J Colloid Interface Sci ; 611: 193-204, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34953455

RESUMO

Multifunctional phototheranostics combining diagnostic and therapeutic modalities may provide a revolutionary opportunity for cancer treatment. As a promising tumor phototheranostic molecule, IR780 iodide (IR780) shows excellent photodynamic and photothermal performance under near-infrared laser irradiation; however, its hydrophobicity and instability limit its further use in organisms. This work demonstrates the design and development of a multifunctional nanoplatform (PMIDA, referring to polydopamine (PDA)-manganese dioxide (MnO2)-IR780) for imaging-guided phototherapy. The good biocompatibility of PDA greatly improves the water solubility and photostability of IR780, and its excellent photothermal properties make PMIDA a dual photothermal therapy (PTT). MnO2-induced generation of oxygen in the tumor microenvironment improves the hypoxia effect and photodynamic therapy (PDT) of IR780. Moreover, Mn2+ serves as a decent T1-weighted magnetic resonance imaging (MRI) probe to guide treatment. Notably, in relevant cellular assays, PMIDA shows high photodynamic and photothermal effects contributing to the final therapeutic effect. The MRI-guided PDT/PTT synergistic therapy effect in vivo is demonstrated by precise tumor diagnosis and complete tumor elimination outcomes. Based on these experiments, PMIDA nanoparticles display promising effects in facilitating intravenous injection of IR780 and achieving magnetic resonance imaging (MRI)-guided phototheranostic efficacy for tumor treatment.


Assuntos
Nanopartículas , Fotoquimioterapia , Linhagem Celular Tumoral , Indóis , Iodetos , Imageamento por Ressonância Magnética , Compostos de Manganês , Óxidos , Fototerapia , Terapia Fototérmica , Polímeros
4.
J Colloid Interface Sci ; 609: 364-374, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34902673

RESUMO

Advances in nanozyme involve an efficient catalytic process, which has demonstrated great potential in tumor therapy. The key to improving catalytic therapy is to solve the limitation of the tumor microenvironment on Fenton reaction. In this work, Prussian blue nanoparticles doped with different rare earth ions (Yb3+, Gd3+, Tm3+) were screened to perform synergistic of photothermalandcatalytictumortherapy. The optimized catalytic performance can be further enhanced through photothermal effect to maximize the Fenton reaction to solve the limitation of the tumor microenvironment. Yb-PB, with the optimal photothermal and catalytic performance, was screened out. In order to avoid the scavenging effect of glutathione (GSH) on ·OH in tumor cells and the reaction with a bit H2O2 in normal cells, GSH targeted polydopamine (PDA) was wrapped on the surface of Yb-PB to obtain Yb-PB@PDA. It was found that enough hydroxyl radicals (·OH) can be generated even if at high GSH concentration and the NIR irradiation can help produce more ·OH. Cell fluorescence imaging (FOI) and in vivo magnetic resonance imaging (MRI) experiments showed the potential application in FOI/MRI dual-mode imaging guided therapy. In vivo anti-tumor experiments showed that Yb-PB@PDA has a satisfactory anti-cancer effect through the combined effect of catalytic/photothermal therapy. Thus, a multifunctional nanozyme for tumor therapy is constructed.


Assuntos
Hipertermia Induzida , Nanopartículas , Catálise , Peróxido de Hidrogênio , Fototerapia
5.
J Colloid Interface Sci ; 610: 89-97, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922085

RESUMO

Synergistic therapy has been emerging as new trend for effective tumor treatment due to synchronous function and cooperative reinforcement of multi therapeutic modalities. Herein, gold nanorods (GNRs) encapsulated into polypyrrole (PPy) shell with tunable void space (GNRs@Void@PPy) showing yolk@shell nanostructures were innovatively designed. The exploitation of dual near-infrared (NIR) absorptive species offered synergistic enhancement of photothermal performance. In addition, the manipulation of the void space between them provided additional benefits of high drug encapsulation efficiency (92.6%) and, interestingly, tumor microenvironment and NIR irradiation triggered targeted drug releasing. Moreover, the GNRs@Void@PPy exhibited excellent biocompatibility, and optimal curative effect by chemo-photothermal synergistic therapy was achieved through both in vitro and in vivo antitumor activity investigation.


Assuntos
Nanotubos , Neoplasias , Preparações Farmacêuticas , Linhagem Celular Tumoral , Doxorrubicina , Ouro , Humanos , Neoplasias/tratamento farmacológico , Fototerapia , Polímeros , Pirróis , Microambiente Tumoral
6.
J Colloid Interface Sci ; 610: 313-320, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923269

RESUMO

Dense tumor stroma is the physiological barrier in drug delivery that prevents anticancer drugs from entering the tumor, thereby seriously limiting the drugs' therapeutic effect. In this study, a Janus nanoplatform consisting of periodic mesoporous organosilica-coated platinum nanoplatforms (JPMO-Pt) and anti-stroma drug halofuginone (HF) (denoted as JPMO-Pt-HF), was developed to deplete the tumor stroma and synergistically treat breast cancer in BALB/c mice. The prepared JPMO-Pt had a uniform size of 245 nm, a good dispersion, an excellent in vitro and in vivo biocompatibility, and a high loading capacity for HF (up to 50 µg/mg). The antitumor experiments showed that the survival rate of 4 T1 cells exhibited an obvious downward trend when the cells were incubated with the JPMO-Pt-HF and irradiated with 808 nm laser. Moreover, the cell survival rate was only about 10% at 48 h when the HF concentration was 2.0 µg/mL. Notably, JPMO-Pt-HF under irradiation had an excellent synergistic therapeutic effect on tumor cells. In vivo antitumor experiment further showed that the JPMO-Pt-HF, in combination with laser irradiation, could minimize tumor growth, showing significantly better effects than those observed for the case of monotherapy involving photothermal therapy (PTT) (152 vs. 670 mm3, p < 0.0001) and HF (152 vs. 419 mm3, p = 0.0208). In addition, immunohistochemistry of tumor tissues indicated that JPMO-Pt-HF obviously reduced the relative collagen and α-smooth muscle actin (α-SMA) area fraction. Taken together, this research designs a new platform that not only possesses the ability to degrade the tumor matrix but also combines PTT and chemotherapeutic effects, and holds promise for effective tumor treatment.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Sistemas de Liberação de Medicamentos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia , Terapia Fototérmica , Piperidinas , Quinazolinonas
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120458, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619508

RESUMO

Near-infrared (NIR) photothermal therapy is an effective partner to the chemotherapy of tumors with the merits of high therapeutic ability and slight side effect on normal tissues. Herein, we synthesized gold nanorods and assembled them with L-cysteine reduced graphene oxide (AuNR@Lcyst-rGO) for efficient photothermal therapy. The high therapeutic efficacy of AuNR@Lcyst-rGO can be due to the high photothermal effect of gold nanorods and reduced graphene oxide, and the synergistic effect of them. The nontoxicity of L-cysteine also guarantees the comfortable biocompatibility of reduced graphene oxide, which is essential for the photothermal absorber used in human tissue. The results demonstrate that assembly of gold nanorods with reduced graphene oxide (AuNR@Lcyst-rGO) is a promising photothermal agent with high efficient NIR-triggered photothermal therapy efficiency, excellent stability, superior biocompatibility.


Assuntos
Grafite , Nanotubos , Neoplasias , Linhagem Celular Tumoral , Cisteína , Ouro , Humanos , Neoplasias/terapia , Fototerapia , Terapia Fototérmica
8.
J Colloid Interface Sci ; 605: 296-310, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34329981

RESUMO

This paper presents the design of a new type of intelligent and versatile all-in-one therapeutic nanoplatform for the co-delivery of chemotherapeutic drugs and photosensitizers to facilitate multimodal antitumor treatment; the system is based on hyaluronic acid (HA)-modified manganese dioxide (MnO2)-enveloped hollow porous copper sulfide (CuS) nanoparticles (CuS@MnO2/HA NPs). In this system, a CuS inner shell allows for the co-loading of doxorubicin (DOX) and indocyanine green (ICG) and induces photothermal effects, and a biodegradable MnO2 external shell affords on-demand tumor microenvironment (TME)-triggered release and catalase- andFenton-like activities. Moreover, the HA modification endows the system with a CD44 receptor-mediated tumor-targeting property. The formulated DOX and ICG co-loaded CuS@MnO2/HA (DOX/ICG-CuS@MnO2/HA) NPs were found to exhibit excellent photothermal performance both in vitro and in vivo. In addition, DOX/ICG-CuS@MnO2/HA NPs were found to display both TME and near-infrared (NIR)-responsive controlled release properties. The NPs also have a superior reactive oxygen species (ROS) generation capacity due to the combination of enhanced ICG-induced singlet oxygen and CuS@MnO2-mediated hydroxyl radicals. The cellular uptake, fluorescence imaging property, cytotoxicity, and thermal imaging of these NPs were also evaluated. In tumor-bearing mice, the DOX/ICG-CuS@MnO2/HA NPs displayeda superior antitumor efficacy (2.57-fold) as compared with free DOX. Therefore, the developed DOX/ICG-CuS@MnO2/HA NPs have a great potential for use as an all-in-one nanotherapeutic agent for the efficient and precise induction of chemo/photothermal/photodynamic/chemodynamic therapy with superior antitumor efficacy and fewer side effects.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Animais , Cobre , Doxorrubicina/farmacologia , Ácido Hialurônico , Compostos de Manganês , Camundongos , Óxidos , Fármacos Fotossensibilizantes , Fototerapia , Sulfetos
9.
J Colloid Interface Sci ; 605: 752-765, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34365311

RESUMO

One major challenge of photothermal therapy (PTT) is achieving thermal ablation of the tumor without damaging the normal cells and tissues. Here, we designed a self-regulating photothermal conversion system for selective thermotherapy based on self-assembling gold nanoparticles (S-AuNPs) and investigated the selectivity effect using a novel home-made in vitro selective photothermal transformation model and an in vivo skin damaging assessment model. In the in vitro selective photothermal transformation model, laser irradiation selectively increased the temperature of the internal microenvironment (pH 5.5) and resulted in an obvious temperature difference (ΔT ≥ 5 °C) with that of the external environment (pH 7.4). More importantly, in the in vivo skin damaging assessment model, S-AuNPs achieved good tumor inhibition without damaging the normal skin tissue compared with the conventional photothermal material. This work provides not only a novel validation protocol for tumor thermotherapy to achieve the biosafety of specifically killing tumor cells and normal tissue but also an evaluation methodology for other precise therapy for cancers.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Ouro , Humanos , Neoplasias/terapia , Fototerapia , Microambiente Tumoral
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120221, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34391993

RESUMO

Photothermal nanomaterials with near-infrared absorption and high energy conversion efficiency have recently attracted significant interest. Polypyrrole-gold nanocomposites (PPy-Au NCs) as photothermal nanoagents are synthesized using ex-situ polymerization method of the modified pyrrole monomers. Microscopic and spectroscopic characterization techniques are used to reveal the surface structure, composition variation and photoelectric properties of PPy-Au NCs, gold nanorods (Au NRs) and polypyyrole nanoparticles (PPy NPs). Their cytotoxic effects on the viability of Ehrlich Ascites Carcinoma cells in the dark are demonstrated. The surface coating of Au NRs with PPy NPs shows an enhancement in the photothermal efficiency of the proposed photothermal nanoagent. The photothermal conversion of nanomaterials are examined using polarized polychromatic incoherent low-energy light source (the energy density of the light is 2.4 J/cm2 per minute and the specific power density is 40 mW/cm2).


Assuntos
Ouro , Nanocompostos , Fototerapia , Polímeros/toxicidade , Pirróis/toxicidade
11.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112164, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34735859

RESUMO

IR825 is a kind of near-infrared (NIR) small molecule cyanine dye and has distinct near-infrared absorbance and excellent thermal conversion performance. Due to poor stability and insufficient therapy efficacy, various nano-systems have been developed as delivery vehicles for NIR dyes to improve their application in tumor treatment. Herein, we developed an intelligent polymer drug vehicle (Mal-PAH-PEG-DMMA/ poly (ethylene imine) - poly(ε-caprolactone) block polymers, MPPD/PEI-PCL) based on pH-responsive charge-reversal to deliver docetaxel (DTX) and photosensitizer (IR825) for chemo-photothermal combination therapy (MPPD@IR825/DTX NPs). MPPD@IR825/DTX NPs could undergo charge conversion in a slightly acidic microenvironment (pH 6.8), resulted in strong electrostatic repulsion to withdraw the shell of the polymer nanoparticles (MPPD), enhanced cellular uptake and increased drug release. MPPD@IR825/DTX NPs demonstrated nanoscale in size with good mono-dispersity and stability, triggered DTX release in response to acid environment and NIR stimulation, in the same time providing excellent photothermal conversion efficiency. In vitro and In vivo experiments confirmed that charge-reversal polymeric nanoparticles improved antitumor efficiency in 4T1 tumor cell modal than non-charge-reversal polymeric nanoparticles. Furthermore, in comparison with chemotherapy or photothermal therapy in a single treatment mode, chemo-photothermal combination therapy of MPPD@IR825/DTX NPs with laser irradiation showed highly efficient tumor ablation. In addition, the polymeric nanoparticles exhibited good biocompatibility and safety. Therefore, the design of charge-reversal polymeric nanoparticles (MPPD@IR825/DTX NPs) provides a new strategy and promising application for targeting and synergistic chemo-photothermal combination therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Docetaxel/farmacologia , Doxorrubicina , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Fototerapia , Terapia Fototérmica , Polímeros , Microambiente Tumoral
12.
Colloids Surf B Biointerfaces ; 209(Pt 2): 112177, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749194

RESUMO

Rapamycin (RAPA) functions as effectively clinical immunosuppressive agent, its significant tumor growth suppression effect via various pathways in diverse cancers, especially combined with photothermal therapy, is gaining a burgeoning attention. However, its critical defects, low solubility and poor stability, have severely hampered its further application. Herein, RAPA, indocyanine green (ICG) and epigallocatechin gallate (EGCG) serving as chemotherapeutic drug, photosensitizer and biomimetic coatings, respectively, were co-assembled into carrier-free, high biocompatible ICG-RAPA-EGCG nanoparticles (IRE NPs) for synergistic cancer therapy. Particularly, the bioinspired EGCG coatings not only improved the stability of IRE NPs under physiological conditions to avert NPs disassembly and drug release, but also maintained the photostability of ICG to achieve excellent photothermal response. The results indicated that the as-prepared IRE NPs displayed good monodispersity and enhanced stability at various stored media after introducing of EGCG. Compared with monotherapy of RAPA or ICG, IRE NPs showed higher dose-dependent toxicity in MCF-7 cells, HepG2 cells and HeLa cells, especially plus near-infrared laser irradiation. Furthermore, IRE NPs exhibited quicker uptake in cells, higher accumulation in tumor region (even in 48 h) than free ICG and effectively inhibited tumor growth without side effect in H22 tumor-bearing mice. Collectively, the carrier-free IRE NPs provided a simply alternative approach to fabricate RAPA/photosensitizer co-loaded nanoparticles for combinatorial tumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Animais , Biomimética , Linhagem Celular Tumoral , Células HeLa , Humanos , Verde de Indocianina , Camundongos , Fármacos Fotossensibilizantes , Fototerapia , Terapia Fototérmica , Polifenóis , Serina-Treonina Quinases TOR
13.
J Colloid Interface Sci ; 607(Pt 1): 1-15, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34500412

RESUMO

The intracellular O2-supply not only can relieve tumor hypoxia but also enhance the effects of photodynamic therapy (PDT). In this work, metallic Mo2C@N-carbon@PEG nanoparticles were constructed to reveal the near infrared (NIR)-photocatalytic O2 generation and promote photodynamic therapy (PDT). Here, (NH4)6Mo7O24·4H2O nanorods and urea were adopted as resources that were calcined to obtain Mo2C@N-carbon nanoparticles (20 nm). All samples displayed high NIR absorption as well as photothermal conversion efficiency of up to 52.7 % (Mo2C@N-Carbon-3@PEG). The density functional theory calculations demonstrated the metallic characteristic of Mo2C and that the consecutive interband/intraband charge-transition was responsible for the high NIR harvest and redox ability of electron-hole pairs, making the NIR-photocatalytic O2 and reactive oxygen species (ROS) generation. In comparison with the pure Mo2C, the heterostructure displayed twice the performance due to the enhanced charge-segregation between Mo2C and N-carbon. Given the high X-ray absorption coefficient and photothermal ability, the nanocomposite could be used in novel computer tomography and photothermal imaging contrast. Furthermore, the novel biodegradation and metabolism behaviors of nanocomposites were investigated, which were reflected as elimination from the body (mouse) via feces and urine within 14 days. The as-synthesized Mo2C@N-Carbon@PEG nanocomposites integrated the dual-model imaging, intracellular O2-supply, and phototherapy into one nanoplatform, revealing its potential for anti-cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Animais , Carbono , Linhagem Celular Tumoral , Camundongos , Molibdênio , Neoplasias/tratamento farmacológico , Oxigênio , Fototerapia
14.
Colloids Surf B Biointerfaces ; 210: 112261, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34902711

RESUMO

In this work, a novel layered double hydroxide (LDH)-based multifunctional nanoplatform was built for synergistic photothermal therapy (PTT)/chemotherapy. The platform was modified using the peptide B3int to target cancer cells with overexpression of integrin αvß3. Indocyanine green (ICG) and doxorubicin (DOX) were loaded into the nanocarrier (LDH-PEG-B3int NPs) to form a system having a high drug loading (18.62%) and a remarkable photothermal conversion efficiency of 25.38%. It also showed pH-responsive and near-infrared (NIR)-triggered DOX release. In vitro and in vivo studies indicated that the anti-tumor activity of the combined delivery system was significantly higher than that of a single delivery system. This co-delivery nanosystem may be helpful for future application in the clinical treatment of cancer.


Assuntos
Hipertermia Induzida , Nanopartículas , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Hidróxidos , Fototerapia , Terapia Fototérmica
15.
Artigo em Russo | MEDLINE | ID: mdl-34965696

RESUMO

Theoretical background of a rational combination of dynamic electric neurostimulation (DENS) and spectral phototherapy (SPT) for complex elimination of age-related changes of facial tissues (ARCFT) and restoration of the body's functional reserves (BFR) is provided. Comparative results of separate and combined application of DENS and SPT (DENS&SPT) are provided. The results obtained upon examination of 90 patients have shown that DENS&SPT is more effective compared to separate application of the above procedures for both eliminating ARCFT and increasing BFR. After a course of DENS&SPT procedures, 87.5% of women evaluated the obtained aesthetic result as «significant improvement¼ and «improvement¼. When exposed to DENS&SPT, 5 of 8 measured parameters of facial skin condition improved significantly. At the same time, there was a restoration of BFR stress levels to moderate and optimal levels. DENS&SPT provides a mutually potentiating effect both in the aspect of correction of ARCFT and restoration of BFR decreasing with age.


Assuntos
Terapia por Estimulação Elétrica , Fototerapia , Feminino , Humanos , Rejuvenescimento
16.
Front Cell Infect Microbiol ; 11: 673070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722326

RESUMO

The search for an effective etiologic treatment to eliminate Trypanosoma cruzi, the causative agent of Chagas disease, has continued for decades and yielded controversial results. In the 1970s, nifurtimox and benznidazole were introduced for clinical assessment, but factors such as parasite resistance, high cellular toxicity, and efficacy in acute and chronic phases of the infection have been debated even today. This study proposes an innovative strategy to support the controlling of the T. cruzi using blue light phototherapy or blue light-emitting diode (LED) intervention. In in vitro assays, axenic cultures of Y and CL strains of T. cruzi were exposed to 460 nm and 40 µW/cm2 of blue light for 5 days (6 h/day), and parasite replication was evaluated daily. For in vivo experiments, C57BL6 mice were infected with the Y strain of T. cruzi and exposed to 460 nm and 7 µW/cm2 of blue light for 9 days (12 h/day). Parasite count in the blood and cardiac tissue was determined, and plasma interleukin (IL-6), tumoral necrosis factor (TNF), chemokine ligand 2 (CCL2), and IL-10 levels and the morphometry of the cardiac tissue were evaluated. Blue light induced a 50% reduction in T. cruzi (epimastigote forms) replication in vitro after 5 days of exposure. This blue light-mediated parasite control was also observed by the T. cruzi reduction in the blood (trypomastigote forms) and in the cardiac tissue (parasite DNA and amastigote nests) of infected mice. Phototherapy reduced plasma IL-6, TNF and IL-10, but not CCL2, levels in infected animals. This non-chemical therapy reduced the volume density of the heart stroma in the cardiac connective tissue but did not ameliorate the mouse myocarditis, maintaining a predominance of pericellular and perivascular mononuclear inflammatory infiltration with an increase in polymorphonuclear cells. Together, these data highlight, for the first time, the use of blue light therapy to control circulating and tissue forms of T. cruzi. Further investigation would demonstrate the application of this promising and potential complementary strategy for the treatment of Chagas disease.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Doença de Chagas/terapia , Coração , Camundongos , Camundongos Endogâmicos C57BL , Fototerapia
17.
Nanoscale ; 13(43): 18300-18310, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34724017

RESUMO

Photothermal therapy has been considered a powerful means of cancer therapy due to its minimal invasiveness, effectiveness, and convenience. Although promising, the therapeutic effects are greatly limited as they rely on the photothermal agent (PTA). It is urgent to develop new PTAs with high photothermal conversion performance, especially under irradiation in the long-wavelength biowindows. Herein, a dual-biowindow-responsive PTA made of NbS2-PVP nanosheets was fabricated to be used both in the first near-infrared (NIR-I) and the second near-infrared (NIR-II) biowindows. With excellent hydrophilicity and biocompatibility, the nanosheets could effectively convert the near-infrared (NIR) light into heat, showing prominent photothermal stability. The calculated photothermal conversion efficiencies reached 59.2% (under NIR-I excitation) and 69.1% (under NIR-II excitation), respectively, which are comparable to those of metallic PTAs. The NbS2-PVP nanosheets had low cytotoxicity and could trigger strong photothermal treatment and cause cancer cell death upon irradiation by NIR-I or NIR-II light in vitro. Moreover, we have also demonstrated the highly efficient tissue ablation and tumor inhibition capability of NbS2-PVP nanosheets in vivo. This work explores an effective PTA of two-dimensional nanomaterials in NIR-I and NIR-II biowindows and offers a reference for the design of new kinds of PTAs.


Assuntos
Nanoestruturas , Neoplasias , Humanos , Neoplasias/terapia , Fototerapia , Terapia Fototérmica
18.
Nanoscale ; 13(44): 18483-18497, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34752596

RESUMO

Nanoparticle-mediated photothermal therapy (PTT) is an emerging modality to treat tumors with both spatial and temporal control provided by light activation. Gold decorated iron oxide nanoflowers (GIONF) are good candidates for PTT due to their biocompatibility, biodegradability and light-to-heat conversion. Profound changes in the tumor immune environment might be early induced by the gold and iron oxide metallic agents in addition to the photothermal effects. This study aims to elucidate the outcome of GIONF on their own, and of GIONF-induced mild hyperthermia in the tumor immune infiltrate in a murine model of triple negative breast cancer. First we explored the effects of 24 h GIONF exposure on bone-marrow derived macrophages (BMDM), revealing significant effects on the BMDM phenotype and secretion, 6 days post-incubation, with important downregulation of several cytokines and MHCII expression, predominantly towards a pro-inflammatory response. Intratumoral administration of GIONF promoted an increase in monocyte recruitment at day 1 post-administration, shifting towards a pro-inflammatory anti-tumor microenvironment with lower Treg population and a 4 fold lower CD4/CD8 ratio compared to the control at day 12. On top of the GIONF effects, mild hyperthermia (43 °C for 15 min), although it does not induce significant changes in tumor growth, resulted in an additional increase of CD8+ T lymphocytes and pro-inflammatory cytokines. The combination of a timely controlled immune response to GIONF and to mild hyperthermia could be used as a remotely triggered adjuvant treatment to immunotherapy approaches at the best favorable time-window.


Assuntos
Ouro , Hipertermia Induzida , Animais , Linhagem Celular Tumoral , Compostos Férricos , Hipertermia , Camundongos , Fototerapia
19.
Nanoscale ; 13(44): 18546-18557, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34730162

RESUMO

The exploration of MXenes, especially nitride MXenes, in the field of theranostic nanomedicine is still in its infancy. Here, towards synergistic chemo-photothermal oncotherapy, we demonstrate the first kind of 2D titanium nitride (Ti2N) MXene-based nanosystem (Ti2N@oSi) for dual-strategy synergistic oncotherapy. The unique structure of Ti2N nanosheets endows the drug carriers with an ultrahigh loading capacity of 796.3% and an excellent NIR photothermal conversion efficiency of 41.6% for chemo-photothermal therapy. After being coated with a biodegradable organosilica shell, the Ti2N@oSi nanocarriers show excellent characteristics of tumor targeting, pH/glutathione/photothermal-responsive drug release and dual-drug combination chemotherapy. Both in vitro and in vivo therapeutic evaluations demonstrate the pronounced tumor growth inhibition effect and superior biocompatibility of Ti2N@oSi nanocarriers. The excellent drug loading ability, photothermal conversion ability and surface modifiability of Ti2N open up new opportunities for tumor microenvironment-targeted synergistic oncotherapy. This work is supposed to broaden the application of MXenes in nanomedicine and, particularly, provide the first sight to the biomedical application of nitride MXenes.


Assuntos
Hipertermia Induzida , Nanopartículas , Linhagem Celular Tumoral , Doxorrubicina , Portadores de Fármacos , Liberação Controlada de Fármacos , Fototerapia , Nanomedicina Teranóstica , Titânio
20.
Int J Nanomedicine ; 16: 7297-7305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737567

RESUMO

Aim: To develop an innovative 211At nanoplatform with high radiolabeling efficiency and low in vivo deastatination for future targeted alpha-particle therapy (TAT) to treat cancer. Methods: Star-shaped gold nanoparticles, gold nanostars (GNS), were used as the platform for 211At radiolabeling. Radiolabeling efficiency under different reaction conditions was tested. Uptake in the thyroid and stomach after systemic administration was used to evaluate the in vivo stability of 211At-labeled GNS. A subcutaneous U87MG human glioma xenograft murine model was used to preliminarily evaluate the therapeutic efficacy of 211At-labeled GNS after intratumoral administration. Results: The efficiency of labeling GNS with 211At was almost 100% using a simple and rapid synthesis process that was completed in only 1 min. In vitro stability test in serum showed that more than 99% of the 211At activity remained on the GNS after 24 h incubation at 37°C. In vivo biodistribution results showed low uptake in the thyroid (0.44-0.64%ID) and stomach (0.21-0.49%ID) between 0.5 and 21 h after intravenous injection, thus indicating excellent in vivo stability of 211At-labeled GNS. The preliminary therapeutic efficacy study demonstrated that 211At labeled GNS substantially reduced tumor growth (P < 0.001; two-way ANOVA) after intratumoral administration. Conclusion: The new 211At radiolabeling strategy based on GNS has the advantages of a simple process, high labeling efficiency, and minimal in vivo dissociation, making it an attractive potential platform for developing TAT agents that warrants further evaluation in future preclinical studies directed to evaluating prospects for clinical translation.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Animais , Linhagem Celular Tumoral , Ouro , Humanos , Camundongos , Fototerapia , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA