Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.836
Filtrar
1.
Sci Rep ; 12(1): 7481, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523985

RESUMO

Expression quantitative trait loci (eQTLs) are associations between genetic variants, such as Single Nucleotide Polymorphisms (SNPs), and gene expression. eQTLs are an important tool to understand the genetic variance of gene expression of complex phenotypes. eQTLs analyses are common in biomedical models but are scarce in woody crop species such as fruit trees or grapes. In this study, a comprehensive bioinformatic analysis was conducted leveraging with expression data from two different growth stages, around ripening onset, of 10 genotypes of grape (Vitis vinifera L.). A total of 2170 cis-eQTL were identified in 212 gene modulated at ripening onset. The 48% of these DEGs have a known function. Among the annotated protein-coding genes, terpene synthase, auxin-regulatory factors, GRFS, ANK_REP_REGION domain-containing protein, Kinesin motor domain-containing protein and flavonol synthase were noted. This new inventory of cis-eQTLs influencing gene expression during fruit ripening will be an important resource to examine variation for this trait and will help to elucidate the complex genetic architecture underlying this process in grape.


Assuntos
Vitis , Biologia Computacional , Frutas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Vitis/metabolismo
2.
Phys Biol ; 19(4)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35526174

RESUMO

The spot patterns on bananas are a striking case of biological pattern formation and-as a qualitative ripeness indicator-linked to 50 million tons of wasted food per year. Ripening bananas develop these senescent spots as phenolic compounds are enzymatically oxidized and cellular integrity is lost. We characterize the dynamics of the spot expansion and their nucleation rates based on time-lapse movies. Spots nucleate for about 2 days yielding a typical density of 8 spots/cm2. The expansion is initially diffusion controlled and the effective diffusion coefficient decreases with nucleation time from 1.3 to 0.4 mm2d-1. During and after expansion, the browning fronts maintain a steep and constant intensity gradient. We quantitatively reproduce these features by a reaction-diffusion model that considers the local oxygen concentration and browning degree of the peel. All model parameters are based on measurements and front stalling is explained by decreasing oxygen levels in the nucleation sites.


Assuntos
Musa , Apoptose , Frutas/metabolismo , Musa/metabolismo , Oxirredução , Oxigênio/metabolismo
3.
Food Microbiol ; 105: 103885, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35473968

RESUMO

Cucumber is usually eaten as a raw vegetable and easily contaminated by pathogenic microorganisms; the contamination process includes colonization, proliferation, and biofilm formation. In this study, plate counting was used to determine the stage of E. coli O157:H7 colonization/proliferation in cucumber epidermis and fruit. Expression of E. coli genes associated with adhesion, movement and oxidative stress response during colonization and proliferation in cucumber was evaluated with fluorescence real-time quantitative PCR. Scanning electron microscopy imaging was used to observe biofilm formation over time in different cucumber tissues at 4 °C and 25 °C. During colonization (at 0-45 and 0-30 min in epidermis and fruit, respectively), escV, fliC, espA, escN, espF, espG, espZ, nleA, tir, and ycbR genes were upregulated. The escC was downregulated, while map and espH expression did not vary. During proliferation (after 45 and 30 min in epidermis and fruit, respectively), fliC was downregulated, whereas the outer membrane protein intimin gene and oxidative stress genes rpoS and sodB were upregulated. During storage, 25 °C was more favorable for biofilm formation than 4 °C. The ability of biofilm formation on the vascular system was the strongest, and the biofilm on epidermis sloughed off earlier than that on other tissues. Clarifying the process of E. coli O157:H7 contaminating cucumbers provided useful information for the development of prevention and control methods of fresh-cut cucumber.


Assuntos
Cucumis sativus , Escherichia coli O157 , Proteínas de Escherichia coli , Biofilmes , Cucumis sativus/metabolismo , Proteínas de Escherichia coli/genética , Frutas/metabolismo
4.
Food Chem ; 387: 132921, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413549

RESUMO

To avoid chilling injury (CI) of apricots during storage, 1-2 °C and 4-6 °C storage as controls, the relationship between changes in cell wall characteristics and the occurrences of chilling injury under near-freezing temperature (NFT) storage was studied. NFT-stored improved apricots quality and inhibited CI index, membrane permeability and malondialdehyde (MDA) content; This also significantly inhibited the activity of cell wall modifying enzymes, delaying the solubilization of water-soluble pectin (WSP) and the degradation of cellulose. Transmission electron microscopy (TEM) imaging revealed that the density of the middle lamella in stored for 49 d was higher NFT than controlled temperature, delaying cell wall and chloroplast disintegration. Additionally, NFT-stored has no CI during the shelf life, and can be normal after ripening, maintaining higher commodity rate and sensory characteristics. These conclusions show that NFT storage can effectively improve the cold resistance of apricot fruit.


Assuntos
Prunus armeniaca , Parede Celular/metabolismo , Temperatura Baixa , Armazenamento de Alimentos/métodos , Congelamento , Frutas/metabolismo , Temperatura
5.
Plant Sci ; 319: 111249, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487658

RESUMO

SlDREB3 was identified as a ripening up-regulated gene of the AP2/ERF-domain family of transcription factors. Its manipulation affects processes primarily governed by ABA. It negatively regulates ABA responses in tomato by altering ABA levels/signaling and is, in turn, negatively regulated by ABA. SlDREB3 over-expression lines show higher transcript levels of the ABA metabolism genes CYP707A3 and UGT75C1 and an 85% reduction in ABA levels leading to early seed germination. In contrast, suppression lines show decreased CYP707A3/UGT75C1 expression, 3-fold higher ABA levels and delayed germination. The expression of other ABA signaling and response genes is also affected. Suppression of SlDREB3 accelerates the onset of ripening by 4-5 days while its over-expression delays it and also reduces final fruit size. SlDREB3 manipulation effects large scale changes in the fruit transcriptome with suppression lines showing early increase in ABA levels and activation of most ripening pathway genes that govern ethylene, carotenoids and softening. Strikingly, key transcription factors like CNR, NOR, RIN, FUL1, governing ethylene-dependent and ethylene-independent aspects of ripening, are activated early upon SlDREB3 suppression suggesting their control by ABA. The studies identify SlDREB3 as a negative regulator of ABA responses across tissues and a key ripening regulator controlling ethylene-dependent and ethylene-independent aspects.


Assuntos
Lycopersicon esculentum , Ácido Abscísico/metabolismo , Etilenos/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Lycopersicon esculentum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457176

RESUMO

Osteoarthritis (OA) causes persistent pain, joint dysfunction, and physical disability. It is the most prevalent type of degenerative arthritis, affecting millions of people worldwide. OA is currently treated with a focus on pain relief, inflammation control, and artificial joint surgery. Hence, a therapeutic agent capable of preventing or delaying the progression of OA is needed. OA is strongly associated with the degeneration of the articular cartilage and changes in the ECM, which are primarily associated with a decrease in proteoglycan and collagen. In the progress of articular cartilage degradation, catabolic enzymes, such as matrix metalloproteinases (MMPs), are activated by IL-1ß stimulation. Given the tight relationship between IL-1ß and ECM (extra-cellular matrix) degradation, this study examined the effects of Chaenomeles Fructus (CF) on IL-1ß-induced OA in rat chondrocytes. The CF treatment reduced IL-1ß-induced MMP3/13 and ADAMTS-5 production at the mRNA and protein levels. Similarly, CF enhanced col2a and aggrecan accumulation and chondrocyte proliferation. CF inhibited NF-κB (nuclear factor kappa B) activation, nuclear translocation induced by IL-1ß, reactive oxygen species (ROS) production, and ERK phosphorylation. CF demonstrated anti-OA and articular regeneration effects on rat chondrocytes, thus, suggesting that CF is a viable and fundamental therapeutic option for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Rosaceae , Animais , Cartilagem Articular/metabolismo , Células Cultivadas , Condrócitos/metabolismo , Frutas/metabolismo , Humanos , Interleucina-1beta/farmacologia , Interleucina-1beta/uso terapêutico , NF-kappa B/metabolismo , Osteoartrite/metabolismo , Ratos , Rosaceae/metabolismo , Transdução de Sinais
7.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458795

RESUMO

Peaches are grown in many Egyptian orchards for local and global fresh market sales. The interior fruit tissue breakdown (IFTB), often resulting in decayed peaches, is a severe problem during marketing. Therefore, to minimize FTB of peaches, in this study, gum arabic (GA) and polyvinylpyrrolidone (PVP) were mixed with different concentrations of salicylic acid (SA) (0, 1, and 2 mM) and were applied as edible coating to extend the shelf life of peach fruits. Mature peaches were selected and harvested when peaches reached total soluble solid content (SSC: 8.5%) and fruit firmness of about 47 N. Fruits were coated and stored at room temperature (26 ± 1 °C and air humidity 51 ± 1%) for 10 days during two seasons: 2020 and 2021. Fruit coated with GA/PVP-SA 2 mM showed a significant (p < 0.05) inhibition in degrading enzyme activities (CWDEs), such as lipoxygenase (LOX), cellulase (CEL), and pectinase (PT), compared to uncoated and coated fruits during the shelf-life period. Hence, cell wall compartments were maintained. Consequently, there was a reduction in browning symptoms in fruits by inhibiting polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL) activities. Thus, the fruit skin browning index showed almost no symptoms. The lipid peroxidation process and ionic permeability declined as well. The result suggests that, by applying GA/PVP-SA 2 mM as an edible coating, fruit tissue breakdown can be minimized, and the shelf life of peach can be extended up to 10 days without symptoms of tissue breakdown.


Assuntos
Prunus persica , Frutas/metabolismo , Goma Arábica , Povidona , Ácido Salicílico/metabolismo
8.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456963

RESUMO

Lycopene content is one of the important factors for determining watermelon fruit quality. In this study, a small-type watermelon was grown in a greenhouse with supplementary red lighting for 10 h per day. The results showed that the content of lycopene in the flesh was increased 6.3-fold after 25 days of supplementary red lighting. qRT-PCR analysis showed that PHYTOENE SYNTHASE 1(ClPSY1) is the major gene that responds to red light within the lycopene synthesis pathway. Moreover, we identified two key transcription factors that were involved in light signal transduction PHYTOCHROME INTERACTING FACTORS 3 (ClPIF3) and LONG HYPOCOTYL 5 (ClHY5) in watermelon flesh. The interaction experiments showed that ClHY5, a potent ClPIF3 antagonist, regulated ClPSY1 expression by directly targeting a common promoter cis-element (G-box). Collectively, our findings identified that ClHY5 and ClPIF3 formed an activation-suppression transcriptional module that is responsive to red light and, through this model, regulated watermelon lycopene accumulation in greenhouse winter cultivation.


Assuntos
Citrullus , Citrullus/genética , Citrullus/metabolismo , Frutas/genética , Frutas/metabolismo , Transdução de Sinal Luminoso , Iluminação , Licopeno/metabolismo
9.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408870

RESUMO

4-Coumarate:CoA ligase (4CL, EC6.2.1.12), located at the end of the phenylpropanoid metabolic pathway, regulates the metabolic direction of phenylpropanoid derivatives and plays a pivotal role in the biosynthesis of flavonoids, lignin, and other secondary metabolites. In order to understand the molecular characteristics and potential biological functions of the 4CL gene family in the pomegranate, a bioinformatics analysis was carried out on the identified 4CLs. In this study, 12 Pg4CLs were identified in the pomegranate genome, which contained two conserved amino acid domains: AMP-binding domain Box I (SSGTTGLPKGV) and Box II (GEICIRG). During the identification, it was found that Pg4CL2 was missing Box II. The gene cloning and sequencing verified that this partial amino acid deletion was caused by genome sequencing and splicing errors, and the gene cloning results corrected the Pg4CL2 sequence information in the 'Taishanhong' genome. According to the phylogenetic tree, Pg4CLs were divided into three subfamilies, and each subfamily had 1, 1, and 10 members, respectively. Analysis of cis-acting elements found that all the upstream sequences of Pg4CLs contained at least one phytohormone response element. An RNA-seq and protein interaction network analysis suggested that Pg4CL5 was highly expressed in different tissues and may participate in lignin synthesis of pomegranate. The expression of Pg4CL in developing pomegranate fruits was analyzed by quantitative real-time PCR (qRT-PCR), and the expression level of Pg4CL2 demonstrated a decreasing trend, similar to the trend of flavonoid content, indicating Pg4CL2 may involve in flavonoid synthesis and pigment accumulation. Pg4CL3, Pg4CL7, Pg4CL8, and Pg4CL10 were almost not expressed or lowly expressed, the expression level of Pg4CL4 was higher in the later stage of fruit development, suggesting that Pg4CL4 played a crucial role in fruit ripening. The expression levels of 4CL genes were significantly different in various fruit development stages. The results laid the foundation for an in-depth analysis of pomegranate 4CL gene functions.


Assuntos
Romã (Fruta) , Aminoácidos/metabolismo , Coenzima A/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Flavonoides , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Ligases/metabolismo , Lignina/metabolismo , Filogenia , Romã (Fruta)/genética
10.
BMC Plant Biol ; 22(1): 169, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35369864

RESUMO

BACKGROUND: Sunburn is common in pomegranate, and sunburned fruits have poor appearance and low marketability. However, the physiological and metabolic responses to sunburn and their underlying molecular mechanisms in pomegranate fruit are little understood. Fruit of sunburn-sensitive cultivar 'Hongyushizi' was used to carry out physiological parameter detection and widely-targeted metabolomics and transcriptome study. RESULTS: Malondialdehyde and relative conductivity increased with the severity of sunburn, which indicated increased membrane injury. Meanwhile, the content of antioxidants (total phenols and flavonoids), which reduce and repair membrane damage, increased and were accompanied by increases in total antioxidant capacity. In sunburned fruits compared with controls, 129 metabolites changed (including naringenin, pelargonidin and kaempferol) and 447 differentially expressed genes including CHI (Pgr25966.1), F3'5'H (Pgr26644.1), and CHS (Pgr005566.1) may have contributed to these changes. Transcription factors, such as NAC 5 (Pgr008725.1), MYB 93 (Pgr001791.1), and MYB 111 (Pgr027973.1) may be involved in phenylpropanoid and flavonoid biosynthesis by regulating the CHI, F3'5'H, and CHS etc. CONCLUSIONS: These findings provide insight into the sunburn mechanisms of pomegranate, and also into the genetic improvement of fruit sunburn.


Assuntos
Romã (Fruta) , Queimadura Solar , Flavonoides/metabolismo , Frutas/genética , Frutas/metabolismo , Queimadura Solar/metabolismo , Transcriptoma
11.
Front Cell Infect Microbiol ; 12: 847828, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402299

RESUMO

Jujube (Ziziphus jujuba Mill.) fruit (JF) is widely consumed as food in Asian countries due to its potential effects for human health. As a traditional Chinese medicine, JF is often used to treat anorexia, fatigue and loose stools caused by spleen deficiency syndromes in China, but the mechanism underlying this effect has not been thoroughly elucidated. In this study, a rat model of spleen deficiency syndromes was adopted to investigate the therapeutic effect of JF extract and its possible mechanism by metabolomics analyses of plasma and urine as well as the intestinal flora analysis. The results showed that the changes in plasma and urine metabolites caused by spleen deficiency were reversed after administration of JF, and these changed endogenous metabolites were mainly involved in retinol metabolism, pentose and glucuronate interconversions, nicotinate and niacinamide metabolism pathways. The 16S rDNA sequencing results showed that JF could regulate intestinal flora imbalance caused by spleen deficiency. The covariance analysis of intestinal flora structure and metabolome indicated that Aerococcus may be a candidate strain for predicting and treating the metabolic pathways of spleen deficiency and related disorders. In summary, it can be revealed that spleen deficiency, which alters metabolic profiles and the intestinal flora, could be alleviated effectively by JF extract.


Assuntos
Microbioma Gastrointestinal , Ziziphus , Animais , Frutas/química , Frutas/metabolismo , Metabolômica , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Ratos , Baço , Síndrome , Ziziphus/química , Ziziphus/metabolismo
12.
Int J Mol Sci ; 23(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35409213

RESUMO

Phenolic compounds with antioxidant properties have risen in interest due to their benefits for human health. Fragaria chiloensis is a native wild berry species from Chile that develops a white/pink receptacle and white flesh at the ripe stage. Changes in color parameters, anthocyanins, secondary metabolites (phenolics, flavonoids), and total antioxidant capacity were followed during the development and ripening of F. chiloensis fruit. The increment in color 'a' index takes place in parallel with anthocyanins rise and the reduction in phenolics, flavonoids, and antioxidant capacity. Good correlations were determined between color development, anthocyanins, and the expression of key phenylpropanoid/flavonoid and anthocyanin pathway genes. To investigate the role of ABA on color development, detached immature fruit (C2 stage) were treated with exogenous ABA and stored at 20 °C. Fruit color development was accelerated by ABA treatment compared to non-treated fruit, and consistent with that, the increment in the accumulation of anthocyanins and transcripts of phenylpropanoid/flavonoid, and anthocyanin pathways genes such as FcPAL, FcCHS, and FcANS were observed. This suggests that ABA promotes transcriptional changes that lead to the color formation on this non-climacteric fruit.


Assuntos
Antocianinas , Fragaria , Antocianinas/metabolismo , Antioxidantes/metabolismo , Flavonoides/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Humanos , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
BMC Plant Biol ; 22(1): 186, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35395726

RESUMO

BACKGROUND: Nitraria sibirica Pall. is an economic plant with two kinds of fruit color, widely spreads in the Qinghai Tibet Plateau. The chemical analysis and pharmacological evaluation had been carried out for several tens of years, the mechanism behind the fruit color differentiation is still unclear. RESULTS: In this manuscript, the chemical analysis of the extractions showed that the chemical composition of fruit color was anthocyanin, and two kind of Nitraria sibirica Pall. were caused by the content differentiation with the same anthocyanin kinds. Cyanidin-3-[2"-(6'"-coumaroyl)-glucosyl]-glucoside (C3G) was the major anthocyanin. Transcriptome analysis and the qRT-PCR revealed that the structural genes relative to anthocyanin biosynthesis except CHS, F3'5'H and ANS were up-regulated in the peels of BF (Black fruit) compared with the peels of RF (Red fruit), which indicated that transcript factor should be the reason for the expression difference of the structure genes. In the unigenes of the transcript factor MYB and bHLH, relative to anthocyanin, only NsMYB1 (Cluster 8422.10600), was high-expression and up-expression in the peels of BF. NsMYB1 encoded the same length protein with four amino acid differences in the RF and BF, and both contained the intact DNA, HTH-MYB and SANT domains. NsMYB1 was close to the AtMYB114, AtMYB113 and AtPAP1, regulating anthocyanin biosynthesis, in phylogenetic relationship. Both NsMYB1r and NsMYB1b could promote the transcript of the structural genes, and induced the anthocyanin accumulation in all tissues of transgenic tobacco. The insertion of 'TATA' in the promoter of NsMYB1r gave one more promoter region, and was the reason for higher transcripts in black fruit possibly. CONCLUSIONS: Cyanidin-3-[2''-(6'"-coumaroyl)-glucosyl]-glucoside was the major anthocyanin in black fruit of Nitraria sibirica Pall.. NsMYB1 was a functional R2R3-MYB transcription factor, regulated the anthocyanin biosynthesis, and led to the fruit color differentiation in Nitraria sibirica Pall.


Assuntos
Antocianinas , Fatores de Transcrição , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Fatores de Transcrição/metabolismo
14.
Planta ; 255(5): 100, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389118

RESUMO

MAIN CONCLUSION: Sweet cherry flesh cells burst when exposed to water but they do so in clusters indicating heterogeneity with respect to osmotic concentration, which depends on proximity to a minor vein. Water plays a key role in cracking in sweet cherry fruit. Magnetic resonance imaging has previously indicated preferential partitioning of water along veins. A more negative osmotic potential along veins seems the likely explanation. Here we establish if cell bursting in mature sweet cherry fruit is also associated with the veins. Cell bursting was identified by a novel light microscope technique involving exposure of a cut fruit surface to water or to sucrose solutions. Upon exposure to water there was no bursting of skin cells but for cells of the flesh (mesocarp) bursting increased with time. When the cut surface was exposed to sucrose solutions of decreasing osmotic concentrations (increasing water potentials) the incidence of cell bursting increased from hypertonic (no bursting), to isotonic, to hypotonic. Cell bursting in the outer mesocarp occurred primarily in the vicinity of minor veins that in the inner mesocarp was primarily between radial veins. The median distance between a minor vein and a bursting cell (mean diameter 0.129 mm) was about 0.318 mm that between a radial vein and a bursting cell was about 0.497 mm. In contrast, the distance between adjacent minor veins averaged 2.57 mm, that between adjacent radial veins averaged 0.83 mm. Cell bursting tends to occur in clusters. Mapping of cell bursting indicates (1) that a seemingly uniform population of mesocarp cells actually represents a heterogeneous population with regard to their cell osmotic potentials and (2) cell bursting afflicts clusters of neighbouring cells in the vicinities of minor veins.


Assuntos
Prunus avium , Frutas/metabolismo , Osmose , Prunus avium/metabolismo , Sacarose/metabolismo , Água/metabolismo
15.
BMC Genomics ; 23(1): 329, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477362

RESUMO

BACKGROUND: Auxin responsive factor (ARF) family is one of core components in auxin signalling pathway, which governs diverse developmental processes and stress responses. Blueberry is an economically important berry-bearing crop and prefers to acidic soil. However, the understandings of ARF family has not yet been reported in blueberry. RESULTS: In the present study, 60 ARF genes (VcARF) were identified in blueberry, and they showed diverse gene structures and motif compositions among the groups and similar within each group in the phylogenetic tree. Noticeably, 9 digenic, 5 trigenic and 6 tetragenic VcARF pairs exhibited more than 95% identity to each other. Computational analysis indicated that 23 VcARFs harbored the miRNA responsive element (MRE) of miR160 or miR167 like other plant ARF genes. Interestingly, the MRE of miR156d/h-3p was observed in the 5'UTR of 3 VcARFs, suggesting a potentially novel post-transcriptional control. Furthermore, the transcript accumulations of VcARFs were investigated during fruit development, and three categories of transcript profiles were observed, implying different functional roles. Meanwhile, the expressions of VcARFs to different pH conditions (pH4.5 and pH6.5) were surveyed in pH-sensitive and tolerant blueberry species, and a number of VcARFs showed different transcript accumulations. More importantly, distinct transcriptional response to pH stress (pH6.5) were observed for several VcARFs (such as VcARF6s and VcARF19-3/19-4) between pH-sensitive and tolerant species, suggesting their potential roles in adaption to pH stress. CONCLUSIONS: Sixty VcARF genes were identified and characterized, and their transcript profiles were surveyed during fruit development and in response to pH stress. These findings will contribute to future research for eliciting the functional roles of VcARFs and regulatory mechanisms, especially fruit development and adaption to pH stress.


Assuntos
Mirtilos Azuis (Planta) , Ácidos Indolacéticos , Mirtilos Azuis (Planta)/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Ácidos Indolacéticos/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Plant Physiol Biochem ; 181: 12-22, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421745

RESUMO

Pomegranate (Punica granatum), an important fruit tree in the world, is rich in bioactive substances and has broad prospects for development. In this study, gene expression levels and the concentrations of metabolites involved in the metabolism of soluble sugars and organic acids were investigated in sweet and sour pomegranate cultivars at the S1 (July 25) stage, S2 (August 26) stage, and S3 (September 24) stage. The results showed that glucose, fructose, citric acid, and malic acid were predominantly present in pomegranate. The expression of invertase 2 (INV2), INV1, FRK2, FRK7, PFK2, PFK7, and HK1 was closely correlated with the fructose and glucose contents during different developmental stages, whereas the expression of sucrose synthase 3 (SUS3) and INV1 was negatively correlated with the sucrose content. The expression of MDH (c28468_g3) and WRKY42 (c20711_g1) genes were closely related to the content of sucrose, malic acid, citric acid, and succinic acid during different developmental stages. Gene expression and metabolite concentrations varied between the two cultivars. The results provide valuable information for gene discovery, marker-assisted selection, and investigation of metabolism mechanisms in pomegranate fruits.


Assuntos
Romã (Fruta) , Açúcares , Ácidos/metabolismo , Carboidratos , Ácido Cítrico/metabolismo , Frutose/metabolismo , Frutas/metabolismo , Glucose/metabolismo , Metabolômica , Compostos Orgânicos , Sacarose/metabolismo , Açúcares/metabolismo , Transcriptoma
17.
Genes (Basel) ; 13(4)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456464

RESUMO

Carotenoids are indispensable to plants and essential for human nutrition and health. Carotenoid contents are strongly influenced by light through light-responsive genes such as B-Box (BBX) genes. BBX proteins, a class of zinc-finger transcription factors, mediate many light-signaling pathways, leading to the biosynthesis of important metabolites in plants. However, the identification of the BBX gene family and expression analysis in response to photoperiod-mediated carotenoid accumulation in cucumber remains unexplored. We performed a genome-wide study and determined the expression of cucumber BBX genes (hereafter referred to as CsaBBXs genes) in the endocarp of Xishuangbanna cucumber fruit (a special type of cucumber accumulating a high level of ß-carotene in the endocarp) using an RNA-seq analysis of plants previously subjected to two photoperiodic conditions. Here, 26 BBX family genes were identified in the cucumber genome and named serially CsaBBX1 through CsaBBX26. We characterized CsaBBX genes in terms of their phylogenetic relationships, exon-intron structures, cis-acting elements, and syntenic relationships with Arabidopsis thaliana (L.) Heynh. RNA-seq analysis revealed a varied expression of CsaBBX genes under photoperiod treatment. The analysis of CsaBBXs genes revealed a strong positive correlation between CsaBBX17 and carotenoid biosynthetic pathway genes (phytoene synthase, ζ-carotene desaturase, lycopene ε-cyclase, ß-carotene hydroxylase-1), thus suggesting its involvement in ß-carotene biosynthesis. Additionally, nine CsaBBX genes (CsaBBX 4,5,7,9,11, 13,15,17 and 22) showed a significant positive correlation with ß-carotene content. The selected CsaBBX genes were verified by qRT-PCR and confirmed the validity of RNA-seq data. The results of this study established the genome-wide analysis of the cucumber BBX family and provide a framework for understanding their biological role in carotenoid accumulation and photoperiodic responses. Further investigations of CsaBBX genes are vital since they are promising candidate genes for the functional analysis of carotenoid biosynthesis and can provide genetic tools for the molecular breeding of carotenoids in plants.


Assuntos
Cucumis sativus , Carotenoides/metabolismo , Cucumis sativus/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta Caroteno/genética
18.
Genes (Basel) ; 13(4)2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35456518

RESUMO

Circular RNAs (circRNAs) are covalently closed non-coding RNAs that play pivotal roles in various biological processes. However, circRNAs' roles in different tissues of apple are currently unknown. A total of 6495 unique circRNAs were identified from roots, phloem, leaves, flowers and fruits; 65.99% of them were intergenic circRNAs. Similar to other plants, tissue-specific expression was also observed for apple circRNAs; only 175 (2.69%) circRNAs were prevalently expressed in all five different tissues, while 1256, 1064, 912, 904 and 1080 circRNAs were expressed only in roots, phloem, leaves, flowers and fruit, respectively. The hosting-genes of circRNAs showed significant differences enriched in COG, GO terms or KEGG pathways in five tissues, suggesting the special functions of circRNAs in different tissues. Potential binding interactions between circRNAs and miRNAs were investigated using TargetFinder; 2989 interactions between 647 circRNAs and 192 miRNA were predicated in the present study. It also predicted that Chr00:18744403|18744580-mdm-miR160 might play an important role in the formation of flowers or in regulating the coloration of flowers, Chr10:6857496|6858910-mdm-miR168 might be involved in response to drought stress in roots, and Chr03:1226434|1277176 may absorb mdm-miR482a-3p and play a major role in disease resistance. Two circRNAs were experimentally analyzed by qRT-PCR with divergent primers, the expression levels were consistent with RNA-seq, which indicates that the RNA-seq datasets were reliable.


Assuntos
Malus , MicroRNAs , Flores/genética , Flores/metabolismo , Frutas/genética , Frutas/metabolismo , Malus/genética , MicroRNAs/genética , Floema/genética , Floema/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA Circular/genética
19.
Commun Biol ; 5(1): 303, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379890

RESUMO

Light, a crucial environmental signal, is involved in the regulation of secondary metabolites. To understand the mechanism by which light influences carotenoid metabolism, grapefruits were bagged with four types of light-transmitting bags that altered the transmission of solar light. We show that light-transmitting bagging induced changes in carotenoid metabolism during fruit ripening. Compared with natural light, red light (RL)-transmittance treatment significantly increases the total carotenoid content by 62%. Based on weighted gene co-expression network analysis (WGCNA), 'blue' and 'turquoise' modules are remarkably associated with carotenoid metabolism under different light treatment (p < 0.05). Transcriptome analysis identifies transcription factors (TFs) bHLH128, NAC2-like/21/72, MYB-like, AGL11/AGL61, ERF023/062, WRKY20, SBPlike-7/13 as being involved in the regulation of carotenoid metabolism in response to RL. Under RL treatment, these TFs regulate the accumulation of carotenoids by directly modulating the expression of carotenogenic genes, including GGPPS2, PDS, Z-ISO, ZDS2/7, CRTISO3, CYP97A, CHYB, ZEP2, CCD1-2. Based on these results, a network of the regulation of carotenoid metabolism by light in citrus fruits is preliminarily proposed. These results show that RL treatments have great potential to improve coloration and nutritional quality of citrus fruits.


Assuntos
Citrus paradisi , Carotenoides/metabolismo , Citrus paradisi/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Luz
20.
Cells ; 11(7)2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406734

RESUMO

Sweet cherry, an economically important horticultural crop, has strong antioxidant activity. The fruits contain compounds potentially beneficial to human health-particularly anthocyanins, which are synthesized in cytosol and predominantly accumulated in vacuoles. Although anthocyanin levels differ among dark-red, blush, and yellow sweet cherry cultivars, the regulatory mechanism of anthocyanin transport and accumulation is not well understood in this species. In this study, we identified 53 glutathione S-transferase genes (PavGSTs) from sweet cherry and found that PavGST1 expression was well correlated with anthocyanin accumulation in cultivars with different fruit skin colors. TRV-mediated virus-induced silencing of PavGST1 decreased anthocyanin accumulation in sweet cherry fruits and downregulated the expressions of anthocyanin biosynthetic and regulatory genes. In addition, transient overexpression of PavGST1 promoted anthocyanin accumulation. Furthermore, yeast one-hybrid and dual-luciferase assays revealed that PavMYB10.1 and PavMYB75 directly bind to different MYB binding sites of the PavGST1 promoter (MBS-1 and MBS-3) to activate PavGST1 transcription. According to our results, PavGST1 plays a central role in sweet cherry fruit anthocyanin accumulation. Our findings provide novel insights into the coordinative regulatory mechanisms of PavGST1 and PavMYBs in anthocyanin accumulation in sweet cherry.


Assuntos
Glutationa Transferase , Pigmentação , Proteínas de Plantas , Prunus avium , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prunus avium/genética , Prunus avium/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA