Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41.871
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 43(1): 1-10, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989485

RESUMO

The rapid urbanization in China may lead to heavy metal pollution in urban soil, threatening the health of residents. By collecting literature data published in the last 15 years, the characteristics and risks of heavy metals in the urban soils of 52 cities in China were analyzed. The results showed that the average ω(Pb), ω(Cd), ω(Cu) and ω(Zn) in the urban soils of China were 58.5, 0.49, 42.1, and 156.3 mg·kg-1, respectively, and the average Igeo values were ordered as follows Cd(1.10) > Zn(0.36) > Pb(0.28) > Cu(0.13). The high concentrations of heavy metals in the urban soils were mainly found in cities located in coastal economically developed provinces (such as Jiangsu, Zhejiang, etc.) and resource-based provinces (such as Hunan, Henan, Inner Mongolia, etc.). The cities of Kaifeng, Yangzhou, Hohhot, Taiyuan, and Xiangtan had relatively high Igeo values for heavy metals in the soils. The concentrations of heavy metals in soils from industrial areas and roadsides were significantly higher than those from residential areas and parks, suggesting that heavy traffic and developed heavy industry were the main causes of heavy metal accumulation in the urban soils. No significant correlations between the average concentrations of heavy metals in urban soil and urban economic and environmental indicators[such as permanent population, GDP, ρ (PM10), ρ(PM2.5), and SO2 emissions] were found. The concentrations of heavy metals in urban soils showed large spatial heterogeneity, and hence the average concentrations may not reflect the overall accumulation level in a city. The non-carcinogenic risks for children posed by heavy metals in urban soils were generally low, and the main risk contributor was Pb. However, the exposure to heavy metals in soils in cities with developed smelting industries is worthy of attention.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , China , Cidades , Monitoramento Ambiental , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
2.
Huan Jing Ke Xue ; 43(1): 11-25, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989486

RESUMO

At present, plant growth regulators play an increasingly important role in global agricultural production. The average growth rate of global sales of plant growth regulators has been above 14% in the past decade. For many years, most plant growth regulators have been considered low-toxicity or slight-toxicity pesticides. However, recent studies have found that many plant growth regulators and their degradation products in the environment are potentially harmful to humans, animals, and plants. As the key factors to control the entering of plant growth regulators into the environment, the environmental behaviors of plant growth regulators in soil could make a significant influence on the risk of plant growth regulators to environmental safety. Therefore, it is critical to investigate the environmental behaviors of plant growth regulators in soil. This study systematically summarizes the environmental behaviors of plant growth regulators in soil from recent research, including the adsorption, desorption, hydrolysis, photolysis, and microbial degradation. Additionally, the factors affecting the environmental behaviors of plant growth regulators in the soil are discussed in detail. Moreover, the future research focus and direction to plant growth regulators are suggested.


Assuntos
Poluentes do Solo , Solo , Adsorção , Agricultura , Humanos , Reguladores de Crescimento de Plantas , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
3.
Huan Jing Ke Xue ; 43(1): 432-441, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989528

RESUMO

In order to ascertain the distribution characteristics of soil heavy metal pollution and main pollution sources in a small watershed in the southern mountainous area of Ningxia and to ensure the quality of the soil environment, the contents of heavy metals Pb, Ni, Zn, Mn, Cu, Cr, and Cd in 260 surface soil samples (0-20 cm) were collected and determined. Based on the soil background value in Ningxia, the soil heavy metal pollution status and potential ecological risk were evaluated through the single factor index, Nemera composite index, and potential ecological risk index, and the method of combining positive definite matrix factor analysis (PMF) and Kriging interpolation was used to analyze the soil heavy metal spatial distribution and source. The results showed that the average contents of ω(Pb), ω(Ni), ω(Zn), ω(Mn), ω(Cu), ω(Cr), and ω(Cd) were 31.42, 36.22, 62.89, 546.18, 22.26, 61.90, and 0.18 mg·kg-1, respectively. Except for Ni, the other elements were higher than the background value of Ningxia but lower than the background value of agricultural soil pollution risk selection criteria and green food environmental quality standards. The Nemera composite index showed that the proportions of mild, moderate, and severe heavy metal pollution were 71.92%, 19.23%, and 1.54%, respectively. The potential ecological risks were mainly minor risks, accounting for 98.85%. In addition, there were a very small number of samples with medium potential ecological risk levels, accounting for 1.15% of the total number of samples. Source analysis showed that the main sources of soil heavy metals in the small watershed in the mountainous area of southern Ningxia were mixed sources of fertilization and industrial emissions (12.6%), agricultural activity sources (23.5%), natural parent material sources (27.6%), mixed sources of pesticide use and mining development emissions (17.7%), and atmospheric deposition sources (18.6%).


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
4.
Huan Jing Ke Xue ; 43(1): 442-453, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989529

RESUMO

In order to ascertain the impact of pyrite mining on the surrounding farmland soil environment and human health, 42 surface soil samples (from 0-20 cm) were collected around the pyrite mining area in Longyou county. In this study, the concentrations of eight heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) and the pH in the topsoil were analyzed, and the concentration characteristics of heavy metals, source analysis, and human health risks assessment were studied using statistical analysis (SA), geo-accumulation index (Igeo), positive matrix factorization (PMF), and the health risk model. The average of ω(Cd), ω(Cu), ω(Pb), and ω(Zn) concentrations exceeded the background values of soils in Zhejiang province and China. According to the agricultural land pollution risk screening values (GB 15618-2018), Cd, Cu, Pb, and Zn were up to 82%, 49%, 42%, and 31%, respectively. The Igeo shows that the major pollutant element in the soils was Cd, followed by Cu, Pb, and Zn. The PMF analysis indicates that nature sources (As, Cr, and Ni), comprehensive pollution sources caused by high geological background and mining of ore-forming geological bodies (Cd, Cu, Pb, and Zn), and anthropogenic sources (Hg) were the three major sources of heavy metals in the study area, with contributions of 32%, 46%, and 22%, respectively. The results of the health risk assessment indicate that the major non-carcinogenic factor triggering risks was the ingestion of Pb; Cr exposure had carcinogenic risk for adults, and Cr and As exposure had carcinogenic risk for children.


Assuntos
Metais Pesados , Poluentes do Solo , Adulto , Criança , China , Monitoramento Ambiental , Fazendas , Humanos , Ferro , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Sulfetos
5.
Huan Jing Ke Xue ; 43(1): 454-462, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989530

RESUMO

Agricultural products are a primary pathway for humans to accumulate heavy metals (HMs) via the soil-crop system and should therefore should be included as a crucial part of the food security in our country. Given that previous studies on protection zoning for preventing farmland HM pollution rarely considered agricultural products as a basic element, this study attempted to establish a zoning system for farmland HM prevention, which was based on the perspective of agricultural product pollution. We subsequently took a representative peri-urban area in the black soil region, which was provided with a higher risk of being polluted, as an empirical case. The results indicated that:① the comprehensive quality index of agricultural products (IICQAP) was 1.09, illustrating only a mild HM pollution, with Pb and Ni having the highest accumulation levels; ② the human health risk index (QHI) was 0.61, showing no risk for human health; and ③ the designed zoning method revealed 89.45% of the farmlands to be risk-free at the moment and 10.55% of the farmlands to be under low risk of HM pollution in agricultural products. According to the zoning results, we suggested prioritized protection and an early-warning strategy, respectively, and further recommended prevention methods such as accumulation intervention, crop restructuring, and in-situ passivation. The results served to enrich the theoretical basis for preventing farmland HM pollution, to reinforce the management standards for agricultural products in the black soil region, and also to build a differentiated urban-rural farmland protection system.


Assuntos
Metais Pesados , Poluentes do Solo , China , Monitoramento Ambiental , Fazendas , Humanos , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
6.
Huan Jing Ke Xue ; 43(1): 463-471, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989531

RESUMO

In order to explore the main controlling factors of Cd enrichment in rice under a geological high background in the Guangxi carbonate rock area, this study was based on rice grain-root soil samples from the carbonate rock areas in the southwest and north of Guangxi. Combined with diffusive gradients in thin films technology (DGT), the relationship between soil pH, organic matter, cation exchange capacity (CEC), DGT-Cd, and ω(rice-Cd)-BCF value in rice grains was analyzed and discussed. The main factors were determined by principal component analysis, and a quantitative model was established. The results showed that the average value of ω(soil-Cd) was 0.975 mg·kg-1, and the over-standard rate was 33.33%; the average value of ω(rice-Cd) was 0.020 mg·kg-1, and the average BCF value was 0.038, and the over-standard rate of Cd content in rice grains was 4.2%. The content of Cd in paddy soil was high, but bioavailability was low in the study area. The BCF value of rice grains in the study area was significantly negatively correlated with soil pH and cation exchange capacity at the level of 0.01, positively correlated with DGT-CD at the level of 0.01, and negatively correlated with organic matter at the level of 0.05. The results of principal component analysis showed that the total amount of Cd in the soil, pH, and DGT-Cd were the main factors affecting the accumulation of Cd in rice in the Guangxi carbonate rock area. Taking the total amount of Cd in the soil, pH, and DGT-Cd as variables, the fitting equation of BCF value of rice grains in the Guangxi carbonate rock region was established, and the determination coefficient of the model was 0.717, which could better predict the content of Cd in rice grains in this region.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Carbonatos , China , Solo , Poluentes do Solo/análise
7.
Huan Jing Ke Xue ; 43(1): 472-480, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989532

RESUMO

The bioavailability of heavy metals in soil and the physiological activities of rice determine the accumulation of heavy metals in brown rice. In this study, a field experiment was conducted in a rice paddy in which the total amount of Cd in the soil did not exceed the national standard, whereas the Cd in rice grains was at risk of overreaching in the suburbs of Guangzhou city. The bioavailability of heavy metals in the soil and the physiological barrier of rice were taken as the starting point. The early and late rice yield, brown rice heavy metal content, Cd and Pb enrichment coefficient, total soil heavy metals, soil physical and chemical properties, and soil Cd and Pb species distribution were investigated under the Si-rich amendment (JD), Ca-Mg amendment (YY), Si-rich amendment+flooding irrigation (JD+YS), and Ca-Mg amendment+flooding irrigation (YY+YS) treatments. The results showed that:① the total ω(Cd) in the soil was only 0.13 mg·kg-1 in the CK treatment. However, the average ω(Cd) in the grain of early rice reached up to 0.19 mg·kg-1. The early rice varieties (hybrid rice) had a more vital ability to accumulate Cd and total As in brown rice than that in late rice varieties (conventional rice) but a lower capacity for Pb accumulation. ② JD and YY application alone had no noticeable inhibitory effect on the accumulation of Cd and Pb in brown rice; however, JD+YS and YY+YS treatments significantly inhibited the accumulation of Cd and Pb in brown rice in both early and late rice, especially in the JD+YS treatment, which decreased the Cd and Pb accumulation by 65.8% and 68% for early rice and by 71.43% and 49.15% for late rice, respectively. The primary mechanism of JD+YS was to increase soil pH and maintain a low redox potential to promote soil Cd and Pb to be transformed from acid-soluble to a reduced state and residue state, thus decreasing Cd and Pb to migrate from the soil to the rice. At the same time, it effectively suppressed the absorption and transportation of Cd and Pb by early and late rice via the physiological barrier effect of Si nutrition and the competition for transportation channels between calcium and magnesium ions and cadmium and inhibited the accumulation of Cd and Pb in the brown rice of early and late rice. These results provide a theoretical basis for the exploration and application of the control technologies in the brown rice Cd and Pb resistance and have important practical significance for guiding the safe production in the rice-growing area in South China.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Chumbo , Solo , Poluentes do Solo/análise , Água , Abastecimento de Água
8.
Huan Jing Ke Xue ; 43(1): 481-489, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989533

RESUMO

In recent years, dust pollution has occurred frequently in spring and haze or fog in autumn and winter. The inhalable particulate matters in the atmosphere, especially PM2.5, loaded in heavy metals such as cadmium, lead, and arsenic, are easily taken up by leafy vegetables and accumulate in the edible parts. It is not clear whether the accumulation of heavy metals in the edible parts of leafy vegetables in greenhouses is also affected by atmospheric deposition. Therefore, a field experiment was conducted to explore characteristics and health risk assessment of cadmium, lead, and arsenic accumulation in leafy vegetables planted in a greenhouse using six types of common leafy vegetables (spinach, leaf lettuce, lettuce, pakchoi, Chrysanthemum coronarium, and fennel) in the Beijing-Tianjin-Hebei region. The results showed that C. coronarium, pakchoi, and spinach are the leafy vegetables with a low accumulation of Cd, Pb, and As, respectively. Fennel is the leafy vegetable with a low accumulation of Cd and Pb. In the greenhouse, Pb concentrations in PM2.5 were 42.6 and 8.4 times of Cd and As, respectively. Moreover, PM2.5-Pb contributed on average 36.5% to the edible parts of six kinds of leafy vegetables, which indicated that the Cd, Pb, and As accumulated in leafy vegetables were mainly derived from the soil. Meanwhile, the concentrations of Cd, Pb, and As in the edible parts of vegetables did not exceed the safety limitations of three heavy metals (GB 2762-2017), and Pb accumulation in leafy vegetables does not pose a health risk to humans. However, Cd in the leafy vegetables could threaten the health of adults and children, except for the intake of fennel. Conversely, As in the C. coronarium could threaten the health of adults and children.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Adulto , Cádmio/análise , Criança , Humanos , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras
9.
Huan Jing Ke Xue ; 43(1): 490-499, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989534

RESUMO

To study the characteristics of polychlorinated biphenyls (PCBs) in waste residue-soil-vegetable in an e-waste dismantling area and the potential health risks to humans, three samples of e-waste residue were collected, and 10 and 18 samples were taken from farmland soil and vegetables (six lettuce, six green bean, and six cabbage samples), respectively, next to the waste residue. High-resolution gas chromatography-mass spectrometry was used to detect the content of PCBs in waste residue, soil, and vegetables. The results showed that the total PCBs levels were as follows:waste residue (11938 ng·g-1, dw) > soil (45.54 ng·g-1, dw) > vegetables (11.51 ng·g-1, dw). The bio-sediment/soil enrichment factor values were as follows:lettuce samples (0.18) > green bean samples (0.05) > cabbage samples (0.01). There were 37 PCB identical homologues detected in the waste residue and soil, and 33 types were detected in vegetables, all of which were within the homologues detected in the waste residue and soil. Some homologues in the soil were correlated with cabbages (P<0.05). The column chart of PCB chlorination number in waste residues, soil, and vegetables showed that low-chlorinated biphenyls from trichlorobiphenyl to pentachlorobiphenyl mass fraction accounted for the largest proportion, accounting for 77.92%, 59.73%, and 73.96%, respectively. The proportion in the soil was relatively low, with the overall proportion showing a downward trend with increasing rate of chlorine generation. The results of the health risk assessment showed that the total HQ of PCBs in the soil and vegetables exposed to adults (male/female) and children was less than 1, which was at an acceptable level. The total CR of PCBs in the soil and vegetables exposed to adults (male/female) and children all exceeded 1×10-6, which is at an unacceptable level, and the values for adults (male/female) were higher than those for children.


Assuntos
Resíduo Eletrônico , Bifenilos Policlorados , Poluentes do Solo , Adulto , Criança , Monitoramento Ambiental , Humanos , Bifenilos Policlorados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras
10.
Huan Jing Ke Xue ; 43(1): 500-509, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989535

RESUMO

The residual content of organochlorine pesticides (OCPs) in soil and crops of typical agricultural land in the southern Leizhou peninsula were determined using gas chromatography-mass spectrometry (GC-MS). Additionally, the bioconcentration factors of organochlorine pesticides in eight crops were investigated, and the human health risk was evaluated. The results indicated that 10 types of OCPs were detected to varying degrees; HCHs and heptachlor were the main OCPs in the study area, with the residual contents of 23.83-111.51 ng·g-1 and 11.01-25.97 ng·g-1 in soil and 7.54-61.28 ng·g-1 and 3.96-30.97 ng·g-1 in crops, respectively. A small number of soil and crop samples were found to exceed the standard. The ratio of α-HCH/γ-HCH was less than 1 in 87.50% of the soil samples, and ß-HCH/α-HCH was larger than 1. This indicates that the HCHs were probably derived from the recent use of lindane and historical residual pollution, whereas the heptachlor was mainly derived from underground insect pests and the application of termite control agents. The enrichment ability of OCPs was significantly different among different crops. The bioaccumulation capacity of vegetables was higher than that of fruit. Furthermore, bulb vegetables (leeks) were significantly stronger than other vegetables. A human health risk assessment of OCPs showed that OCP-combined pollution would not cause significant health risks to the population in the study area. However, the maximum value of HI in some crop samples was greater than 1, indicating that there were still potential risks, which should not be ignored.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes do Solo , China , Monitoramento Ambiental , Humanos , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Medição de Risco , Solo , Poluentes do Solo/análise
11.
Huan Jing Ke Xue ; 43(1): 510-520, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989536

RESUMO

As an important part of the soil microbial system, fungi can clearly indicate changes in the soil environment.Human activities in the city can easily affect the soil condition, so the phenomenon of artificial heavy metal enrichment often appears in urban soil. The objective of this study was to analyze the fungal community structure in different urban functional areas and to determine the effect of heavy metal content in different urban functional areas on the soil fungal community structure. This study provides theoretical basis for protecting and repairing the urban soil ecosystem and transforming and improving urban environmental quality. Soil samples from eight sampling sites in five functional areas of Beibei District in Chongqing were taken as the research objects. The diversity and community structure of fungi in soil were studied using high-throughput sequencing technology. The content of Cd and Hg in the soil of different functional areas in Beibei District exceeded the environmental background value of Chongqing. The 20-40 cm and 40-60 cm soil layers of JD were slightly polluted. The 20-40 cm soil layer and 0-20 cm soil layer of JLD and ZYY, respectively, were in the alerting state of heavy metal pollution. The Sobs index, Chao 1 index, and Ace index of most sampling points decreased with the increase in soil depth. The NMDS analysis showed that the composition of fungal communities between the 0-20 cm and 20-40 cm soil depths in both JD and ZYY were quite different. From the perspective of community composition, Ascomycota was the most abundant phylum in the soil, followed by unclassified _k _Fungi and Basidiomycota. At the genus level, unclassified_k_Fungi, unclassified_p_Ascomycota, unclassified_o_Sordariales, Scopuloides, Robillarda, and Dactylonectria had higher abundances. The redundancy analysis (RDA) showed that Pb and Zn had the greatest effect on the samples, and the effect on the fungal community structure was significantly different. This study has deepened the understanding of the relationship between the content of heavy metals in different urban functional areas and the structure of fungal communities and has provided a scientific basis for the rational use and planning of urban soil.


Assuntos
Metais Pesados , Micobioma , Poluentes do Solo , China , Ecossistema , Humanos , Metais Pesados/análise , Solo , Microbiologia do Solo , Poluentes do Solo/análise
12.
Environ Monit Assess ; 194(2): 85, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35018529

RESUMO

Increasing mining and industrial discharge of untreated wastewater, as well as excessive use of fertilizers for agricultural purposes, and heavy metal contamination in soil have become one of the serious environmental problems worldwide. In the present study, pot experiments were conducted to evaluate the influence of arsenic contamination and other factors on the growth and development of local forage grasses like Purple guinea and Ruzi grasses under controlled conditions. Influence of arsenic concentration, soil properties, and fertilizers on biosorption and withstanding potential of grasses was studied using model soil and real-time arsenic-contaminated mine soil. High arsenic contents in soil significantly affected the growth as well as biomass production of grasses and declined the overall biomass production concerning exposure durations. Purple guinea and Ruzi grasses showed growth tolerance in arsenic-contaminated soils with concentrations of 100 and 150 mg/kg respectively. Grass species, soil compositions, and properties, fertilizers, growth duration, etc. potentially influenced arsenic accumulation in grasses. Both local forage grasses showed <1 bio-accumulation factor (BAF) and bio-concentration factor (BCF) after 45 days that indicates the minimum harvesting time of 45 days, and biosorption rate was found significant to the exposure duration. Maximum translocation factor (TF) values observed in Purple guinea and Ruzi grasses were 0.65 and 0.95, respectively which are < 1, therefore, these local forage grasses could be labeled as arsenic-metallophytes and ability to tolerate high levels of heavy metals without much biosorption. The results confirmed that local forage grasses have much growth tolerance potential against arsenic in real-time mine soil with desired fertilizers and these species could be used for sustainable management of ecological health of the Thung Kum gold mine area in Thailand.


Assuntos
Arsênio , Poluentes do Solo , Arsênio/análise , Biodegradação Ambiental , Monitoramento Ambiental , Guiné , Poaceae , Solo , Poluentes do Solo/análise
13.
J Environ Manage ; 304: 114321, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021593

RESUMO

BACKGROUND: Mining activity in the Touissit district of Eastern Morocco has led to an unprecedented accumulation of heavy metals, mainly lead and zinc, in the tailing ponds of the open-air mines. This poses a real danger to both the environment and local population. OBJECTIVES: The goal of this work was to characterize the Plant Growth Promoting Rhizobacteria (PGPR) isolated from the rhizosphere soil of R. pseudoacacia plants grown wild in the abandoned Pb- and Zn-contaminated tailing ponds in the mining district of Touissit, in Eastern Morocco. MAIN RESULTS: One hundred bacterial strains were isolated from the rhizosphere of black locust (Robinia pseudoacacia L.) plants growing naturally in the Touissit mine tailings. Quantitative determination of indole-acetic and siderophores production, inorganic phosphate solubilization, hydrolysis of 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity), and ability to act as a biocontrol agent allowed selection of the 3 strains, 7MBT, 17MBT and 84MBT with improved PGP properties. The three strains grew well in the presence of high concentration of Pb-acetate and ZnCl2; and the addition of Pb or Zn to the culture medium differently affected the PGP properties analyzed. NOVELTY STATEMENT: Inoculation of black locust grown with the 3 selected strains, in the presence 1000 µg ml-1 of Pb-acetate, produced varying effects on the plant dry weight. The strain 84MBT alone or in combination with strains 7MBT and 17MBT increased significantly the dry weight of the plants by 91, 62, and 85% respectively. The 16S rRNA gene sequence analysis of each strain showed that the strains 7MBT 17MBT and 84MBT had 99.34, 100, and had 99.72% similarity with Priestia endophytica (formerly B. endophyticus), B. pumilus NBRC 12092T, and B. halotolerans NBRC 15718T, respectively.


Assuntos
Robinia , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Marrocos , RNA Ribossômico 16S/genética , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise
14.
Sci Total Environ ; 807(Pt 1): 150760, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619195

RESUMO

Metribuzin and tebuconazole have been widely used in agriculture for several decades. Apart from endocrine disruption, little is known about their toxicological effects on organisms without thyroid organs, at the transcriptional level. To explore this toxicity, model earthworm species Eisenia fetida, hatched from the same cocoon and cultured under identical environmental conditions, were independently exposed to the two chemicals at non-lethal concentrations in OECD artificial soil for 48 h after exposure. RNA-seq technology was used to analyze and compare the gene expression profiles of earthworms exposed to metribuzin and tebuconazole. The functions of differentially expressed genes and their standard response patterns of upregulated and downregulated expression for both pesticides were verified. The findings demonstrated that metribuzin and tebuconazole are both potentially toxic to earthworms. Toxicological effects mainly involved the nervous system, immune system, and tumors, at the transcriptional level, as well as the induction of cytochrome P450-dependent detoxification and oxidative stress. In addition, the mitogen-activated protein kinase kinase kinase gene was identified as a biomarker, and the mitogen-activated protein kinase signaling pathway was verified to be a part of the adverse outcome pathway of metribuzin and tebuconazole and their structural analogs.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Perfilação da Expressão Gênica , Oligoquetos/genética , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Triazinas , Triazóis
15.
Sci Total Environ ; 807(Pt 1): 150658, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619196

RESUMO

Lead (Pb) is one of the most common metals exceeding human health risk guidelines for soil concentrations worldwide. Pb bioaccessibility is known to vary depending on soil physiochemical characteristics and, as a result, in vitro and in vivo tests exist that are used to estimate bioaccessible Pb in contaminated soils. Although in vitro tests such as the relative bioaccessibility leaching procedure (RBALP) present simpler and more cost-effective risk assessments than in vivo methods, soil tests such as Mehlich-3, Modified Morgan, and ammonium bicarbonate-diethylenetriamine pentaacetate (AB-DTPA) extractions are extremely routine and even more cost-effective. Currently, there are few comparisons examining the viability of common soil nutrient tests for assessing Pb bioaccessibility in soils from contaminated sites with extremely high total Pb concentrations or for sites that have received amendments, such as those containing compost, iron, and/or phosphorus, intended to immobilize Pb. Here, we examine the correlation between RBALP Pb and Pb as determined using three commonly utilized soil tests, Mehlich-3, Modified Morgan, and AB-DTPA, in archived samples from one Pb-contaminated site receiving compost amendment (Seattle, WA, USA) and one extremely Pb-contaminated site receiving mixtures of compost, P, and Fe (Joplin, MO, USA). At both the Seattle and Joplin sites separately, RBALP Pb was significantly correlated with all three soil nutrient test values, regardless of soil amendment. However, RBALP was only significantly correlated with Modified Morgan and total Pb when examining the Joplin and Seattle data together, likely resulting from different factors controlling Pb solubility at the two sites. These findings suggest that a diverse suite of relatively inexpensive and accessible soil nutrient test methods correlate with bioaccessible Pb at a specific site, regardless of whether Pb-immobilizing amendments have been used.


Assuntos
Poluentes do Solo , Solo , Poluição Ambiental , Humanos , Chumbo , Nutrientes , Poluentes do Solo/análise
16.
Sci Total Environ ; 807(Pt 1): 150758, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34619204

RESUMO

In this work, a pilot biobed was built up to treat pesticide-contaminated wastewaters discharged from a formulation plant. The pre-treated wastewater was spiked with additional pesticides in order to simulate a scenario of higher contamination: glyphosate, atrazine, imidacloprid, prometryn and carbendazim were added to reach a final Total Organic Carbon (TOC) concentration of 70 mg L-1. An Intermediate Bulk Container (IBC) was filled with a biomixture of soil and foxtail millet stubble (50:50% v v-1), and 200 l of the wastewater was added to the system recycling tank. The recirculation to the IBC was established for 12 h. After that (Day 0), the recirculation was turned on during the assay only to maintain the moisture for 180 days. Biomixture and wastewater samples were taken periodically to analyse pesticides and phytotoxicity in both matrices. In addition, hydrolytic and phenoloxidase activities, total bacteria and yeast and fungi communities were determined in the biomixture. The designed pilot scale biobed allowed to treat wastewaters with high concentration of pesticides reaching a complete removal of glyphosate, AMPA, atrazine, carbendazim and prometryn at 180 days. A good degradation percentage of the recalcitrant imidacloprid was achieved (60%) and the biomixture showed enough biological activity to continue treating additional wastewater. The root elongation index from the germination test showed low toxicity on day 180 both in biomixture and wastewater. The millet stubble resulted an appropriate lignocellulosic material to be used in biobeds to treat a wide variety of pesticides. The application of the seed germination test proved to be a low cost and simple tool to determine the end point of the process.


Assuntos
Praguicidas , Poluentes do Solo , Biodegradação Ambiental , Praguicidas/análise , Solo , Águas Residuárias
17.
Chemosphere ; 288(Pt 1): 132452, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34619257

RESUMO

The threat posed by the degradation of the soil environment by metal (-oid)s has been lead to the improvement of existing or search for new remediation methods; in this case, the application of environmentally friendly nanomaterials falls into this trend. The study applied a technique of aided phytostabilization for the immobilization of metal (-oid)s in soil with the application of nanosized halloysite and biochar (nBH), along with Lolium perenne L. Its effectiveness was assessed in terms of changing temperature conditions (16 cycles of freeze and thaw cycles, (FTC)) on the content of As, Cu, Pb and Zn in the soil, roots, and above-ground parts of the tested plant, chemical fraction distributions of metal (-oid)s and their stability (based on reduced partition index, Ir). The biomass yield in nBH-amended soil was 2-fold higher compared to control soil, but it decreased by 1.6-fold after FTC. nBH facilitated more bioaccumulation of As, Pb and Zn than Cu in plant roots, before than after FTC. nBH increased pH in phytostabilized soil, but it was not affected by changing FTC. In soil nBH-phytostabilized total concentration of metal (-oid)s significantly decreased compared to control soil, for As and Cu below permissible value, regardless of FTC. Soil amendment and changing temperature conditions affected metal (-oid)s redistribution in soil. As a result, the stability of As increased from 0.50 to 0.66, Cu from 0.49 to 0.52, Pb from 0.36 to 0.48 and Zn from 0.39 to 0.47. These findings suggest that nBH can immobilize metal (-oid)s in phytostabilized soil under changing temperature conditions.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , Argila , Metais Pesados/análise , Solo , Poluentes do Solo/análise , Temperatura
18.
Sci Total Environ ; 806(Pt 3): 150558, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34624797

RESUMO

The effects of combined contaminated soils containing cadmium (Cd) and ciprofloxacin (CIP) on the human gut microbiota are demonstrated using an in vitro test. Uncontaminated soil samples were artificially polluted with Cd and CIP using three different treatments (CK: 0 mg·kg-1; CIPI: 5 mg·kg-1, CIPII: 25 mg·kg-1, and Cd: 80 mg·kg-1). An experiment was performed to investigate the effect of Cd and CIP on the human colon microbiota using two aging times (D30: Day 30; D60: Day 60), and then the method of high-throughput 16S rRNA gene sequencing was used. In this study, we observed five phyla: Proteobacteria, Firmicutes, Synergistetes, Bacteroidetes, and Actinobacteria in colon microbial community. In addition, our results indicated that the relative abundances of the gut bacteria varied at the phylum level. Nevertheless, a slight decline in the relative abundance of Bacteroidetes among all the sets (compared to the D30-CK + Cd set) was revealed, and the lowest decline percentage of 90% was observed in the D60-CIPI + Cd set. Our results validated that the relative abundance of Rhodococcus increased with an increase in the CIP concentration in D30. In addition, this may disrupt normal physiological functions of the intestine after exposure to contaminated soil via the mouth. This study provides a theoretical basis for human risk assessment of oral exposure to Cd and CIP contaminated soils.


Assuntos
Microbiota , Poluentes do Solo , Idoso , Cádmio/análise , Cádmio/toxicidade , Ciprofloxacina/toxicidade , Humanos , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
19.
Sci Total Environ ; 807(Pt 1): 150711, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34626622

RESUMO

Chemical stabilization is an in-situ remediation that uses amendments to reduce contaminant availability in polluted soils. Rates of phosphate, lime, biochar, and biosolids were evaluated as affecting Pb speciation and mobility in soil samples of a mining area located in Vazante, state of Minas Gerais, Brazil. Chemical and mineralogical characterization, desorption kinetics, sequential extraction, leaching evaluation in columns and speciation using X-ray absorption near edge structure were performed. Pb adsorbed on bentonite and on anglesite were the predominant species in the unamended soil. The treatments with phosphate and lime transformed part of the Pb species to pyromorphite. Conversely, part of Pb species was transformed to Pb adsorbed on citrate in the soil amended with biochar, while PbCl2 was formed in soil samples amended with biosolids. Phosphate and lime increased the Pb extracted in the residual fraction, thus showing that more recalcitrant species, such as pyromorphite, were formed. Biosolids and biochar treatments decreased the Pb in the residual fraction, and the fraction associated to organic matter increased after the addition of biosolids. Phosphate and lime were effective to immobilize Pb and to decrease Pb desorption kinetics, but the organic amendments increased the desorption kinetics of Pb in all rates applied. The soil amended with phosphate decreased the Pb leached in the experiment with leaching columns.


Assuntos
Poluentes do Solo , Solo , Cinética , Chumbo , Poluentes do Solo/análise , Espectroscopia por Absorção de Raios X
20.
Sci Total Environ ; 806(Pt 4): 150967, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34656603

RESUMO

Improvement of nutrient use efficiency and limiting trace elements such as arsenic and uranium bioavailability is critical for sustainable agriculture and food safety. Arsenic and uranium possess different properties and mobility in soils, which complicates the effort to reduce their uptake by plants. Here, we postulate that unsaturated soil amended with ferrihydrite nanominerals leads to improved nutrient retention and helps reduce uptake of these geogenic contaminants. Unsaturated soil is primarily oxic and can provide a stable environment for ferrihydrite nanominerals. To demonstrate the utility of ferrihydrite soil amendment, maize was grown in an unsaturated agricultural soil that is known to contain geogenic arsenic and uranium. The soil was maintained at a gravimetric moisture content of 15.1 ± 2.5%, typical of periodically irrigated soils of the US Corn Belt. Synthetic 2-line ferrihydrite was used in low doses as a soil amendment at three levels (0.00% w/w (control), 0.05% w/w and 0.10% w/w). Further, the irrigation water was fortified (~50 µg L-1 each) with elevated arsenic and uranium levels. Plant dry biomass at maturity was ~13.5% higher than that grown in soil not receiving ferrihydrite, indicating positive impact of ferrihydrite on plant growth. Arsenic and uranium concentrations in maize crops (root, shoot and grain combined) were ~ 20% lower in amended soils than that in control soils. Our findings suggest that the addition of low doses of iron nanomineral soil amendment can positively influence rhizosphere geochemical processes, enhancing nutrient plant availability and reduce trace contaminants plant uptake in sprinkler irrigated agroecosystem, which is 55% of total irrigated area in the United States.


Assuntos
Arsênio , Poluentes do Solo , Urânio , Arsênio/análise , Compostos Férricos , Nutrientes , Rizosfera , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA