Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.825
Filtrar
1.
BMC Musculoskelet Disord ; 23(1): 17, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980060

RESUMO

BACKGROUND: Parathyroid hormone, with its anabolic effect on bone formation, has shown excellent outcomes of curing postmenopausal osteoporosis as well as enhancing osseointegration around orthopaedic and stomatologic implants.The purpose of the present study is to test if low-dose intermittent PTH (1-34) treatment could achieve a satisfactory osseointegration in 2-mm peri-implant gaps, as to provide a new idea for improving the stability of such prosthesis, which will be of great clinical value. METHODS: A custom-made titanium implant was implanted on the calvarium of New Zealand White rabbits. 48 male rabbits were randomly divided into control and PTH group. PTH group received subcutaneous injection of PTH (20 µg/day, 5 days/week). Animals were sacrificed at 4 and 8 weeks after surgery. Quantitative micro-computed tomography, histology and biomechanical pull-out testing were performed to evaluate the gap healing at implantation site. RESULTS: Analysis of micro-computed tomography demonstrated that PTH group achieved more new bone formation in 2-mm gaps and on bone-implant interface. Quantitatively, significant differences were observed between two groups in regard to BIC and BV/TV at each time-point. Histological staining revealed that PTH group had a superiority in trabecular number, thickness, separation and better osseointegration compared to control group. As for biomechanical pull-out testing, PTH group also showed significant improvement of ultimate force than control group. CONCLUSIONS: Low-dose intermittent administration of PTH for 4 and 8 weeks enhances early osseointegration and fixation of orthopedic implants surrounded by a 2-mm gap in terms of increased bone regeneration and mechanical stability. These findings suggest PTH a potential for reducing the postoperative complications of implants by improving bone healing at peri-implant gaps.


Assuntos
Ortopedia , Osseointegração , Animais , Masculino , Hormônio Paratireóideo , Porosidade , Próteses e Implantes , Coelhos , Titânio , Microtomografia por Raio-X
2.
In Vivo ; 36(1): 76-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34972702

RESUMO

BACKGROUND/AIM: Guided bone regeneration (GBR) is one of the surgical methods used for vertical ridge augmentation prior to dental implant placements. Titanium meshes have been used for osteogenic space maintenance in GBR sites by clinicians. We aimed to compare the influence of micropores and macropores in a titanium mesh on bone regeneration in a rat calvarial vertical GBR model. MATERIALS AND METHODS: The calvaria of nine rats were exposed, and plastic cylinders were set bilaterally. Eighteen surgical sites were randomly allocated into three groups according to the materials of titanium lid and bone substitutes: microporous titanium lid+deproteinized bovine bone mineral (DBBM), macroporous titanium lid +DBBM, microporous titanium lid+carbonate apatite. Newly generated bone inside the cylinders was evaluated using micro-computed tomography (micro-CT). Furthermore, bone regeneration and angiogenesis were evaluated histologically at 12 weeks. RESULTS: Quantitative volumetric analyses using micro-CT showed a gradual increase in bone volume inside the cylinders in all three groups. Histological observation confirmed vigorous bone regeneration in the microporous groups compared to that in the macroporous group. In the upper part of the cylinders, soft tissue invaded the GBR site by passing through the pores of the macroporous mesh. The blood vessels in the upper part of the cylinders were smaller in the microporous groups than in the macroporous group. There was no difference in bone formation between cylinders filled with DBBM or carbonate apatite. CONCLUSION: Microvasculature penetrates 50-µm diameter micropores and accelerates bone formation inside the cylinder, which was set on rat calvaria. The microporous titanium mesh can facilitate angiogenesis from both the dura mater and periosteal in vertical ridge augmentation. Our data showed superiority of microporous titanium vascular permeability and osteoconductivity, supporting bone growth.


Assuntos
Telas Cirúrgicas , Titânio , Animais , Regeneração Óssea , Bovinos , Porosidade , Ratos , Microtomografia por Raio-X
3.
J Mech Behav Biomed Mater ; 125: 104893, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715640

RESUMO

Large segmental mandible bone defects still represent a challenge for endogenous regeneration. Despite the bone's capacity to heal in many clinical situations, bone defects over a critical size do not heal spontaneously. An emerging treatment of critically sized mandibular defects is the implantation of individually manufactured scaffolds consisting of biodegradable magnesium alloys. Biomedical engineers faced the challenge of developing a scaffold structure that not only provides sufficient stability, but also stimulates and promotes bone growth while considering the degradation of the magnesium alloy. The porosity of the scaffold must also support bone ingrowth and neovascularization. For an optimal design and subsequent structural optimization knowledge of external load cases is essential. However, currently the muscle and joint forces of the mandible cannot be measured directly. The aim of our study was therefore the development of a parametric human mandible model to determine the relevant boundary conditions for the subsequent structural optimization of individual jawbone implants. Using a model-based approach, determining the essential external load of the mandible as a function of the age and sex of a patient individually and the realistic simulation of the mechanical stress for patient-specific loads and anatomies has been realized. The developed model is successfully validated by evaluating the deformations and stresses of the lower jaw of a possible patient and comparing them with the results of dental research. Based on the results of the modelling, in a subsequent optimization process section forces at the interface between the bone tissue and jawbone implant can be determined and used to optimize the design of the jawbone implant.


Assuntos
Cabeça , Mandíbula , Simulação por Computador , Humanos , Porosidade , Estresse Mecânico
4.
J Mech Behav Biomed Mater ; 125: 104943, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34736032

RESUMO

Despite the extensive studies on biological function of osteocytes, there are limited studies that evaluated the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. As a result, the goal of this study was to elucidate the independent contribution of osteocyte lacunae structure on mechanical properties and fracture behavior of the bone matrix uncoupled from its biological effects and bone tissue composition variation. This study combined cohesive finite element modeling with experimental data from a lactation rat model to evaluate the influence of osteocyte lacunar area porosity, density, size, axis ratio, and orientation on the elastic modulus, ultimate strength, and ultimate strain of the bone matrix as well as on local crack formation and propagation. It also performed a parametric study to isolate the influence of a single osteocyte lacunae structural property on the mechanical properties of the bone matrix. The experimental measurements demonstrated statistically significant differences in lacunar size between ovariectomized rats with lactation history and virgin groups (both ovariectomized and intact) and in axis ratio between rats with lactation history and virgins. There were no differences in mechanical properties between virgin and lactation groups as determined by the finite element simulations. However, there were statistically significant linear relationships between the physiological range of osteocyte lacunar area porosity, density, size, and orientation and the elastic modulus and ultimate strength of the bone matrix in virgin and lactation rats. The parametric study also revealed similar but stronger relationships between elastic modulus and ultimate strength and lacunar density, size, and orientation. The simulations also demonstrated that the osteocyte lacunae guided the crack propagation through local stress concentrations. In summary, this study enhanced the limited knowledge on the structural role of osteocyte lacunae on local mechanical properties of the bone matrix. These data are important in gaining a better understanding of the mechanical implications of the local modifications due to osteocytes in the bone matrix.


Assuntos
Matriz Óssea , Osteócitos , Animais , Módulo de Elasticidade , Feminino , Análise de Elementos Finitos , Porosidade , Ratos
5.
J Mech Behav Biomed Mater ; 125: 104882, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34740017

RESUMO

Additive manufactured porous biomaterials based on triply periodic minimal surfaces (TPMS) are a highly discussed topic in the literature. With their unique properties in terms of open porosity, large surface area and surface curvature, they are considered to have bone mimicking properties and remarkable osteogenic potential. In this study, scaffolds of gyroid unit cells of different sizes consisting of a Ti6Al4V alloy were manufactured additively by electron beam melting (EBM). The scaffolds were analysed by micro-computed tomography (micro-CT) to determine their morphological characteristics and, subsequently, subjected to mechanical tests to investigate their quasi-static compressive properties and fatigue resistance. All scaffolds showed an average open porosity of 71-81%, with an average pore size of 0.64-1.41 mm, depending on the investigated design. The design with the smallest unit cell shows the highest quasi-elastic gradient (QEG) as well as the highest compressive offset stress and compression strength. Furthermore, the fatigue resistance of all unit cell size (UCS) variations showed promising results. In detail, the smallest unit cells achieved fatigue strength at 106 cycles at 45% of their compressive offset stress, which is comparatively good for additively manufactured porous biomaterials. In summary, it is demonstrated that the mechanical properties can be significantly modified by varying the unit cell size, thus enabling the scaffolds to be specifically tailored to avoid stress shielding and ensure implant safety. Together with the morphological properties of the gyroid unit cells, the fabricated scaffolds represent a promising approach for use as a bone substitute material.


Assuntos
Materiais Biocompatíveis , Substitutos Ósseos , Elétrons , Porosidade , Microtomografia por Raio-X
6.
J Mech Behav Biomed Mater ; 125: 104941, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34749203

RESUMO

Bioceramic/polymer composite systems have gained importance in treating hard tissue damages using bone tissue engineering (BTE). In this context, it was aimed to develop 3D porous composite PCL-PEG-PCL scaffolds containing different amounts of B, Sr and Mg multi-doped HA that can provide bone regeneration in the bone defect area and to investigate the effect of both the amount of inorganic phase and the porosity on the mechanical and the biological properties. B-Sr-Mg multi-doped HA and PCL-PEG-PCL copolymer were successfully synthesized. PCL-PEG-PCL composite scaffolds containing different amounts of hydroxyapatite (HA) (10% and 20 wt%) were produced with the desired porosity (50% and 60%) by compression-molding and particulate leaching method. The porosity of the scaffolds was determined between 47% and 59%. HA/PCL-PEG-PCL composite scaffolds were subjected to a 3-week degradation test and showed negligible (0.2-0.5%) degradation. The water uptake percentage of the composite scaffolds with 60% porosity was the highest among all groups. Presence of HA in the scaffolds improved the water adsorption and the mechanical properties. Compressive strength of the scaffolds was between 9.32 and 24.27 MPa and 20% 2Sr0.5BHA scaffolds were found to have the maximum compressive strength. Compressive strength of 50% porous samples was higher than that of 60% porous samples. In the relative cell viability (%) test, the highest viability was observed on the scaffolds with HA and 2Sr0.5BHA. The specific ALP activity level of the cells on the scaffolds containing 2Sr0.5BHA was significantly higher (2.6 times) than that of the control group. The amount of porosity did not make a significant difference in cellular response. It was concluded that PCL-PEG-PCL composite scaffolds with 2Sr0.5BHA have the potential to be used in BTE.


Assuntos
Magnésio , Engenharia Tecidual , Boro , Durapatita , Poliésteres , Polietilenoglicóis , Porosidade , Estrôncio
7.
J Mech Behav Biomed Mater ; 125: 104933, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837800

RESUMO

The study of bone morphology is of great importance as bone morphology is influenced by factors such as age and underlying comorbidities and is associated with bone mechanical properties and fracture risk. Standard diagnostic techniques used in bone disease, such as Dual-Energy X-ray absorptiometry and ultrasonography do not provide qualitative and quantitative morphological information. In recent years, techniques such as High Resolution Computed Tomography (HR-CT), micro- CT, Magnetic Resonance Imaging (MRI), and Low Field Nuclear Magnetic Resonance (LF-NMR) have been developed for the study of bone structure and porosity. Data obtained from these techniques have been used to construct models to predict bone mechanical properties thanks to finite element analysis. Cortical porosity has been extensively studied and successfully correlated with disease progression and mechanical properties. Trabecular porosity and pore size distribution, however, have increasingly been taken into consideration to obtain a comprehensive analysis of bone pathology and mechanic. Therefore, we have decided to evaluate the ability of micro- CT (chosen for its high spatial resolving power) and LF-NMR (chosen to analyze the behavior of water molecules within trabecular bone pores) to characterize the morphology of trabecular bone in osteoporosis. Trabecular bone samples from human femoral heads collected during hip replacement surgery were from osteoporosis (test group) and osteoarthritis (control group) patients. Our data show that both micro- CT and LF-NMR can detect qualitative changes in trabecular bone (i.e., transition from plate-like to rod-like morphology). Micro- CT failed to detect significant differences in trabecular bone morphology parameters between osteoporotic and osteoarthritic specimens, with the exception of Trabecular Number and Connectivity Density, which are markers of osteoporosis progression. In contrast, LF-NMR was able to detect significant differences in porosity and pore size of trabecular bone from osteoporotic versus osteoarthritic (control) samples. However, only the combination of these two techniques allowed the detection of structural morphometric changes (increase in the larger pore fraction and enlargement of the larger pores) in the trabecular bone of osteoporotic specimens compared to osteoarthritic ones. In conclusion, the combined use of LF-NMR and micro- CT provides a valuable tool for characterizing the morphology of trabecular bone and may offer the possibility for a new approach to the study and modeling of bone mechanics in the context of aging and disease.


Assuntos
Osso Esponjoso , Imageamento por Ressonância Magnética , Osso Esponjoso/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Porosidade , Microtomografia por Raio-X
8.
Biosens Bioelectron ; 197: 113779, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34781176

RESUMO

Neuron-specific enolase (NSE) is a specific marker for small cell carcinoma (SCLC). Sandwich-type electrochemical immunosensors are powerful for biomarker analysis, and the electrocatalytic activity of the signal amplification platform and the performance of the substrate are critical to their sensitivity. In this work, N atom-doped graphene functionalized with hollow porous Pt-skin Ag-Pt alloy (HP-Ag/Pt/NGR) was designed as a dual signal amplifier. The hollow porous Pt skin structure improves the atomic utilization and the larger internal cavity spacing significantly increases the number of electroactive centers, thus exhibiting more extraordinary electrocatalytic activity and durability for H2O2 reduction. Using NGR with good catalytic activity as the support material of HP-Ag/Pt, the double amplification of the current signal is realized. For the substrate, polypyrrole-poly(3,4-ethylenedioxythiophene) (PPy-PEDOT) nanotubes were synthesized by a novel chemical polymerization route, which effectively increased the interfacial electron transfer rate. By coupling Au nanoparticles (Au NPs) with PPy-PEDOT, the immune activity of biomolecules is maintained and the conductivity is further enhanced. Under optimal conditions, the linear range was 50 fg mL-1 - 100 ng mL-1, and the limit of detection (LOD) was 18.5 fg mL-1. The results confirm that the developed immunosensor has great promise for the early clinical diagnosis of SCLC.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Ligas , Técnicas Eletroquímicas , Ouro , Peróxido de Hidrogênio , Imunoensaio , Limite de Detecção , Fosfopiruvato Hidratase , Polímeros , Porosidade , Pirróis
9.
J Colloid Interface Sci ; 608(Pt 1): 1064-1073, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785454

RESUMO

HYPOTHESIS: While surfactant solutions mobilize residual oil under optimal conditions by lowering the water-oil interfacial tension, emulsion phases outside of the optimum tend to be immobile. How are mobility and texture of such phases related, and how can the stability of these phases be understood? Can non-optimized surfactant solutions improve displacement processes through mobility control? EXPERIMENT: Emulsification and miscibility during surfactant flooding were investigated in microfluidics with generic oil and surfactant solutions. The salt concentration was varied in an exceptionally wide range across the optimal displacement conditions. The resulting emulsion textures were characterized in situ by optical and fluorescence microscopy and ex situ visually and by Small-Angle X-ray Scattering. FINDINGS: During displacement, oil is increasingly solubilized and transported in a phase with a foam-like texture that develops from a droplet traffic flow. The extent and stability of these emulsion phases depend on the salinity and surfactant efficiency. The similarity with textures of classic foam phases is used to hypothesize the mechanisms that stabilize such macroemulsions in porous media. The observed microscopic displacement mechanisms can be traced back to foam formation, quality and transport. The resulting phases are of particular interest for mobility control during surfactant flooding, which, however, requires further investigation.


Assuntos
Tensoativos , Água , Emulsões , Porosidade , Tensão Superficial
10.
J Colloid Interface Sci ; 608(Pt 1): 995-1004, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34785474

RESUMO

Mesoporous silica nanoparticles (MSN) are promising drug vectors due to their high drug loading capacities, degradability under biologically relevant conditions. The dissolution of MSN has been the focus of several recent studies, most of which have, however, been carried out in the absence of proteins, and do therefore not reflect the conditions prevailing during in vitro or in vivo administration of the particles. Furthermore, typically the dissolution studies are limited with respect to the range of MSN concentrations applied. Here, we report results related to the dissolution kinetics and structural particle evolution for MCM-48 MSN carried out in the presence of proteins, and where the particle concentration has been used as a parameter to cover typical concentrations used in in vitro and in vivo studies involving MSNs. Proteins adsorbing to the MSN surface form a diffusion limiting layer that leads to the intermediate formation of core-shell structured particles upon dissolution. Here, the protein concentration controls the kinetics of this process, as the amount of protein adsorbing to the MSN increase with increasing protein concentration. The results thus also imply that the MSN dissolution kinetics is faster under normally applied in vitro conditions as compared to what can be expected under full serum conditions.


Assuntos
Nanopartículas , Dióxido de Silício , Portadores de Fármacos , Porosidade , Solubilidade
11.
Biosens Bioelectron ; 197: 113758, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798499

RESUMO

In this work, a "signal-off" electrochemical biosensor was established for sensitive detection of adenosine triphosphate (ATP) based on Fe3O4@covalent organic framework-immobilized gold nanoparticles (Fe3O4@COF-Au NPs) porous composite material as a nanocarrier. The proposed Fe3O4@COF-Au NPs could effectively confine Au NPs in the uniform channels of the Fe3O4@COF, which successfully avoided Au NPs aggregation to a certain extent and provided a comparatively independent and stable micro-environment via its hydrophobic porous nanochannels, thereby owning excellent electro-catalytic performance for the reduction of 4-nitrophenol. Moreover, the Fe3O4@COF-Au NPs nanomaterials were served as functional platform for immobilizing DNA substrate (S0), which was used to bind with the conversion product (S1) of the target ATP for subsequent branched hybridization chain reaction (b-HCR) to form dendritic DNA strands to hinder electron transfer between Fe3O4@COF-Au NPs and 4-nitrophenol, finally achieving sensitive detection of ATP with a wide linear range of 5 pM-50 µM and a low detection limit of 1.6 pM. Such strategy provides a multifunctional immobilized platform for the sensitive detection of ATP and a versatile strategy for monitoring other biomolecules.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Trifosfato de Adenosina , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Porosidade
12.
Anal Chim Acta ; 1190: 339175, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34857128

RESUMO

In this work, we developed a new approach for fabricating hollow and porous nitrogen doped carbon nanoballoons loading AuNPs (Au-NC-NBs) with a large specific surface area, a high N and Au content. The surface-enhanced Raman scattering (SERS) aptasensor based on the resulting Au-NC-NBs possess a wider linear range (10 to 107 cells/mL), a lower detection limit (3 cells/mL), better selectivity for detecting bacteria than previously reported sensors. Importantly, Au-NC-NBs SERS aptasensor also exhibits excellent performance for detecting bacteria in the real food and biological samples. This work provides a facile and versatile designing strategy for controlled construction of SERS biosensor by combination of Au nanoparticles and carbon materials, which has a great applied potential in food safety monitoring and clinical diagnosis.


Assuntos
Ouro , Nanopartículas Metálicas , Porosidade , Análise Espectral Raman , Staphylococcus aureus
13.
J Environ Manage ; 302(Pt A): 114054, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34872182

RESUMO

Volatile organic compounds (VOCs) emitting from solid building materials can cause adverse human health and environmental climate effects. It's more cost effective and powerful for mass-transfer emission models to describe the emission characteristic of VOCs than emission chamber studies. In this review, the existing main physical mechanism-based models for predicting VOCs emissions from dry solid building materials have been discussed, as well as their differences and similarities. Ignoring internal diffusion and porosity of solid materials, single-phase model is generally quite safe for use in actual condition. Conversely, porous media model is good for understanding VOC-transfer principles in porous materials. Additionally, the porous media model and the single-phase model can be transformed mutually because their model parameters are correlative. The availability of emission models is largely determined by the reliable and useful model parameters. Therefore, substantial technologies and novel methods have been developed for parameter estimation, which have also been reviewed in this paper. How to readily and rapidly obtain model parameters is a future development direction. In addition, applying emission models to predict and control VOCs emission from other solid waste materials is another future research prospect.


Assuntos
Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Materiais de Construção , Difusão , Humanos , Porosidade , Compostos Orgânicos Voláteis/análise
14.
Bioresour Technol ; 344(Pt B): 126235, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34743993

RESUMO

Manufacturing high-performance activated carbon (AC) materials from abundant biomass at low temperature and short activation time is targeted by the green and sustainable chemical industry. Here, a 1980 m2/g of carbon nanospheres-anchored porous carbon material (PHAC) derived from waste sawdust was prepared by a method of H3PO4 hydrothermal combined with fast activation at 450 °C within 2.8 min. It is found that H3PO4 hydrothermal pretreatment could promote the dehydration of carbohydrates to form more unstable C = O structures, which were decomposed in the subsequent fast activation to form pore structures. In addition, this process is also conducive to the formation of carbon nanospheres, increasing the degree of graphitization and producing more graphite defects. The prepared PHAC showed good adsorption performance for different types of pollutants. This work provides a new insight for the preparation of high performance biomass based carbon materials under mild conditions.


Assuntos
Nanosferas , Adsorção , Biomassa , Carvão Vegetal , Porosidade
15.
J Colloid Interface Sci ; 607(Pt 2): 1239-1252, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34583031

RESUMO

Tissue adhesives have received much attention for their effectiveness in sealing wounds or incisions in clinical surgery, especially in minimally invasive surgery. To meet the safe and smart wound management requirements, ideal tissue adhesives are expected to have high biocompatibility, and be able to accelerate wound closing and healing, and monitor wound healing process. However, few adhesives fit all of the above descriptions. It has been demonstrated that inorganic nanoparticles can directly glue biological tissue based on nano-bridging effect. In this study, self-luminescence porous silicon (LPSi) particles were prepared with degradable and biocompatible properties. In addition, the self-luminescence property of LPSi particles was discovered by In Vivo Imaging System (IVIS) for the first time, which can avoid the limitations of photoluminescence imaging. Due to the oxidation and degradation reaction, LPSi particles not only can be degraded completely in several days, but also showed satisfactory biocompatibility. And their degradation product could promote tube formation of HUVECs. Moreover, owing to the high specific surface area and the outer oxide layer of LPSi particles, LPSi tissue adhesive exhibited strong adhesive strength to pig livers. Furthermore, this adhesive closed wound rapidly, promoted angiogenesis and epidermal regeneration, and facilitated wound healing in a mouse skin incision model. Importantly, the wound healing ratio can be monitored by measuring the self-luminescence intensity of LPSi particles in the wound site. This study reveals that LPSi particles could be employed as a safe and smart wound management tissue adhesive for wound closure, as well as accelerating and monitoring wound healing.


Assuntos
Adesivos Teciduais , Animais , Luminescência , Camundongos , Porosidade , Silício , Suínos , Cicatrização
16.
J Colloid Interface Sci ; 607(Pt 2): 1424-1435, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34583045

RESUMO

Material that resists biofouling adhesion is needed in a complex marine environment, but few of them can combine ultra-low fouling and environmental friendliness. Slippery lubricant-infused porous surface (SLIPS) is such a material, but it lacks the contact-killing ability, which limits its stability and anti-fouling efficiency. Here, we report a metal organic framework (MOF-based) Slippery ionic liquid-infused surface with excellent antifouling performance via synergistic release and contact-killing defense strategy. The dense needle-like MIL-110 array, grown in situ on the aluminum surface, is conducive to the stable storage of quaternary ammonium salt (QAS) ionic liquid. Compared to the control group with mature biofilm formed on the surface, SLIPS showed non-fouling performance in a 10-day test and another 21-day test under more challenging conditions. The adsorption amount of lipopolysaccharide (LPS) on SLIPS was 50% lower than that on the aluminum sheet and the aluminum sheet with MIL-110 grown on the surface as the control groups within three hours. The relationship between bacterial adhesion and LPS adsorption indicated that the anti-adhesion performance of SLIPS was mediated by the weak adhesion and easy release property of its surface to extracellular fouling molecules. This study provides the possibility to systematically reveal the antifouling mechanism of SLIPS on bacterial adhesion.


Assuntos
Incrustação Biológica , Biofilmes , Incrustação Biológica/prevenção & controle , Lubrificantes , Porosidade , Propriedades de Superfície
17.
J Colloid Interface Sci ; 607(Pt 2): 1527-1539, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34583049

RESUMO

The traditional heterogeneous photo-Fenton reaction was mainly restricted by the fewer surface-active sites, low Fe3+/Fe2+ transformation and H2O2 activation efficiency of catalyst. This work designed and fabricated the efficient photo-Fenton Schottky catalysts via a facile electrostatic self-assembly of metallic Fe2N nanoparticles scattering on the surface of red g-C3N4 (ultrathin porous oxygen-doped 2D g-C3N4 nanosheets). The porous morphology and exceptional electrical structure of red g-C3N4 endowed more active sites and facilitated the photoexcited charge separation. Benefitting from the Schottky effect and unique dimensional coupling structure, the strong visible light absorption and fast spatial charge transfer were realized in the Schottky junction system. More strikingly, Fe2N as an efficient co-catalyst was in favor of the trap and export of e-, leading to the Fe3+/Fe2+ transformation and H2O2 activation during the photo-Fenton process. Accordingly, the as-prepared catalysts revealed outstanding activity in photo-Fenton like degradation of tetracycline (TC) although under 5 W white LED light irradiation. Furthermore, the reasonable degradation pathway of TC and corresponding toxicity of the intermediates, as well as the photo-Fenton catalytic mechanism were interpreted and discussed in detail. This study would be a great aid in the development of various Schottky catalysts for heterogeneous photo-Fenton-based environmental remediation systems.


Assuntos
Peróxido de Hidrogênio , Tetraciclina , Catálise , Porosidade , Eletricidade Estática
18.
Chemosphere ; 287(Pt 4): 132399, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34597630

RESUMO

Metal-free polymer graphite carbon nitride (CN) is a promising photocatalyst that has garnered significant research attention. However, unmodified CN possesses several shortcomings such as low specific surface area, poor dispersibility in water, and rapid photogenerated electron-hole recombination, which have severely impacted its mass adoption. Here, this study proposed a two-step heat treatment method to incorporate P dopant and the containing-oxygen groups successively into CN. The final product, denoted as PO-CN, possessed a porous ultrathin nanosheet-like morphology. The introduction of P dopant altered the intrinsic electronic structure of CN. Meanwhile, the presence of oxygen-containing groups improved the dispersibility of PO-CN in water. Also, it led to the formation of a porous ultrathin structure that could provide more active sites. Through the synergistic effects of these two methods, PO-CN demonstrated superior photocatalytic performance compared to the unmodified counterpart. Based on the collective results obtained experimentally and theoretically, PO-CN possessed a porous ultrathin structure, low resistance, and low carrier recombination. The results show an optimal hydrogen evolution rate of PO-CN (997.7 mol h-1 g-1), which was 11.2 times and 3.22 times that of the CN (88.89 mol h-1 g-1) and PCN (310.3 mol h-1 g-1). Moreover, PO-CN was then used in the degradation of Rhodamine B, and a degradation kinetic constant (k) of 0.15009 was calculated, which was 18.42 times and 8.22 times higher as compared to those of CN (0.00815) and PCN (0.01826). Hence, this work provides a new strategy for the alteration of the morphology and electronic structure of CN.


Assuntos
Nitrilas , Oxigênio , Catálise , Porosidade
19.
J Colloid Interface Sci ; 607(Pt 2): 1717-1729, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34598029

RESUMO

This work describes the synthesis of porous hierarchical microspheres composed of amorphous SiO2 and crystalline ß-Bi2O3 (BSO) via a simple solvothermal process and subsequent calcination. Complementary physicochemical methods were applied to study the function of amorphous SiO2, as well as the phase composition and morphology evolution of as-synthesized samples as a function of calcination temperature. The presence of amorphous SiO2 contributed to form hierarchically structured ß-Bi2O3 with enhanced thermostability. Moreover, the degradation of tetracycline hydrochloride (TC) under visible light irradiation was employed as a model reaction to evaluate the photocatalytic activity of as prepared materials. In consequence, both phase composition and morphology were found to be significant parameters for adjusting the photocatalytic performance of the synthesized samples. The fastest TC degradation at a low dosage of catalyst (0.2 g L-1) was observed for the sample annealed at 400℃ which contains a highly crystalline ß-Bi2O3 phase. The synergistic effect of the porous structure, excellent light absorption, and higher charge carrier separation and transfer efficiency is believed to be the reason for the optimal photocatalytic activity. This study offers a new method toward the fabrication of hierarchical porous structured ß-Bi2O3 with enhanced thermostability for various applications.


Assuntos
Bismuto , Dióxido de Silício , Antibacterianos , Microesferas , Porosidade
20.
Bioresour Technol ; 343: 126101, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34628009

RESUMO

Porous carbon obtained by co-pyrolysis of plastic and biomass has received a lot of attention due to its excellent adsorption properties, and the pore structure plays an essential role in adsorption performance, however, the pore structure is still not well understood. Herein, we synthesized cyanobacteria-based porous carbon derived from cyanobacteria and polypropylene plastic by one-step method. CPC-800-30% exhibited a high BET surface area (2140 m2/g), pore volume up to 1.44 cm3/g. PP not only improved the pore structure of porous carbon, but also enriched the types of functional groups, such as O-H, N-H, C=O, and -CH, due to dehydroxylation or amino group decreased, resulting in the hydrogen radicals increased, hence PP had positive effect for biomass during co-pyrolysis. Meanwhile, CPC-800-30% showed excellent methylene blue (MB) adsorption capacity (667 mg/g). This work provided a new strategy for enhancing porous carbon structure via using PP as additive.


Assuntos
Cianobactérias , Azul de Metileno , Adsorção , Carbono , Polipropilenos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA