Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.070
Filtrar
1.
J Colloid Interface Sci ; 624: 296-306, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35660899

RESUMO

Undoubtedly, taking full advantage of near-infrared light (NIR) for the photocatalytic reaction is a promising way to realize the efficient utilization of solar energy. In this work, zirconium carbide (ZrC) has been exploited as a NIR-driven photoactive substance for the simultaneous photodegradation of organic pollutants and photothermal sterilization of Escherichia coli (E. coli). The metallic nature and NIR-responsive localized surface plasmon resonance (LSPR) behaviors of ZrC are revealed by both experimental evidence and density function theory (DFT) calculations. ZrC exhibits extremely wide spectral absorbance, excellent NIR-triggered photosensitive effect and photothermal conversion efficiency. Activation kinetics was performed with DFT to investigate the activation process of O2 to •O2-. In addition, a possible NIR-mediated photocatalytic mechanism of ZrC was proposed on the basis of above DFT simulation and radical scavenging experiments. Metallic ZrC with NIR-responsive activity provides a new perspective for designing full-spectrum-driven photocatalysts.


Assuntos
Purificação da Água , Zircônio , Escherichia coli , Raios Infravermelhos , Esterilização
2.
Biomed Mater ; 17(4)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748526

RESUMO

Titanium dioxide (TiO2), as one of the titanium (Ti)-based implants, holds a promise for a variety of anti-bacterial application in medical research. In the current study, a functional molybdenum disulfide (MoS2)/polydopamine (PDA)-LL-37 coating on titanium dioxide (TiO2) implant was prepared. Anodic oxidation and hydrothermal treatment was given to prepare TiO2nanotubes-MoS2/PDA-LL-37 (T-M/P-L). Thein vitroosteogenic effect of T-M/P-L was evaluated by measuring mesenchymal stem cell (MSC) adhesion, proliferation, alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization, collagen secretion and osteoblast-specific messenger RNAs (mRNAs) expression. The determination on the anti-bacterial ability of T-M/P-L was followed. Furthermore, the ability of T-M/P-L to promote bone formationin vivowas evaluated. Near-infrared (NIR) laser irradiation exposure enabled the T-M/P-L coating-endowed Ti substrates to hold effective anti-bacterial ability. T-M/P-L promoted the adhesion and proliferation of MSCs. In addition, an increase was witnessed regarding the ALP activity, collagen secretion and ECM mineralization, along with the expression of runt-related transcription factor 2, ALP and osteocalcin in the presence of T-M/P-L. Additionally, T-M/P-L could stimulate endothelial cells to secrete vascular endothelial growth factor (VEGF) and promote capillary-like tubule formation. Upon NIR laser irradiation exposure, T-M/P-L not only exhibited efficientin vivoanti-bacterial activity but also facilitated new bone formation. Collectively, T-M/P-L had enhanced anti-bacterial and osteogenic activity under NIR laser irradiation.


Assuntos
Nanotubos , Osteogênese , Diferenciação Celular , Colágeno/metabolismo , Células Endoteliais , Indóis , Raios Infravermelhos , Lasers , Molibdênio/metabolismo , Molibdênio/farmacologia , Osteoblastos/metabolismo , Polímeros , Titânio/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Sci Rep ; 12(1): 10935, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768569

RESUMO

Long wavelengths that can deeply penetrate into human skin are required to maximize therapeutic effects. Hence, various studies on near-infrared organic light-emitting diodes (NIR OLEDs) have been conducted, and they have been applied in numerous fields. This paper presents a microcavity tandem NIR OLED with narrow full-width half-maximum (FWHM) (34 nm), high radiant emittance (> 5 mW/cm2) and external quantum efficiency (EQE) (19.17%). Only a few papers have reported on biomedical applications using the entire wavelength range of the visible and NIR regions. In particular, no biomedical application studies have been reported in the full wavelength region using OLEDs. Therefore, it is worth researching the therapeutic effects of using OLED, a next-generation light source, and analyzing trends for cell proliferation effects. Cell proliferation effects were observed in certain wavelength regions when B, G, R, and NIR OLEDs were used to irradiate human fibroblasts. The results of an in-vitro experiment indicated that the overall tendency of wavelengths is similar to that of the cytochrome c oxidase absorption spectrum of human fibroblasts. This is the first paper to report trends in the cell proliferation effects in all wavelength regions using OLEDs.


Assuntos
Raios Infravermelhos , Pele , Proliferação de Células , Fibroblastos , Humanos
4.
J Mater Chem B ; 10(25): 4832-4839, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35674394

RESUMO

Photothermal therapy (PTT) is an emerging paradigm for the degradation of amyloid-ß (Aß) aggregations and has become an effective way of treating Alzheimer's disease (AD). A promising PTT therapeutic option requires control of at least two key functional aspects: controllable photoactivity and specific activation. In this work, a near-infrared (NIR)-activated thermo-switchable biopolymeric PTT agent was designed and synthesized by conjugating a molecular rotor-based boron dipyrromethene photosensitizer (BDP) to a temperature-responsive polymer backbone of biopolymeric hydroxypropyl cellulose (HPC). The as-synthesized BDP-HPC exhibited an ultra-high PCE of 78.1% along with prominent cycling stability of phase-transition behavior under NIR irradiation in the light of the lower critical solution temperature (LCST at 42.5 °C). Importantly, the NIR irradiation can manipulate the reversible phase transition behavior of the resultant BDP-HPC that reveals high effectiveness in inhibiting Aß aggregation together with the obvious ability to dissociate Aß aggregations. Our work reveals an accurate modulation strategy for versatile and high-performance AD treatment.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Raios Infravermelhos , Fármacos Fotossensibilizantes/farmacologia , Fototerapia , Polímeros/farmacologia
5.
Biomed Eng Online ; 21(1): 35, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698224

RESUMO

INTRODUCTION: Low- to high-energy impact trauma may cause from small fissures up to extended bone losses, which can be classified as closed or opened injuries (when they are visible at a naked eye). OBJECTIVE: The aim of this study was to investigate the feasibility of clinical diagnosis of bone trauma through medical infrared thermography, in a hospital emergency room. METHODS: Forty-five patients with suspected diagnosis of bone fracture were evaluated by means of medical infrared images, and the data correlated with the gold standard radiographic images, in the anteroposterior, lateral, and oblique views, at the orthopedic emergency department. The control group consisted of thermal images of the contralateral reference limb of the volunteers themselves. Data were acquired with a medical grade infrared camera in the regions of interest (ROIs) of leg, hand, forearm, clavicle, foot, and ankle. RESULTS: In all patients evaluated with a diagnosis of bone fracture, the mean temperature of the affected limb showed a positive difference greater than 0.9 °C (towards the contralateral), indicating the exact location of the bone trauma according, while the areas diagnosed with reduced blood supply, showed a mean temperature with a negative variation. CONCLUSION: Clinical evaluation using infrared imaging indicates a high applicability potential as a tool to support quick diagnosis of bone fractures in patients with acute orthopedic trauma in an emergency medical setting. The thermal results showed important physiological data related to vascularization of the bone fracture and areas adjacent to the trauma well correlated to radiographic examinations.


Assuntos
Fraturas Ósseas , Termografia , Serviço Hospitalar de Emergência , Fraturas Ósseas/diagnóstico por imagem , Humanos , Raios Infravermelhos , Extremidade Inferior , Sensibilidade e Especificidade , Termografia/métodos
6.
ACS Appl Mater Interfaces ; 14(25): 28683-28696, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704779

RESUMO

Innovative therapies are urgently needed to combat cancer. Thermal ablation of tumor cells is a promising minimally invasive treatment option. Infrared light can penetrate human tissues and reach superficial malignancies. MXenes are a class of 2D materials that consist of carbides/nitrides of transition metals. The transverse surface plasmons of MXenes allow for efficient light absorption and light-to-heat conversion, making MXenes promising agents for photothermal therapy (PTT). To date, near-infrared (NIR) light lasers have been used in PTT studies explicitly in a continuous mode. We hypothesized that pulsed NIR lasers have certain advantages for the development of tailored PTT treatment targeting tumor cells. The pulsed lasers offer a wide range of controllable parameters, such as power density, duration of pulses, pulse frequency, and so on. Consequently, they can lower the total energy applied and enable the ablation of tumor cells while sparing adjacent healthy tissues. We show for the first time that a pulsed 1064 nm laser could be employed for selective ablation of cells loaded with Ti3C2Tx MXene. We demonstrate both low toxicity and good biocompatibility of this MXene in vitro, as well as a favorable safety profile based on the experiments in vivo. Furthermore, we analyze the interaction of MXene with cells in several cell lines and discuss possible artifacts of commonly used cellular metabolic assays in experiments with MXenes. Overall, these studies provide a basis for the development of efficient and safe protocols for minimally invasive therapies for certain tumors.


Assuntos
Hipertermia Induzida , Linhagem Celular Tumoral , Humanos , Hipertermia Induzida/métodos , Raios Infravermelhos , Lasers , Terapia Fototérmica
7.
BMC Surg ; 22(1): 174, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35549907

RESUMO

BACKGROUND: In gastrectomies, especially subtotal gastrectomies and operations on the gastroesophageal junction, identifying the exact location of the tumor and establishing the appropriate resection line is very important. Accurate resection lines have a major impact on the preservation of organ function and curability. Preservation of as much as possible of the remaining stomach, including the fornix, may be an important surgical goal for maintaining an adequate postoperative quality of life. In adenocarcinoma of the gastroesophageal junction, the height of the esophageal dissection may affect reconstruction of the transhiatal approach. METHODS: We perform a new technique, near infrared ray-guided surgery, for the accurate localization of a tumor using the Firefly technology of the daVinci Xi system and intra-operative upper gastrointestinal endoscopy. We used this new technique for cases of upper gastric cancer or adenocarcinoma of the gastroesophageal junction. In this retrospective study, we examined to determine the extent (mm) of the tumor invasion of the esophagus, visualization of near infrared ray contained within endoscopic light, and distance from the proximal margin of the tumor to the surgical cut line on rapid histopathology and in the permanent preparation, including the operative videos and extracted specimens. RESULTS: We performed near infrared ray-guided surgery for 12 patients with gastric cancer or adenocarcinoma of the gastroesophageal junction, and the near infrared ray was clearly seen as green light with Firefly mode in all the patients. Near infrared ray-guided surgery was useful for obtaining localization of the tumor. In addition, it was possible to resect organ with adequate margins from tumor. Rapid intraoperative histopathological examinations confirmed that the resected specimens had negative margins. None of the patients required additional resection. CONCLUSIONS: We believe that because near infrared ray-guided surgery can provide an accurate resection line, it will be useful for the resection of upper gastric cancer and adenocarcinoma of the gastroesophageal junction. It will also provide patients with a good postoperative quality of life after surgery.


Assuntos
Adenocarcinoma , Neoplasias Esofágicas , Neoplasias Gástricas , Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Animais , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Junção Esofagogástrica/patologia , Junção Esofagogástrica/cirurgia , Vaga-Lumes , Gastrectomia/métodos , Gastroscopia , Humanos , Raios Infravermelhos , Margens de Excisão , Qualidade de Vida , Estudos Retrospectivos , Neoplasias Gástricas/patologia , Neoplasias Gástricas/cirurgia , Tecnologia
8.
Sensors (Basel) ; 22(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591018

RESUMO

Infrared thermography technology has improved dramatically in recent years and is gaining renewed interest in the medical community for applications in skin tissue identification applications. However, there is still a need for an optimized measurement setup and protocol to obtain the most appropriate images for decision making and further processing. Nowadays, various cooling methods, measurement setups and cameras are used, but a general optimized cooling and measurement protocol has not been defined yet. In this literature review, an overview of different measurement setups, thermal excitation techniques and infrared camera equipment is given. It is possible to improve thermal images of skin lesions by choosing an appropriate cooling method, infrared camera and optimized measurement setup.


Assuntos
Neoplasias Cutâneas , Termografia , Humanos , Raios Infravermelhos , Pele/diagnóstico por imagem , Neoplasias Cutâneas/diagnóstico por imagem , Temperatura Cutânea , Termografia/métodos
9.
Sci Rep ; 12(1): 8587, 2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35597790

RESUMO

Photoluminescence provides information about the surrounding environment. In this study, aiming to develop a non-invasive deep body-temperature sensing method, we investigated photoluminescence properties of afterglow zirconia (ZrO2) by pulsed near-infrared (NIR) light irradiation based on the biological temperature. Pulsed light irradiation produced optically stimulated luminescence, followed by afterglow, with the property of repeating 100 times or more. Furthermore, the basic principle of temperature measurement was demonstrated through afterglow decay curve measurements. The use of harmless ZrO2 as a sensing probe and NIR light, which is relatively permeable to living tissues, is expected to realize temperature measurements in the brain and may also facilitate optogenetic treatment.


Assuntos
Nanopartículas , Raios Infravermelhos , Luminescência , Temperatura , Zircônio
10.
Methods Mol Biol ; 2451: 185-201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35505019

RESUMO

Tumor-targeted and -activatable photosensitizer delivery platforms are creating new opportunities to develop photodynamic therapy (PDT) of metastatic disease. This is possible by confining the activity of the photosensitizing chemical (i.e., the PDT agent) to the tumor in combination with diffuse near-infrared light irradiation for wide-field treatment. This chapter outlines protocols and research tools for preclinical development of light-activated therapies of cancer metastases using advanced-stage ovarian cancer as a model system. We also describe an in vivo molecular imaging approach that uniquely enables tracking intraperitoneal micrometastatic burden and responses to treatment using fluorescence microendoscopy.


Assuntos
Neoplasias Ovarianas , Fotoquimioterapia , Carcinoma Epitelial do Ovário , Feminino , Humanos , Raios Infravermelhos , Neoplasias Ovarianas/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico
11.
J Am Soc Mass Spectrom ; 33(6): 1003-1010, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35536596

RESUMO

Infrared (IR) laser ablation was used to remove localized tissue regions from which proteins were extracted and processed with a low volume sample preparation workflow for bottom-up proteomics by liquid chromatography tandem mass spectrometry (LC-MS/MS). A polytetrafluoroethylene (PTFE) coated glass slide with 2 mm diameter microwells was used to capture ablated rat brain tissue for in situ protein digestion with submicroliter solution volumes. The resulting peptides were analyzed with LC-MS/MS for protein identification and label-free quantification. The method was used to identify an average of 600, 1350, and 1900 proteins from ablation areas of 0.01, 0.04, and 0.1 mm2, respectively, from a 50 µm thick rat brain tissue section. Differential proteomics of 0.01 mm2 regions captured from cerebral cortex and corpus callosum was accomplished to demonstrate the capabilities of the approach.


Assuntos
Terapia a Laser , Proteômica , Animais , Cromatografia Líquida , Raios Infravermelhos , Terapia a Laser/métodos , Proteínas/análise , Proteômica/métodos , Ratos , Espectrometria de Massas em Tandem/métodos
12.
Biomaterials ; 286: 121577, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35617782

RESUMO

Stubborn resistant bacteria, bacterial biofilms and severe inflammation are challenging issues in refractory keratitis treatment. Herein, we design a multifunctional near-infrared light-responsive nanoplatform for efficient therapy of refractory keratitis based on a "three-birds-with-one-stone" strategy, which integrates the bacteria targeting photodynamic therapy, nitric oxide (NO) sterilization, and NO-mediated anti-inflammatory property into one system. This nanoplatform (UCNANs) is constructed using the dual-emissive upconversion nanoparticles (UCNPs) as cores coated with mesoporous silica for the loading of photosensitizers with aggregation-induced emission (AIE) property and the grafting of NO donors and bacteria targeting molecules. Upon irradiation of 808 nm light, UCNPs simultaneously produce UV emission and visible emission to trigger NO release and reactive oxygen species (ROS) such as superoxide radical (O2•-) generation. Furthermore, O2•- resulting from PDT can react with NO to yield powerful oxidizing and nitrating agent peroxynitrite (ONOO-). The three components work synergistically to enhance the antibacterial outcome confirmed by in vitro and in vivo tests. The short-distance light excitation and excitation light absorption are important reasons for reducing the toxicity of materials, especially ultraviolet light damage. Moreover, bacteria elimination reduced endotoxin secretion and the released NO simultaneously inhibit the NF-κB pathways by regulating the expression of toll-like receptor 2 (TRL2) and tumor necrosis factor-α (TNF-α), which significantly relieves the inflammation of cornea. Given its excellent antibacterial and anti-inflammatory properties, UCNANs provides a competitive strategy for refractory keratitis therapy.


Assuntos
Ceratite , Nanopartículas , Fotoquimioterapia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Raios Infravermelhos , Ceratite/tratamento farmacológico , Óxido Nítrico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
13.
ACS Appl Mater Interfaces ; 14(16): 18031-18042, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35426297

RESUMO

Upconversion nanoparticles (UCNPs) and MnO2 composite materials have broad prospects in biological applications due to their near-infrared (NIR) imaging capability and tumor microenvironment-responsive features. Nevertheless, the synthesis of such composite nanoplatforms still faces many hurdles such as redundant processing and uneven coatings. Here, we explored a simple, rapid, and universal method for precisely controlled coating of mesoporous MnO2 (mMnO2) using poly(ethylene imine) as a reducing agent and potassium permanganate as a manganese source. Using this strategy, a mMnO2 shell was successfully coated on UCNPs. We further modified the mMnO2-coated UCNPs (UCNP@mMnO2) with a photosensitizer (Ce6), cisplatin drug (DSP), and tumor targeting pentapeptide (TFA) to obtain a nanoplatform UCNP/Ce6@mMnO2/DSP-TFA for treating spinal metastasis of nonsmall cell lung cancer (NSCLC-SM). The utilization of both upconversion and downconversion luminescence of UCNPs with different NIR wavelengths can avoid the simultaneous initiation of NIR-II in vivo imaging and tumor photodynamic therapy, thus reducing damage to normal tissues. This platform achieved a high synergistic effect of photodynamic therapy and chemotherapy. This leads to beneficial antitumor effects on the therapy of NSCLC-SM.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Neoplasias da Coluna Vertebral , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Humanos , Raios Infravermelhos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Coluna Vertebral/tratamento farmacológico , Microambiente Tumoral
14.
ACS Appl Mater Interfaces ; 14(17): 20291-20302, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35442618

RESUMO

The systematicness, flexibility, and complexity of natural biological organisms are a constant stream of inspiration for researchers. Therefore, mimicking the natural intelligence system to develop microrobotics has attracted broad interests. However, developing a multifunctional device for various application scenarios has great challenges. Herein, we present a bionic multifunctional actuation device─a light-driven mudskipper-like actuator that is composed of a porous silicone elastomer and graphene oxide. The actuator exhibits a reversible and well-integrated response to near-infrared (NIR) light due to the photothermal-induced contractile stress in the actuation film, which promotes generation of cyclical and rapid locomotion upon NIR light being switched on and off, such as bending in air and crawling in liquid. Furthermore, through rational device design and modulation of light, the mechanically versatile device can float and swim controllably following a predesigned route at the liquid/air interface. More interestingly, the actuator can jump from liquid medium to air with an extremely short response time (400 ms), a maximum speed of 2 m s-1, and a height of 14.3 cm under the stimulation of near-infrared light. The present work possesses great potential in the applications of bioinspired actuators in various fields, such as microrobots, sensors, and locomotion.


Assuntos
Biomimética , Robótica , Raios Infravermelhos , Locomoção , Natação
15.
J Phys Chem B ; 126(17): 3338-3346, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35446590

RESUMO

Photocages can provide spatial and temporal control to accurately release the various chemicals and bioactive groups when excited by light. Although the absorption spectra of most photocages are in the ultraviolet absorption region, only a few absorb in the visible or near-infrared region. Blebbistatin (Bleb) would release a hydroxyl radical under blue one-photon or two-photon near-infrared light (800 nm) irradiation. In this work, typical chlorine and bromine as leaving groups substituted hydroxyl compounds (Bleb-Cl, Bleb-Br) are synthesized to evaluate the photocage's capability of Bleb's platform. Driven by the excited-state charge transfer, Bleb-Cl and Bleb-Br show good photolysis quantum yield to uncage the halogen anion and the uncaging process would be accelerated in water solution. The photochemical reaction, final product's analysis, and femtosecond transient absorption studies on Bleb-Cl/Bleb-Br demonstrate that Bleb can act as a photocage platform to release the halogen ion via heterolytic reaction when irradiated by blue or near-infrared light. Therefore, Bleb can be a new generation of visible or near-infrared light-triggered photocage.


Assuntos
Vesícula , Halogênios , Halogênios/química , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Raios Infravermelhos , Fotólise
16.
Nat Commun ; 13(1): 2004, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422063

RESUMO

Efficient delivery of payload to intracellular targets has been identified as the central principle for nanomedicine development, while the extracellular targets are equally important for cancer treatment. Notably, the contribution of extracellularly distributed nanoparticles to therapeutic outcome is far from being understood. Herein, we develop a pH/light dual-responsive monochromatic ratiometric imaging nanoparticle (MRIN), which functions through sequentially lighting up the intracellular and extracellular fluorescence signals by acidic endocytic pH and near-infrared light. Enabled by MRIN nanotechnology, we accurately quantify the extracellular and intracellular distribution of nanoparticles in several tumor models, which account for 65-80% and 20-35% of total tumor exposure, respectively. Given that the majority of nanoparticles are trapped in extracellular regions, we successfully dissect the contribution of extracellularly distributed nanophotosensitizer to therapeutic efficacy, thereby maximize the treatment outcome. Our study provides key strategies to precisely quantify nanocarrier microdistribtion and engineer multifunctional nanomedicines for efficient theranostics.


Assuntos
Nanopartículas , Neoplasias , Diagnóstico por Imagem , Humanos , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
17.
Small ; 18(21): e2200179, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35396783

RESUMO

Target therapy for highly heterogeneous cancers represents a major clinical challenge due to the lack of recurrent therapeutic targets identified in these tumors. Herein, the authors report a tumor-customized targeting photothermal therapy (PTT) strategy for highly heterogeneous cancers, by which 2D supramolecular self-assembled nanodiscs are modified with tumor-specific binding peptides identified by phage display techniques. Taking osteosarcoma (OS) as a model heterogeneous cancer, an OS targeting peptide (OTP) is first selected after biopanning and is demonstrated to successfully bind to this heterogeneous cancer cells/tissues. Successful conjugation of OTP to heptamethine cyanine (Cy7)-based 2D nanodiscs Cy7-TCF (2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran,TCF) enables the 2D nanodiscs to specifically target the heterogeneous tumor. Notably, a single dose injection of this targeted nanodisc (T-ND) not only effectively induces enhanced photothermal tumor ablation under near-infrared light, but also exhibits sevenfold increase of tumor retention time (more than 24 days) compared to generic nanomedicine. Thus, the authors' findings suggest that the combination of phage display-based affinity peptides selection and 2D supramolecular nanodiscs leads to the development of a platform technology for highly heterogeneous cancers precise therapy, offering specific tumor targeting, ultralong tumor retention, and precise PTT.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Humanos , Raios Infravermelhos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Fototerapia , Terapia Fototérmica
18.
Cancer Sci ; 113(6): 2194-2206, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35411640

RESUMO

Severe vascular damage and complications are often observed in cancer patients during treatment with chemotherapeutic drugs such as cisplatin. Thus, development of potential options to ameliorate the vascular side effects is urgently needed. In this study, the effects and the underlying mechanisms of far-infrared radiation (FIR) on cisplatin-induced vascular injury and endothelial cytotoxicity/dysfunction in mice and human umbilical vein endothelial cells (HUVECs) were investigated. An important finding is that the severe vascular stenosis and poor blood flow seen in cisplatin-treated mice were greatly mitigated by FIR irradiation (30 minutes/day) for 1-3 days. Moreover, FIR markedly increased the levels of phosphorylation of PI3K and Akt, and VEGF secretion, as well as the expression and the activity of hypoxia-inducible factor 1α (HIF-1α) in cisplatin-treated HUVECs in a promyelocytic leukemia zinc finger protein (PLZF)-dependent manner. However, FIR-stimulated endothelial angiogenesis and VEGF release were significantly diminished by transfection with HIF-1α siRNA. We also confirmed that HIF-1α, PI3K, and PLZF contribute to the inhibitory effect of FIR on cisplatin-induced apoptosis in HUVECs. Notably, FIR did not affect the anticancer activity and the HIF-1α/VEGF cascade in cisplatin-treated cancer cells under normoxic or hypoxic condition, indicating that the actions of FIR may specifically target endothelial cells. It is the first study to demonstrate that FIR effectively attenuates cisplatin-induced vascular damage and impaired angiogenesis through activation of HIF-1α-dependent processes via regulation of PLZF and PI3K/Akt. Taken together, cotreatment with the noninvasive and easily performed FIR has a therapeutic potential to prevent the pathogenesis of vascular complications in cancer patients during cisplatin treatment.


Assuntos
Cisplatino , Endotélio Vascular , Subunidade alfa do Fator 1 Induzível por Hipóxia , Raios Infravermelhos , Fosfatidilinositol 3-Quinases , Doenças Vasculares , Animais , Cisplatino/efeitos adversos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/efeitos da radiação , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos da radiação , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Raios Infravermelhos/uso terapêutico , Camundongos , Neovascularização Patológica/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Doenças Vasculares/induzido quimicamente , Doenças Vasculares/radioterapia , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Nat Commun ; 13(1): 2288, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484148

RESUMO

One-photon-absorbing photosensitizers are commonly used in homogeneous photocatalysis which require the absorption of ultraviolet (UV) /visible light to populate the desired excited states with adequate energy and lifetime. Nevertheless, the limited penetration depth and competing absorption by organic substrates of UV/visible light calls upon exploring the utilization of longer-wavelength irradiation, such as near-infrared light (λirr > 700 nm). Despite being found applications in photodynamic therapy and bioimaging, two-photon absorption (TPA), the simultaneous absorption of two photons by one molecule, has been rarely explored in homogeneous photocatalysis. Herein, we report a group of ruthenium polypyridyl complexes possessing TPA capability that can drive a variety of organic transformations upon irradiation with 740 nm light. We demonstrate that these TPA ruthenium complexes can operate in an analogous manner as one-photon-absorbing photosensitizers for both energy-transfer and photoredox reactions, as well as function in concert with a transition metal co-catalyst for metallaphotoredox C-C coupling reactions.


Assuntos
Fotoquimioterapia , Rutênio , Raios Infravermelhos , Fotoquimioterapia/métodos , Fótons , Fármacos Fotossensibilizantes/química , Rutênio/química
20.
Talanta ; 246: 123453, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35462244

RESUMO

Flexible-type signal probes and their detection methods are increasingly being applied in biosensors. Among these, temperature-based signal probes represent a novel research direction. These sensors convert immunoassay signals into temperature signals, which are then detected using a thermometer or thermal infrared reader. However, from a physical viewpoint, we know that the temperature measured directly using a thermal infrared camera is the infrared radiance temperature, which is proportional to both the true temperature and emissivity. Herein, we design a novel sensing method that uses infrared radiance rather than true temperature as the signal probe. We convert the immunoassay to an infrared radiation temperature measurement by controlling an aluminum plate in constant temperature whose infrared radiation temperature varied significantly with immunoassay-based the amount of the target. We then develop two readout systems: one is based on a scientific-grade infrared camera, and the other uses a smartphone-based thermal camera, which is more portable, flexible, and can be used as an in-pocket sensor. The sensors are verified via detecting exemplary biomarker human IgG, and show excellent quantitative model performances in 0-100 ng mL-1 concentration range with the detection limit estimated as low as 0.54 ng mL-1. The excellent quantitative results demonstrate the powerful detection performance of this sensing method.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Humanos , Imunoensaio/métodos , Raios Infravermelhos , Smartphone , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA