Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.193
Filtrar
1.
Huan Jing Ke Xue ; 43(1): 540-549, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989539

RESUMO

To study changes in phosphatase activity, we examined the diversity of phoC and phoD gene microbial communities in the rhizosphere and non-rhizosphere soil of plants under the treatment of chemical fertilizer and organic fertilizer combined with biochar. These results can provide a certain theoretical guidance for the conversion of insoluble phosphorus in the soil phosphorus pool to the inorganic phosphate ion that can be absorbed by plant roots and also provide a certain experimental basis for the improvement of the availability of phosphorus in the soil and the agricultural utilization of biochar. In this study, corn stalks and rice husk stalks were used as test materials, and the pot experimental method was adopted using the following treatments:set control (CK), traditional fertilization (F), chemical fertilizer+20 t·hm-2 rice husk biochar (FP), chemical fertilizer+10 t·hm-2rice husk biochar+10 t·hm-2 corn biochar (FPM), organic fertilizer+20 t·hm-2 rice husk biochar (PP), and fresh organic fertilizer+20 t·hm-2 rice husk biochar (NPP). We determined the rhizosphere and non-rhizosphere soil acid phosphatase (ACP) activity and alkaline phosphatase (ALP) activity and used T-RFLP technology to analyze the diversity of phoC and phoD genes in order to clarify the impact of biochar on the micro-ecosystem formed by the plants, soil, and microorganisms. The results showed that:① the ALP and ACP activities of each treatment in the non-rhizosphere soil were lower than that of CK. In the rhizosphere soil, the ALP activity was significantly increased after the combined application of chemical fertilizer and organic fertilizer with biochar, and the ACP activity in the rhizosphere soil was higher than that in the non-rhizosphere soil. ② The combined application of biochar with chemical fertilizers and organic fertilizers significantly increased the diversity of phoC and phoD genes communities in rhizosphere and non-rhizosphere soils (P<0.05); the diversity and richness of microbial communities in rhizosphere soil were higher than that in non-rhizosphere soils. ③ ACP activity was negatively correlated with phoC gene microbial community, and most ALP activity was positively correlated with phoD microbial community.


Assuntos
Fertilizantes , Microbiota , Carvão Vegetal , Fertilizantes/análise , Monoéster Fosfórico Hidrolases , Rizosfera , Solo , Microbiologia do Solo
2.
J Environ Manage ; 304: 114321, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35021593

RESUMO

BACKGROUND: Mining activity in the Touissit district of Eastern Morocco has led to an unprecedented accumulation of heavy metals, mainly lead and zinc, in the tailing ponds of the open-air mines. This poses a real danger to both the environment and local population. OBJECTIVES: The goal of this work was to characterize the Plant Growth Promoting Rhizobacteria (PGPR) isolated from the rhizosphere soil of R. pseudoacacia plants grown wild in the abandoned Pb- and Zn-contaminated tailing ponds in the mining district of Touissit, in Eastern Morocco. MAIN RESULTS: One hundred bacterial strains were isolated from the rhizosphere of black locust (Robinia pseudoacacia L.) plants growing naturally in the Touissit mine tailings. Quantitative determination of indole-acetic and siderophores production, inorganic phosphate solubilization, hydrolysis of 1-aminocyclopropane-1-carboxylic acid (ACC deaminase activity), and ability to act as a biocontrol agent allowed selection of the 3 strains, 7MBT, 17MBT and 84MBT with improved PGP properties. The three strains grew well in the presence of high concentration of Pb-acetate and ZnCl2; and the addition of Pb or Zn to the culture medium differently affected the PGP properties analyzed. NOVELTY STATEMENT: Inoculation of black locust grown with the 3 selected strains, in the presence 1000 µg ml-1 of Pb-acetate, produced varying effects on the plant dry weight. The strain 84MBT alone or in combination with strains 7MBT and 17MBT increased significantly the dry weight of the plants by 91, 62, and 85% respectively. The 16S rRNA gene sequence analysis of each strain showed that the strains 7MBT 17MBT and 84MBT had 99.34, 100, and had 99.72% similarity with Priestia endophytica (formerly B. endophyticus), B. pumilus NBRC 12092T, and B. halotolerans NBRC 15718T, respectively.


Assuntos
Robinia , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Marrocos , RNA Ribossômico 16S/genética , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
An Acad Bras Cienc ; 94(1): e20191460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35018995

RESUMO

Vurali turcica is naturally grown in a limited area in Central Anatolia in Turkey and was categorized as a critically endangered plant in the Red Data Book of Turkish Plants. This study aimed to analyze whether the symbiotic and mutualistic relation between V. turcica rhizomes and present microflora in the habitat can be active on its distribution. Plant growth-promoting rhizobacteria (PGPRs) colonize the rhizosphere and promote plant growth and physiology. In this paper, the diversity of PGPRs of rhizomes of V. turcica was analyzed. Rhizome samples were obtained from the natural habitats of V. turcica by the workers of Nezahat Gökyigit Botanical Garden, and bacterial isolation was conducted on the collected samples. MIS analysis, 16S rRNA, and 16S-23S rRNA ITS region sequencing were implemented, and as a result, Bacillus megaterium was found to be one of the most abundant bacterial species of the rhizomes of V. turcica based on nucleotide homology. This study is the first report on the identification of rhizobacterial species in V. turcica.


Assuntos
Fabaceae , Bactérias/genética , Humanos , Desenvolvimento Vegetal , RNA Ribossômico 16S/genética , Rizosfera , Microbiologia do Solo
4.
Curr Microbiol ; 79(2): 43, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34982261

RESUMO

Two Gram-positive, rod-shaped, motile, endospore-forming strains, FJAT-49780T and FJAT-49732T were isolated from a citrus rhizosphere soil sample. The optimal growth temperatures for strains FJAT-49780T and FJAT-49732T were 45 and 35-40 °C, respectively. The optimal growth pH for strains FJAT-49732T and FJAT-49780T were pH 8.0 and pH 6.0, respectively. The 16S rRNA gene sequence similarity between FJAT-49780T and FJAT-49732T was 98.6%. Strains FJAT-49780T and FJAT-49732T shared 97.9-98.4% 16S rRNA gene sequence similarities to the type strain of Lederbergia wuyishanensis. In phylogenetic trees (based on 16S rRNA gene sequence), strains FJAT-49732T and FJAT-49780T clade with Lederbergia members. Both strains contained meso-diaminopimelic acid in their cell-wall peptidoglycan and MK-7 was the only isoprenoid quinone detected. The major fatty acids of strains FJAT-49732T and FJAT-49780T were anteiso-C15:0 and iso-C15:0. The polar lipids of strain FJAT-49780T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified aminophospholipid, unidentified phospholipid and unidentified lipids while strain FJAT-49732T contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid, unidentified aminolipid and unidentified phospholipid. The genomic DNA G+C content of strains FJAT-49780T and FJAT-49732T were 37.0 and 36.7%, respectively. The digital DNA-DNA hybridization and average nucleotide identity values between strains FJAT-49780T and FJAT-49732T and with other members of the genus Lederbergia were below the cut-off level for species delineation. Thus, based on the above results, strains FJAT-49780T and FJAT-49732T represent two novel species of the genus Lederbergia, for which the names Lederbergia citri sp. nov., and Lederbergia citrisecundus sp. nov., are proposed. The type strains are FJAT-49780T (= CCTCC AB 2019242T = LMG 31583T) and FJAT-49732T (= CCTCC AB 2019246T = LMG 31584T).


Assuntos
Citrus , Rizosfera , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
5.
Arch Microbiol ; 204(1): 109, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34978623

RESUMO

Mangroves are highly productive unique ecosystems harboring diverse unexplored microbial communities that play crucial roles in nutrient cycling as well as in maintaining ecosystem services. The mangrove-associated microbial communities transform the dead vegetation into nutrient sources of nitrogen, phosphorus, potash, etc. To understand the genetic and functional diversity of the bacterial communities involved in nitrogen cycling of this ecosystem, this study explored the diversity and distribution of both the nitrogen fixers and denitrifiers associated with the rhizospheres of Avicennia marina, Rhizophora mucronata, Suaeda maritima, and Salicornia brachiata of the Pichavaram mangroves. A combination of both culturable and unculturable (PCR-DGGE) approaches was adopted to explore the bacterial communities involved in nitrogen fixation by targeting the nifH genes, and the denitrifiers were explored by targeting the nirS and nosZ genes. Across the rhizospheres, Gammaproteobacteria was found to be predominant representing both nitrogen fixers and denitrifiers as revealed by culturable and unculturable analyses. Sequence analysis of soil nifH, nirS and nosZ genes clustered to unculturable, with few groups clustering with culturable groups, viz., Pseudomonas sp. and Halomonas sp. A total of 16 different culturable genera were isolated and characterized in this study. Other phyla like Firmicutes and Actinobacteria were also observed. The PCR-DGGE analysis also revealed the presence of 29 novel nifH sequences that were not reported earlier. Thus, the mangrove ecosystems serve as potential source for identifying unexplored novel microbial communities that contribute to nutrient cycling.


Assuntos
Microbiota , Rizosfera , Microbiota/genética , Nitrogênio/análise , Ciclo do Nitrogênio , Solo , Microbiologia do Solo
6.
BMC Plant Biol ; 22(1): 11, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979944

RESUMO

BACKGROUND: Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS: In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS: Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community.


Assuntos
Secas , Fotossíntese/efeitos dos fármacos , Ácido Poliglutâmico/análogos & derivados , Rizosfera , Microbiologia do Solo , Zea mays/fisiologia , Microbiota/efeitos dos fármacos , Ácido Poliglutâmico/farmacologia , Zea mays/efeitos dos fármacos
7.
J Environ Radioact ; 242: 106799, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34922129

RESUMO

The distribution and migration of artificial fallout radionuclides in natural soils has been profusely studied for assessing radioecological impacts and predicting their long-term behaviour, among other topics. Despite the standardized use of the analytical solutions of a simplified convection-diffusion equation (CDE), there are still some concerns and open questions. This work is aimed at contributing to the understanding of basic processes governing the distribution of fallout radionuclides in vegetated soils with rhizospheres. It studies 210Pb and 137Cs in soil cores and vegetal samples from Chréa National Park, in Algeria, along with other natural radionuclides and some major and trace elements. Results include surficial and depth distributions of radionuclide concentrations, and site and plant-specific concentration ratios (CR). Inventories of 137Cs (3620 ± 120 Bq m-2) and 210Pbexc (9000 ± 900 Bq m-2) in soils are typical from global fallout in high precipitation areas in the Northern Hemisphere. A simple model of a polyphasic soil, including rhizospheres, provides a realistic description in the studied case, where plant roots occupy about 45% of the volume in the 0-10 cm interval, with a high porosity around rhizomes. This composite soil matrix explains the different patterns observed in the depth distribution of the studied elements. The depth-distributions of 137Cs and 210Pbexc have been modelled with different approaches: i) analytical solution of the CDE with mean annual convection and large observation times; ii) as before, but with convection representing infiltration events and short observation times; iii) numerical modelling of the 137Cs profile in the mineral phase using CDE with fast initial distributions. The three approaches fit the empirical data, but they predict different time evolutions. The approach iii) provides a more realistic description. Results are questioning the common accepted analysis and its predictive use.


Assuntos
Monitoramento de Radiação , Solo , Argélia , Parques Recreativos , Rizosfera
8.
Chemosphere ; 286(Pt 1): 131648, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34315079

RESUMO

Aquatic macrophytes have been widely employed for in-situ phytoremediation of cadmium (Cd) polluted sediments. But, little is known about the responses of rhizosphere bacteria and their interspecific interactions to phytoremediation. In this study, the α-diversity, community composition, co-occurrence network and keystone species of sediment bacteria in rhizosphere zones of two typical macrophytes, Hydrilla verticillata and Elodea canadensis, were investigated using 16S rRNA gene high-throughput sequencing. The results showed that after fifty days of phytoremediation, a group of specialized sediment bacteria were assembled in the rhizosphere zones closely associated with different host macrophytes. Rhizosphere micro-environments, i.e., the increases of redox potential and organic matter and the decreases of pH, nitrogen and phosphorus, reduced bacterial α-diversity through niche-based species-sorting process, which in turn reduced interspecific mutualistic relationships. But meanwhile, benefiting from the nutrients supplied from macrophyte roots, more bacterial species survived in the highly Cd-contaminated sediments (50 mg kg-1). In addition, the co-occurrence network revealed that both macrophytes harbored two same keystone bacteria with the high betweenness centrality values, including the family Pedosphaeraceae (genus_unclassified) and genus Parasegetibacter. Their relative abundances were up to 28-fold and 25-fold higher than other keystone species, respectively. Furthermore, these two keystone bacteria were metabolic generalists with vital ecological functions, which posed significant potentials for promoting plant growth and tolerating Cd bio-toxicity. Therefore, the identified keystone rhizobacteria, Pedosphaeraceae and Parasegetibacter, would be potential microbial modulations applied for the future optimization of phytoremediation in Cd-contaminated sediment.


Assuntos
Hydrocharitaceae , Biodegradação Ambiental , Cádmio/análise , RNA Ribossômico 16S/genética , Rizosfera
9.
J Hazard Mater ; 421: 126731, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34339987

RESUMO

Citric acid (CA) is the major exudate of rice roots, yet the effects of CA on arsenic (As) transformation and microbial community in flooded paddy soil have not been clearly elucidated. In this study, microcosms were established by amending CA to As contaminated paddy soils, mimicking the rhizosphere environment. Results showed that 0.5% CA addition significantly enhanced As mobilization after one-hour incubation, increased total As in porewater by about 20-fold. CA addition induced arsenate release into porewater, and subsequently formed ternary complex of As, iron and organic matters, inhibiting further As transformation (including arsenate reduction and arsenite methylation). Furthermore, the results of linear discriminant analysis (LDA) effect size (LEfSe) and network analysis revealed that CA addition significantly enriched bacteria associated with arsenic and iron reductions, such as Clostridium (up to 35-fold) and Desulfitobacterium (up to 4-fold). Our results suggest that CA exhibits robust ability to mobilize As through both chemical and microbial processes, increasing the risk of As accumulation by rice. This study sheds light on our understanding of As mobilization and transformation in rhizosphere soil, potentially providing effective strategies to restrict As accumulation in food crops by screening or cultivating varieties with low CA exuding.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/análise , Ácido Cítrico , Rizosfera , Solo , Poluentes do Solo/análise
10.
J Sci Food Agric ; 102(2): 540-549, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34146349

RESUMO

BACKGROUND: Pasture farming in south-western Australia is challenged by nutrient-poor soils. We assessed the impact of microbial consortium inoculant (MI) and rock mineral fertiliser (MF) on growth, nutrient uptake, root morphology, rhizosphere carboxylate exudation and mycorrhizal colonisation in three pasture grasses - tall fescue (Festuca arundinacea L.), veldt grass (Ehrharta calycina Sm.) and tall wheatgrass (Thinopyrum ponticum L.) grown in low-phosphorus (P) sandy soil in a glasshouse for 30 and 60 days after sowing (DAS). RESULTS: Veldt grass produced the highest specific root length and smallest average root diameter in both growth periods, and had similar shoot weight, root surface area and fine root length (except at 30 DAS) to tall fescue. Compared with the control, MI alone or combined with MF significantly increased shoot and root biomass (except root biomass at 30 DAS), likely due to the significant increases in root surface area and fine root length. Plants supplied with MI + MF had higher shoot N and P contents than those in the MI and the control treatments at 60 DAS. Malate, citrate and trans-aconitate were the major rhizosphere carboxylates exuded at both 30 and 60 DAS. Malate exudation varied among species and treatments in both growth periods, but citrate exudation was consistently higher in the low-P treatments (control and MI) than the MF and MI + MF treatments. CONCLUSION: Microbial consortium inoculant can positively influence pasture production in low-P soil by increasing root surface area and fine root length, whereas exudation of nutrient-mobilising carboxylates (citrate) is dependent more on soil P supply than microbial consortium inoculant. © 2021 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Exsudatos de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/microbiologia , Ácidos Carboxílicos/análise , Ácidos Carboxílicos/metabolismo , Fertilizantes/análise , Consórcios Microbianos , Fósforo/metabolismo , Exsudatos de Plantas/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Poaceae/química , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Rizosfera , Solo/química
11.
Environ Pollut ; 292(Pt A): 118366, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653590

RESUMO

Bensulfuron-methyl (BSM) residues in soil threaten the rotation of BSM-sensitive crops. Microbial biofilms formed on crop roots could improve the ability of microbes to survive and protect crop roots. However, the research on biofilms with the purpose of mitigating or even eliminating BSM damage to sensitive crops is very limited. In this study, one BSM-degrading bacterium, Hansschlegelia zhihuaiae S113, colonized maize roots by forming a biofilm. Root exudates were associated with increased BSM degradation efficiency with strain S113 in rhizosphere soil relative to bulk soil, so the interactions among BSM degradation, root exudates, and biofilms may provide a new approach for the BSM-contaminated soil bioremediation. Root exudates and their constituent organic acids, including fumaric acid, tartaric acid, and l-malic acid, enhanced biofilm formation with 13.0-22.2% increases, owing to the regulation of genes encoding proteins responsible for cell motility/chemotaxis (fla/che cluster) and materials metabolism, thus promoting S113 population increases. Additionally, root exudates were also able to induce exopolysaccharide production to promote mature biofilm formation. Complete BSM degradation and healthy maize growth were found in BSM-contaminated rhizosphere soil treated with wild strain S113, compared to that treated with loss-of-function mutants ΔcheA-S113 (89.3%, without biofilm formation ability) and ΔsulE-S113 (22.1%, without degradation ability) or sterile water (10.7%, control). Furthermore, the biofilm mediated by organic acids, such as l-malic acid, exhibited a more favorable effect on BSM degradation and maize growth. These results showed that root exudates and their components (such as organic acids) can induce the biosynthesis of the biofilm to promote BSM degradation, emphasizing the contribution of root biofilm in reducing BSM damage to maize.


Assuntos
Methylocystaceae , Zea mays , Biofilmes , Raízes de Plantas , Rizosfera , Microbiologia do Solo
12.
Sci Total Environ ; 803: 150131, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34788940

RESUMO

Microbial communities from rhizosphere (rhizomicrobiomes) have been significantly impacted by domestication as evidenced by a comparison of the rhizomicrobiomes of wild and related cultivated rice accessions. While there have been many published studies focusing on the structure of the rhizomicrobiome, studies comparing the functional traits of the microbial communities in the rhizospheres of wild rice and cultivated rice accessions are not yet available. In this study, we used metagenomic data from experimental rice plots to analyze the potential functional traits of the microbial communities in the rhizospheres of wild rice accessions originated from Africa and Asia in comparison with their related cultivated rice accessions. The functional potential of rhizosphere microbial communities involved in alanine, aspartate and glutamate metabolism, methane metabolism, carbon fixation pathways, citrate cycle (TCA cycle), pyruvate metabolism and lipopolysaccharide biosynthesis pathways were found to be enriched in the rhizomicrobiomes of wild rice accessions. Notably, methane metabolism in the rhizomicrobiomes of wild and cultivated rice accessions clearly differed. Key enzymes involved in methane production and utilization were overrepresented in the rhizomicrobiome samples obtained from wild rice accessions, suggesting that the rhizomicrobiomes of wild rice maintain a different ecological balance for methane production and utilization compared with those of the related cultivated rice accessions. A novel assessment of the impact of rice domestication on the primary metabolic pathways associated with microbial taxa in the rhizomicrobiomes was performed. Results indicated a strong impact of rice domestication on methane metabolism; a process that represents a critical function of the rhizosphere microbial community of rice. The findings of this study provide important information for future breeding of rice varieties with reduced methane emission during cultivation for sustainable agriculture.


Assuntos
Oryza , Domesticação , Metano , Oryza/genética , Melhoramento Vegetal , Rizosfera
13.
Sci Total Environ ; 804: 150282, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798760

RESUMO

Phytoextraction is an in situ remediation technique that uses (hyper)accumulator plant species to extract metal(loid)s from contaminated soils. Field studies can help in selecting appropriate plants for phytoextraction and in better understanding their phytoextraction performance. Hence, a field study was conducted using six (hyper)accumulator species (Solanum nigrum L., Bidens pilosa L., Xanthium strumarium L., Helianthus annuus L., Lonicera japonica T. and Pennisetum sinese R.) over two years in Jiaoxi town, Liuyang city, Hunan Province, China, to determine the effect of the (hyper)accumulator rhizospheres on field soils contaminated with multiple metal(loid)s and to analyze the variations in rhizosphere soil microbial community diversity and composition. After two years of field experiments, compared to the other four (hyper)accumulators, Bidens pilosa L. and Xanthium strumarium L. exhibited not only better metal(loid) phytoextraction abilities but also higher shoot biomasses. The contents of diethylenetriaminepentaacetic acid (DTPA)-extractable Pb, Cd and Zn decreased in the rhizosphere soils of all six (hyper)accumulators after repeated phytoextraction. Moreover, our findings illustrated that hyperaccumulator planting helps improve and rebuild the soil bacterial community composition and structure in contaminated soils by shifting the soil physiochemical properties. After repeated planting, the soil bacterial communities were reconstructed and dominated by Proteobacteria, Actinobacteriota, Chloroflexi and Acidobacteriota at the phylum level. The soil fungal communities were dominated by Ascomycota, Basidiomycota and Mortierellomycota at the phylum level. The reconstruction of soil microbial communities may help (hyper)accumulators adapt to metal(loid)-contaminated environments and improve their phytoextraction abilities.


Assuntos
Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Rizosfera , Solo , Poluentes do Solo/análise
14.
Bioresour Technol ; 344(Pt B): 126246, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34743992

RESUMO

The widespread distribution of organic and inorganic pollutants in water resources have increased due to rapid industrialization. Rhizospheric zone-associated bacteria along with endophytic bacteria show a significant role in remediation of various pollutants. Metaomics technologies are gaining an advantage over traditional methods because of their capability to obtain detailed information on exclusive microbial communities in rhizosphere of the plant including the unculturable microorganisms. Transcriptomics, proteomics, and metabolomics are functional methodologies that help to reveal the mechanisms of plant-microbe interactions and their synergistic roles in remediation of pollutants. Intensive analysis of metaomics data can be useful to understand the interrelationships of various metabolic activities between plants and microbes. This review comprehensively discusses recent advances in omics applications made hitherto to understand the mechanisms of plant-microbe interactions during phytoremediation. It extends the delivery of the insightful information on plant-microbiomes communications with an emphasis on their genetic, biochemical, physical, metabolic, and environmental interactions.


Assuntos
Microbiota , Poluentes do Solo , Bactérias/genética , Biodegradação Ambiental , Plantas , Rizosfera , Poluentes do Solo/análise
15.
J Hazard Mater ; 423(Pt A): 126947, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34481400

RESUMO

Carbon nanotubes can potentially stimulate phytoremediation of heavy metal contaminated soil by promoting plant biomass and root growth. Yet, the regulating mechanism of carbon nanotubes on the rhizosphere microenvironment and their potential ecological risks remain poorly characterized. The purpose of this study was to systematically evaluate the effects of multi-walled carbon nanotubes (MCNT) on the diversity and structure of rhizosphere soil bacterial and fungal communities, as well as soil enzyme activities and nutrients, in Solanum nigrum L. (S. nigrum)-soil system. Here, S. nigrum were cultivated in heavy metal(loid)s contaminated soils applied with MCNT (100, 500, and 1000 mg kg-1 by concentration, none MCNT addition as control) for 60 days. Our results demonstrated more significant urease, sucrase, and acid phosphatase activities in MCNT than in control soils, which benefit to promoting plant growth. Also, there were significant reductions in available nitrogen and available potassium contents with the treatment of MCNT, while the organic carbon and available phosphorus were not affected by MCNT application. Notably, the alpha diversity of bacterial and fungal communities in the MCNT treatments did not significantly vary relative to control. However, the soil microbial taxonomic compositions were changed under the application of MCNT. Compared to the control, MCNT application increased the relative abundances of the Micrococcaceae family, Solirubrobacteraceae family, and Conexibacter genus, which were positively correlated with plant growth. In addition, the non-metric multidimensional scaling (NMDS) analysis revealed that the community structure of bacterial and fungal communities did not significantly change among all the treatments, and bacterial community structure was significantly correlated with soil organic carbon. At the same time, sucrase activity had the highest relation to fungal community structure. This study highlighted soil microbes have strong resistance and adaptation ability to carbon nanotubes with existence of plants, and revealed linkage between the rhizosphere microenvironment and plant growth, which well improved our understanding of carbon nanotubes in heavy metal phytoremediation.


Assuntos
Microbiota , Nanopartículas , Nanotubos de Carbono , Poluentes do Solo , Nutrientes , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise
16.
J Hazard Mater ; 423(Pt A): 127062, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482080

RESUMO

Polyethylene film is the most widely used plastic film in agricultural production activities, and its depolymerization products are mainly polyethylene-particles (PE-particles) of different molecular weights. However, the impact of the molecular weights of the PE-particles on soil-crop microenvironment has not been elucidated. In this study, a potted microcosmic simulation system was used to evaluate the impact of low, medium and high molecular weight PE-particles on soil metabolism, microbial community structure, and crop growth. There were obvious differences in the shape and surface microstructure of PE-particles with different molecular weights. Soil sucrase and peroxidase had significant responses to PE-particles of different molecular weights. In the rhizosphere, the number of microorganisms and the microbial alpha diversity index increased with increasing PE-particles molecular weight. Rhizobacter, Nitrospira, and Sphingomonas were the dominant microorganisms induced by PE-particles to regulate the metabolism of elements. Carbohydrate and amino acid contents in rhizosphere soils were the key factors affecting the species abundance of Lysobacter, Polyclovorans, Rhizobacter, and Sphingomonas. In plants, PE-particles treatment reduced the plant biomass and photosynthetic rate and disrupted normal mineral nutrient metabolism. Different molecular weight PE-particles may therefore have adverse effects on the soil-plant system.


Assuntos
Microbiota , Rizosfera , Peso Molecular , Polietileno , Solo , Microbiologia do Solo , Zea mays
17.
Sci Total Environ ; 806(Pt 2): 150610, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597578

RESUMO

Thousands of unlined landfills and open dumpsites seriously threatened the safety of soil and groundwater due to leachate leakage with a mass of pollutants, particularly heavy metals, organic contaminants and ammonia. Phytoremediation is widely used in the treatment of cocontaminated soils because it is cost-effective and environmentally friendly. However, the extent to which phytoremediation efficiency and plant physiological responses are affected by the high nitrogen (N) content in such cocontaminated soil is still uncertain. Here, pot experiments were conducted to investigate the effects of N addition on the applicability of legume alfalfa remediation for polycyclic aromatic hydrocarbon­cadmium (PAHCd) co-/contaminated soil and the corresponding microbial regulation mechanism. The results showed that the PAH dissipation rates and Cd removal rates in the high-contamination groups increased with the external N supply, among which the pyrene dissipation rates in the cocontaminated soil was elevated most significantly, from 78.10% to 87.25%. However, the phytoremediation efficiency weakened in low cocontaminated soil, possibly because the excessive N content had inhibitory effects on the rhizobium Ensifer and restrained alfalfa growth. Furthermore, the relative abundance of PAH-degrading bacteria in the rhizosphere dominated PAH dissipation. As reflected by principal coordinate analysis (PCoA) analysis and hierarchical dendrograms, the microbial community composition changed with N addition, and a more pronounced shift was found in the rhizosphere relative to the endosphere or shoots of alfalfa. This study will provide a theoretical basis for legume plant remediation of dumpsites as well as soil contaminated with multiple pollutants.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Cádmio , Medicago sativa , Nitrogênio , Rizosfera , Solo , Microbiologia do Solo , Poluentes do Solo/análise
18.
Microbiol Res ; 254: 126901, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34700186

RESUMO

In the light of intensification of cropping practices and changing climatic conditions, nourishing a growing global population requires optimizing environmental sustainability and reducing ecosystem impacts of food production. The use of microbiological systems to ameliorate the agricultural production in a sustainable and eco-friendly way is widespread accepted as a future key-technology. However, the multitude of interaction possibilities between the numerous beneficial microbes and plants in their habitat calls for systematic analysis and management of the rhizospheric microbiome. This review exploits present and future strategies for rhizospheric microbiome management with the aim to generate a comprehensive understanding of the known tools and techniques. Significant information on the structure and dynamics of rhizospheric microbiota of isolated microbial communities is now available. These microbial communities have beneficial effects including increased plant growth, essential nutrient acquisition, pathogens tolerance, and increased abiotic as well as biotic stress tolerance such as drought, temperature, salinity and antagonistic activities against the phyto-pathogens. A better and comprehensive understanding of the various effects and microbial interactions can be gained by application of molecular approaches as extraction of DNA/RNA and other biochemical markers to analyze microbial soil diversity. Novel techniques like interactome network analysis and split-ubiquitin system framework will enable to gain more insight into communication and interactions between the proteins from microbes and plants. The aim of the analysis tasks leads to the novel approach of Rhizosphere microbiome engineering. The capability of forming the rhizospheric microbiome in a defined way will allow combining several microbes (e.g. bacteria and fungi) for a given environment (soil type and climatic zone) in order to exert beneficial influences on specific plants. This integration will require a large-scale effort among academic researchers, industry researchers and farmers to understand and manage interactions of plant-microbiomes within modern farming systems, and is clearly a multi-domain approach and can be mastered only jointly by microbiology, mathematics and information technology. These innovations will open up a new avenue for designing and implementing intensive farming microbiome management approaches to maximize resource productivity and stress tolerance of agro-ecosystems, which in return will create value to the increasing worldwide population, for both food production and consumption.


Assuntos
Agricultura , Microbiota , Rizosfera , Desenvolvimento Sustentável , Agricultura/tendências , Bioengenharia/tendências , Produtos Agrícolas/microbiologia , Interações Microbianas , Microbiologia do Solo , Desenvolvimento Sustentável/tendências
19.
Microbiol Res ; 254: 126914, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34749295

RESUMO

Potassium fulvic acid (BSFA) and potassium humate (KHM), as organic fertilizers, can improve soil structure, increase soil nutrient levels and prevent plant diseases. However, knowledge is limited regarding how BSFA and KHM influence soil microbial communities and the interrelationships between community members associated with Panax ginseng. Soil pH and nutrient content increased significantly as a result of the addition of BSFA and KHM. The pH, NH4+-N, NO3--N, AP and AK increased by 1.72 %-5.55 %, 70.09 %-108.39 %, 35.38 %-216.20 %, 1.21 %-14.19 % and 3.40 %-5.94 %, respectively, in the BSFA and KHM treatments. The soil nutrient increase may be related to Micrococcaceae and arbuscular mycorrhizal fungi (AMF). The structure of the microbial community also changed radically from that of the control group, and Chloroflexi (2.69 %-3.15 %), Actinobacteria (4.33 %-7.53 %) and Acidobacteria (9.44 %-11.62 %) were the dominant microorganisms at the phylum level in bacteria. In contrast, the dominant fungi at the phylum level were Ascomycota (77.39 %-78.08 %), Glomeromycota (0.36 %-2.68), Olpidiomycota (0.02 %-3.78 %) and Basidiomycota (0.80 %-1.17 %). Fusarium oxysporum and Ascomycota were biomarkers for BSFA and KHM, which may be related to pathogenic bacteria. Network analysis revealed that the association among members of the soil microbial community was more positive than negative following application of KHM, and more positive (62.5 %) than negative (37.5 %) correlations were observed between bacteria, whereas the fungal community exhibited more positive (97.3 %) than negative (2.7 %) correlations. PICRUST predicted the microbial function of adding KHM and BSFA to the soil, and these pathways mainly belong to the degradation and metabolism of organic matter, saprophytic organisms and plant pathogens. In summary, our study demonstrated that the addition of BSFA and KHM increased the nutrients in the ginseng soil and reshaped the microbial function in soils, providing a theoretical foundation for soil improvement and biological control of ginseng diseases. However, due to the limitations of greenhouse cultivation, additional long-term experiments on farmland with different climate changes are recommended.


Assuntos
Benzopiranos , Biodiversidade , Fertilizantes , Microbiota , Potássio , Microbiologia do Solo , Benzopiranos/farmacologia , Microbiota/efeitos dos fármacos , Panax/microbiologia , Potássio/farmacologia , Rizosfera , Solo/química
20.
Sci Total Environ ; 806(Pt 1): 150513, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571228

RESUMO

Biochar has been advocated as a sustainable and eco-friendly practice to improve soil fertility and crop productivity which could aid in the mitigation of climate change. Nonetheless, the combined effects of biochar and irrigation on tobacco growth and soil nutrients in diverse soil types have been incompletely explored. We applied a split-root experiment to investigate the impacts of amendment with 2% softwood- (WBC) and wheat-straw biochar (SBC) on growth responses and rhizosphere soil nutrients availability of tobacco plants grown in a Ferralsol and an Anthrosol. All plants within same soil type received same amount of water daily by either conventional deficit irrigation (CDI) or alternate wetting-drying cycles irrigation (AWD). Compared to the un-amended controls, SBC addition enhanced biomass, carbon (C)-, phosphorus (P)- and potassium (K)-pool in the aboveground organs especially in Anthrosol, despite a negative effect on aboveground nitrogen (N)-pool. Regardless of soil type, biochar combined with AWD lowered root diameter while increased root tissue mass density to engage the plant in an acquisitive strategy for resources, therefore altered leaves stoichiometry as exemplified by lowered N/K, C/P and N/P and increased C/N. The addition of SBC induced a liming effect by increasing Anthrosol soil pH which was further amplified by AWD, but was unaffected on Ferralsol. Moreover, compared to the controls, SBC and AWD increased available P and K, and total C, total N and C/N ratio in the rhizosphere soil which coincided with the lowered soil C and N isotope composition (δ13C and δ15N), though a slight reduction in C and N stocks under AWD. However, such effects were not evident with WBC might be associated with its natures. Thus, combined SBC/AWD application might be an effective strategy to synergistically overcome nutrients restriction and improve tobacco productivity by intensifying nutrients cycling and optimizing plant growth strategies.


Assuntos
Rizosfera , Solo , Carvão Vegetal , Nutrientes , Tabaco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA