Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.412
Filtrar
1.
J Sci Food Agric ; 102(2): 550-556, 2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34146348

RESUMO

BACKGROUND: This study examined the functional and antioxidant properties of Maillard reaction (MR) products of lupin protein isolate (LPI), fermented (FLPI), and germinated (GLPI) with glucose (G), treated with ultrasound (US) at different power levels (20-40-60-80%) for 15 min. The MR was conducted in a water bath for 180 min at 90 °C. RESULTS: The Trolox-equivalent antioxidant capacity (TEAC) values were found to be 46.79%, 56.43%, and 35.56% for the control (C), 58.99%, 80.17%, and 69.73% for conjugates of LPI-G, FLPI-G, and GLPI-G treated at 80% US, respectively. The maximum 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of LPI-G, FLPI-G, and GLPI-G was found to be 39.68%, 59.54%, and 48.41%, respectively after 80% US. The FLPI-G sample showed the highest antioxidant activity compared with the samples treated at the same power level for DPPH and TEAC. The Fe-chelating activity of GLPI-G showed significant differences when compared with FLPI-G. The solubility of LPI-G, FLPI-G, and GLPI-G increased with increasing US power. The highest solubility was 74.29% for 80% US-treated GLPI-G. The emulsifying activity index (EAI) increased at 20% US and decreased with further increase in the US power. The EAI and emulsifying stability index (ESI) were negatively affected by the MR and US processes. CONCLUSION: The findings of current study proved that conjugation of LPI with G with the MR and with US pretreatment is an effective method for improving the bio- and techno-functional properties of LPI. It is therefore likely that the properties of plant proteins modified by biochemical and physical treatments may widen their applications in the food industry. © 2021 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Manipulação de Alimentos/métodos , Glucose/química , Lupinus/química , Proteínas de Armazenamento de Sementes/química , Fermentação , Manipulação de Alimentos/instrumentação , Germinação , Lupinus/crescimento & desenvolvimento , Reação de Maillard , Sementes/química , Sementes/crescimento & desenvolvimento , Ultrassom
2.
J Sci Food Agric ; 102(1): 299-311, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34091912

RESUMO

BACKGROUND: Stevia rebaudiana is a high value crop due to the strong commercial demand for its metabolites (steviol glycosides) but has limited geographical cultivation range. In non-native environments with different daylength and light quality, Stevia has low germination rates and early flowering resulting in lower biomass and poor yield of the desired metabolites. In this study, artificial lighting with light-emitting diodes (LEDs) was used to determine if different light quality within and outside of the photosynthetically active radiation (PAR) range can be used to improve germination rates and yields for production of steviol glycosides for the herbal supplement and food industry. RESULTS: Plants treated with red and blue light at an intensity of 130 µmol m-2  s-1 supplemented with 5% of UV-A light under a 16-h photoperiod produced the most desirable overall results with a high rate of germination, low percentage of early flowering, and high yields of dry leaf, stevioside and rebaudioside A, 175 days after planting. CONCLUSION: While red and blue light combinations are effective for plant growth, the use of supplemental non-PAR irradiation of UV-A wavelength significantly and desirably delayed flowering, enhanced germination, biomass, rebaudioside A and stevioside yields, while supplemental green light improved yield of biomass and rebaudioside A, but not stevioside. Overall, the combination of red, blue and UV-A light resulted in the best overall productivity for Stevia rebaudiana. © 2021 Society of Chemical Industry.


Assuntos
Flores/crescimento & desenvolvimento , Fotossíntese/efeitos da radiação , Sementes/efeitos da radiação , Stevia/crescimento & desenvolvimento , Biomassa , Diterpenos do Tipo Caurano/metabolismo , Flores/química , Flores/efeitos dos fármacos , Flores/metabolismo , Germinação , Glucosídeos/metabolismo , Luz , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Stevia/química , Stevia/metabolismo , Stevia/efeitos da radiação
3.
J Sci Food Agric ; 102(1): 268-279, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34109642

RESUMO

BACKGROUND: Foxtail millet grain has higher folate content than other cereal crops. However, the folate metabolite content and the expression patterns of folate metabolite-related genes are unknown. RESULTS: Liquid chromatography-mass spectrometry was used to investigate 12 folate metabolites in a foxtail millet panicle. The content of total folate and derivatives gradually decreased during panicle development. Polyglutamate 5-formyl-tetrahydrofolate was the major form. Twenty-eight genes involved in the folate metabolic pathway were identified through bioinformatic analysis. These genes in Setaria italica, S. viridis and Zea mays showed genomic collinearity. Phylogenetic analysis revealed that the folate-related genes were closely related among the C4 plants compared to C3 plants. The gene expressions were then studied at three panicle development stages. The gene expression patterns were classified into two groups, namely SiADCL1 and SiGGH as two key enzymes, which are responsible for folate synthesis and degradation; their expression levels were highest at the early panicle development stage, up to 179.11- and 163.88-fold, respectively. Their expression levels had a similar downward trend during panicle development and were significantly positively correlated with the concentration of total folate and folate derivatives. However, SiSHMT3 expression levels were significantly negatively correlated with total folate concentration. CONCLUSION: Besides being the major determinants of folate and folate derivatives accumulation, SiADCL1 and SiGGH expression levels are key limiting factors in the foxtail millet panicle. Therefore, SiADCL1 and SiGGH expression levels can be targeted in genetic modification studies to improve folate content in foxtail millet seeds in the future. © 2021 Society of Chemical Industry.


Assuntos
Ácido Fólico/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Setaria (Planta)/metabolismo , Metabolômica , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Setaria (Planta)/genética , Setaria (Planta)/crescimento & desenvolvimento
4.
J Sci Food Agric ; 102(1): 370-382, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34139029

RESUMO

BACKGROUND: Rice yield and grain quality are highly sensitive to soil salinity. Distinct rice genotypes respond to salinity stress differently. To explore the variation in grain yield and grain trait adaptation to moderate, reproductive-stage salinity stress (4 dS/m electrical conductivity), four rice cultivars differing in degrees of vegetative salt tolerance, including Pokkali (salt-tolerant), RD15 (moderately salt-tolerant), KDML105 (moderately salt-susceptible) and IR29 (salt-susceptible), were examined. RESULTS: Grain fertility and 100-grain weight of RD15, KDML105 and IR29, as well as grain morphology of KDML105 and IR29, were significantly disturbed. Interestingly, grain starch accumulation in RD15 and KDML105 was enhanced under stress. However, only RD15 showed changes in starch physicochemical properties, including increased granule diameter, decreased gelatinization peak temperature (Tp ) and decreased retrogradation onset temperature (To ). Notably, Pokkali maintained productivity, grain quality, and starch properties, while the grain quality of IR29 remained unchanged under salinity stress. Multivariate analysis displayed clear separation of productivity, grain morphology, and starch variables of RD15 in the salt-treated group relative to the control group, suggesting that it was the cultivar most impacted by salt stress despite its moderate salt-tolerance at vegetative stage. CONCLUSION: Our results demonstrate specific salinity responses among the rice genotypes, and suggest discrepancies between degrees of salt tolerance at vegetative stage versus the ability to maintain both grain quality and starch properties in response to salinity stress imposed at reproductive stage. © 2021 Society of Chemical Industry.


Assuntos
Oryza/crescimento & desenvolvimento , Sementes/química , Cloreto de Sódio/metabolismo , Amido/química , Genótipo , Oryza/genética , Oryza/metabolismo , Salinidade , Estresse Salino , Tolerância ao Sal , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Cloreto de Sódio/análise , Amido/metabolismo
5.
J Sci Food Agric ; 102(1): 360-369, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143446

RESUMO

BACKGROUND: Sowing date, seeding rate, and nitrogen (N) topdressing ratio have strong effects on grain yield (GY) and bread-making quality (BQ) in bread wheat. Simultaneous improvement in GY and BQ in bread wheat has long been a challenge due to the inverse relationship between GY and grain protein concentration (GPC). In this study, we investigated whether the GY and BQ of bread wheat sown on different dates could be improved simultaneously by optimizing the seeding rate and the N topdressing ratio. RESULTS: Delaying sowing beyond a certain period led to decreases in both GY and BQ. Optimizing the seeding rate and N topdressing ratio enhanced the N uptake during pre- and post-anthesis, as well as N remobilization during grain filling for all wheat plants sown on different dates, thereby increasing the GPC and the total N per grain (Ntot ). Consequently, grain protein composition was improved, resulting in an increased glutenin/gliadin ratio, sodium dodecyl sulfate-insoluble glutenin/total glutenin (i.e., glutenin polymerization index), and high-molecular-weight glutenin subunit/ low-molecular-weight glutenin subunit (HMW-GS/LMW-GS) ratio. Increased GPC and improved grain protein composition enhanced BQ. CONCLUSION: The mechanism underlying simultaneous improvement in GY and GPC as well as Ntot was the greater increase in N accumulation in grains per unit area relative to increases in GY, or total grain number per unit area. The GY and BQ can be improved simultaneously regardless of sowing date by optimizing the seeding rate and N topdressing ratio via enhanced N uptake and N remobilization into grains. © 2021 Society of Chemical Industry.


Assuntos
Pão/análise , Produção Agrícola/métodos , Nitrogênio/metabolismo , Sementes/metabolismo , Triticum/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Fatores de Tempo , Triticum/química , Triticum/metabolismo
6.
J Sci Food Agric ; 102(1): 407-416, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34143900

RESUMO

BACKGROUND: Hydric stress affects the production of wheat (Triticum aestivum L.) worldwide, making some tools necessary to cope with the decrease in rainfall. A sustainable alternative is the use of arbuscular mycorrhizal fungi (AMF) as biofertilisers. Here, we analysed the effects of AMF strains adapted or non-adapted to hyper-arid conditions on the phenolic profiles and antioxidant activities of wheat grains from two cultivars with contrasting tolerance to osmotic stress (Ilustre, moderately tolerant; and Maxi, tolerant) grown with and without hydric stress. RESULTS: Eight phenolic compounds were detected, apigenin-C-pentoside-C-hexoside I being the most abundant and showing an increase of 80.5% when inoculated with the fungus Funneliformis mosseae (FM) obtained from Atacama Desert under normal irrigation with respect to non-mycorrhizal (NM) plants. NM treatments were associated with higher grain yields. FM showed a noticeable effect on most phenolic compounds, with an increase up to 30.2% in apigenin-C-pentoside-C-hexoside III concentration under hydric stress with respect to normal irrigation, being also responsible for high antioxidant activities such as ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and DPPH (2,2-diphenyl-1-picrylhydrazyl) activities. CONCLUSION: Inoculation with FM adapted to hydric stress produced improvements in phenolics composition and antioxidant activities in grains from wheat plants growing under hydric stress conditions, improving their food quality and supporting the development of further studies to determine whether the use of adapted AMF could be a realistic tool to improve grain quality in a scenario of increasing hydric stress conditions. © 2021 Society of Chemical Industry.


Assuntos
Inoculantes Agrícolas/fisiologia , Antioxidantes/química , Fungos/fisiologia , Micorrizas/fisiologia , Fenóis/química , Sementes/química , Triticum/crescimento & desenvolvimento , Antioxidantes/metabolismo , Fenóis/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia , Triticum/química , Triticum/metabolismo , Triticum/microbiologia
7.
Plant Sci ; 314: 111065, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895534

RESUMO

Sucrose-proton symporters play important roles in carbohydrate transport during plant growth and development. Their physiological functions have only been partly characterized and their regulation mechanism is largely unclear. Here we report that the knockout of a sucrose transporter gene, OsSUT1, by CRISPR-Cas9 mediated gene editing resulted in a slightly dwarf size and complete infertility of the gene's homozygous mutants. Observation of caryopsis development revealed that the endosperm of OsSUT1 mutants failed to cellularize and did not show any sign of seed-filling. Consistently, OsSUT1 was identified to express strongly in developing caryopsis of wild-type rice, particularly in the nucellar epidermis and aleurone which are critical for the uptake of nutrients into the endosperm. These results indicate that OsSUT1 is indispensable during the rice reproductive stage particularly for caryopsis development. Interestingly, OsSUT1 possesses at least 6 alternative splicing transcripts, including the 4 transcripts deposited previously and the other two identified by us. The differences among these transcripts primarily lie in their coding region of the 3' end and 3' UTR region. Real-time PCR showed that 4 of the 6 transcripts had different expressional patterns during rice vegetative and reproductive growth stages. Given the versatility of the gene, addressing its alternative splicing mechanism may expand our understanding of SUT's function substantially.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Fertilidade/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Oryza/genética , Oryza/metabolismo , Sacarose/metabolismo , Processamento Alternativo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Sementes/crescimento & desenvolvimento
8.
BMC Plant Biol ; 21(1): 603, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922450

RESUMO

BACKGROUND: Seeds of Paeonia ostii have been proposed as a source of raw material for the production of edible oil; however, lack of information about the developmental biology of the seeds hampers our ability to use them. Our aim was to investigate development of the seed coat, endosperm and embryo of P. ostii in relation to timing of accumulation of nutrient reserves from pollination to seed maturity. Ovules and developing seeds of P. ostii were collected at various stages of development from zygote to maturity. Seed fresh mass, dry mass, germination, moisture, soluble sugars, starch, protein and oil content were determined. Ontogeny of seeds including embryo, endosperm and seed coat were analyzed histologically. RESULTS: The ovule of P. ostii is anatropous, crassinucellate and bitegmic. The zygote begins to divide at about 5 days after pollination (DAP), and the division is not accompanied by cell wall formation. By 25 DAP, the proembryo begins to cellularize. Thereafter, several embryo primordia appear at the surface of the cellularized proembryo, but only one matures. Endosperm development follows the typical nuclear type. The seed coat is derived from the outer integument. During seed development, soluble sugars, starch and crude fat content increased and then decreased, with maximum contents at 60, 80 and 100 DAP, respectively. Protein content was relatively low compared with soluble sugars and crude fat, but it increased throughout seed development. CONCLUSIONS: During seed development in P. ostii, the seed coat acts as a temporary storage tissue. Embryo development of P. ostii can be divided into two stages: a coenocytic proembryo from zygote (n + n) that degenerates and a somatic embryo from peripheral cells of the proembryo (2n → 2n). This pattern of embryogeny differs from that of all other angiosperms, but it is similar to that of gymnosperms.


Assuntos
Paeonia/embriologia , Sementes/crescimento & desenvolvimento , Gorduras/metabolismo , Germinação , Paeonia/anatomia & histologia , Desenvolvimento Vegetal , Sementes/anatomia & histologia , Amido/metabolismo , Açúcares/metabolismo
9.
PLoS One ; 16(12): e0261593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936685

RESUMO

To realize real-time and accurate performance monitoring of large- and medium-sized seed metering devices, a performance monitoring system was designed for seed metering devices based on LED visible photoelectric sensing technology and a pulse width recognition algorithm. Through an analysis of the of sensing component pointing characteristics and seed motion characteristics, the layout of the sensing components and critical photoelectric sensing system components was optimized. Single-grain seed metering devices were employed as monitoring objects, and the pulse width thresholds for Ekangmian-10 cotton seeds and Zhengdan-958 corn seeds were determined through pulse width threshold calibration experiments employed at different seed metering plate rotational speeds. According to the seeding quantity monitoring experiments, when the seed metering plate rotational speed ranged from 28.31~35.71 rev/min, the accuracy reached 98.41% for Ekangmian-10 cotton seeds. When the seed metering plate rotational speed ranged from 13.78~19.39 rev/min, the seeding quantity monitoring accuracy reached 98.19% for Zhengdan-958 corn seeds. Performance monitoring experiments revealed that the qualified seeding quantity monitoring accuracy of cotton precision seed metering devices, missed seeding quantity monitoring accuracy, and reseeding quantity monitoring accuracy could reach 98.75%, 94.06%, and 91.30%, respectively, within a seeding speed range of 8~9 km/h. This system meets the requirements of real-time performance monitoring of large- and medium-sized precision seed metering devices, which helps to improve the operational performance of seeding machines.


Assuntos
Produção Agrícola , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Algoritmos , Produção Agrícola/instrumentação , Desenho de Equipamento , Sementes/anatomia & histologia , Zea mays/anatomia & histologia
10.
Mol Genet Genomics ; 296(6): 1323-1335, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34609588

RESUMO

Sex form is one of the most important characteristics in papaya cultivation in which hermaphrodite is the preferable form. Self-pollination of H*-TSS No.7, an inbred line derived from a rare X chromosome mutant SR*, produced all-hermaphrodite progeny. The recessive lethal allele controlling the all-hermaphrodite phenomenon was proposed to be the recessive Germination suppressor (gs) locus. This study employed next-generation sequencing technology and genome comparison to identify the candidate Gs gene. One specific gene, monodehydroascorbate reductase 4 (MDAR4) harboring a unique polymorphic 3 bp deletion in H*-TSS No.7 was identified. The function of MDAR4 is known to be involved in the hydrogen peroxide (H2O2) scavenging pathway and is associated with seed germination. Furthermore, MDAR4 showed higher expression in the imbibed seeds than that in the dry seeds indicating its potential role in the seed germination. Perhaps this is the very first report providing the evidences that MDAR4 is the candidate of Gs locus in H*-TSS No.7. In addition, Gs allele-specific markers were developed which would be facilitated for breeding all-hermaphrodite lines.


Assuntos
Carica/genética , Cromossomos de Plantas/genética , Organismos Hermafroditas/genética , NADH NADPH Oxirredutases/genética , Genoma de Planta/genética , Germinação/genética , Peróxido de Hidrogênio/metabolismo , Polinização/genética , Polinização/fisiologia , Sementes/crescimento & desenvolvimento , Deleção de Sequência/genética
11.
Plant Sci ; 312: 111027, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620432

RESUMO

Sulfur dioxide (SO2) is generally considered to be toxic to cells, but recent studies have shown that SO2 has positive roles in stress defense responses in plants. However, whether SO2 functions as a signaling molecule in the developmental process, especially in seed germination, is yet to be studied. Here, we present data supporting the role of SO2 in seed germination and possible molecular mechanisms. SO2 treatment significantly promoted the seed germination and seed vigor in maize. The germinating seeds treated with SO2 treatment exhibited higher reactive oxygen species (ROS) levels and NADPH oxidase activities. Furthermore, the specific NADPH oxidase inhibitor diphenyleneiodinium (DPI) strongly inhibited ROS accumulations, and SO2-promoted seed germination and vigor. Meanwhile, α-Amylase activity and transcripts in germinating seeds treated with SO2 were significantly elevated. These data have demonstrated that NADPH oxidase-dependent ROS production contributes to the induction of α-Amylase activity, thereby promoting seed germination upon SO2 exposure. SO2 might function as a signaling molecule in plant growth and development, especially in seed germination. This study might provide a theoretical foundation for the potential exploitation of hydrated SO2 in seed germination control in crop management.


Assuntos
Germinação/efeitos dos fármacos , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sementes/metabolismo , Dióxido de Enxofre/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Sementes/crescimento & desenvolvimento
12.
Plant Sci ; 312: 111029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620433

RESUMO

Paeonia ostii var. lishizhenii has emerged as a valuable oil-producing crop with splendid characteristic of high α-linolenic acid (C18:3, ALA) content in its seed oil for healthy food supplement, but the molecular mechanism for seed ALA accumulation remains enigmatic. In our previous report, a PoSAD gene encoding stearoyl-ACP desaturase had been cloned and functional charactered for the first desaturation procedure involved in ALA biosynthesis pathway in P. ostii var. lishizhenii endosperms, while other participants have not been identified to date. In this study, full-length cDNAs of PoFAD2 (1489 bp), PoFAD6 (1638 bp), and PoFAD3 (1709 bp) were isolated based on our recent transcriptome sequencing data. Bioinformatic analyses revealed that the PoFADs were closest to their counterparts from Paeoniaceae species P. ludlowii, P. rockii, and P. suffruticosa in phylogenetic tree, which shared highly conserved histidine boxes (HXXXH, HXXHH, and HXXHH), exhibiting typical characters of membrane-bound desaturases in higher plants. Additionally, the PoFAD2 and PoFAD3 were specifically expressed and highly associated with LA and ALA accumulation in developing endosperms, whereas PoFAD6 expression has no significantly difference during whole seed developing stages. The catalytic function of these PoFADs were further analyzed by heterologous expression in Saccharomyces cerevisiae and Arabidopsis thaliana. The results showed that PoFAD2 and PoFAD6 could catalyze linoleic acid (C18:2) synthesis, while PoFAD3 had ability to produce ALA. This study functional identified three PoFAD genes, which indicates their critical roles in ALA biosynthesis pathway in P. ostii var. lishizhenii, and is of great theoretical and practical meaning on breeding and cultivating new tree peony varieties to promote human health and nutrition supplement.


Assuntos
Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Paeonia/genética , Paeonia/metabolismo , Sementes/genética , Sementes/metabolismo , Ácido alfa-Linoleico/biossíntese , Ácido alfa-Linoleico/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Vias Biossintéticas , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Paeonia/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
13.
Plant Sci ; 312: 111045, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34620443

RESUMO

The present study provides a visual insight into the effects of simulated microgravity (MG) on somatic embryogenesis (SE) in Begonia through the analysis of phytohormone fluctuations and energy metabolism. To investigate this relationship, thin cell layer culture model was first used. The results showed that MG changed the phytohormone content and stimulated starch biosynthesis to convert into sugar to release energy needed for regeneration and proliferation. Moreover, from the results it is likely that MG accelerated the initiation and subsequently maturation and aging of SE via decrease of AUX and increase of ABA. High content of GA, CKs, starch, sugar and low ABA as well as high CKs/ABA ratio were responsible for the increase in the number of embryos under clinorotation which was 1.57-fold higher than control after 90 days. The increase in fresh and dry weight of somatic embryos and chlorophyll content under MG were confirmed as their adaptive responses to gravitational stress. However, long-term exposure to MG (120 days) stimulated biosynthesis of ABA levels 1.85-fold higher than controls, which resulted in a decrease in chlorophyll content, increase in number of mature embryos and stomata length. These results revealed that MG regulated the induction, differentiation and senescence of somatic embryos via a biochemical interaction pathway.


Assuntos
Ácido Abscísico/metabolismo , Begoniaceae/crescimento & desenvolvimento , Begoniaceae/metabolismo , Diferenciação Celular/efeitos dos fármacos , Metabolismo Energético , Reguladores de Crescimento de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Técnicas de Cultura de Células , Técnicas de Embriogênese Somática de Plantas
14.
PLoS One ; 16(10): e0258211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34610051

RESUMO

Genotype by environment (G×E) interaction is a major factor limiting the success of germplasm selection and identification of superior genotypes for use in plant breeding programs. Similar to the case in other crops, G×E complicates the improvement of sorghum, and hence it should be determined and used in decision-making programs. The present study aimed at assessing the G×E interaction, and the correlation between traits for superior sorghum genotypes. Three hundred twenty sorghum landraces and four improved varieties were used in alpha lattice experimental design-based field trial across three environments (Melkassa, Mieso and Mehoni) in Ethiopia. Phenotypic data were collected for days to flowering (DTF), plant height (PH), panicle length (PALH), panicle width (PAWD), panicle weight (PAWT) and grain yield (GY). The results revealed that the variance due to genotype, environment and G×E interaction were highly significant (P < 0.001) for all traits. GY and PAWT were highly affected by environments and G×E whereas DTF, PALH, PAWD and PH were mainly affected by genotypic variation. Therefore, multi-environment testing is needed for taking care of G × E interaction to identify high yielding and stable sorghum landraces. GY and PAWT revealed highly significant positive correlations indicating the possibility of effective selection of the two traits simultaneously. Among the studied populations, South Wello, West Hararghe and Shewa zones had highly diverse genotypes that were distributed across all clusters. Hence, these areas can be considered as hotspots for identifying divergent sorghum landraces that could be used in breeding programs. Melkassa was the most representative environment whereas Mieso was the most discriminating. Five genotypes (G148, G123, G110, G203 and G73) were identified as superior across the test environments for grain yield with farmer-preferred trait, such as plant height. The identified stable and high yielding genotypes are valuable genetic resources that should be used in sorghum breeding programs.


Assuntos
Interação Gene-Ambiente , Sementes/crescimento & desenvolvimento , Sementes/genética , Sorghum/crescimento & desenvolvimento , Sorghum/genética , Estatística como Assunto , Análise de Variância , Análise por Conglomerados , Genótipo , Geografia , Fenótipo , Análise de Componente Principal , Característica Quantitativa Herdável , Sorghum/anatomia & histologia
15.
BMC Plant Biol ; 21(1): 443, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592922

RESUMO

BACKGROUND: Tiller number is a factor determining panicle number and grain yield in wheat (Triticum aestivum). Auxin plays an important role in the regulation of branch production. PIN-FORMED 1 (PIN1), an auxin efflux carrier, plays a role in the regulation of tiller number in rice (Oryza sativa); however, little is known on the roles of PIN1 in wheat. RESULTS: Nine homologs of TaPIN1 genes were identified in wheat, of which TaPIN1-6 genes showed higher expression in the stem apex and young leaf in wheat, and the TaPIN1-6a protein was localized in the plasma membrane. The down-expression of TaPIN1s increased the tiller number in TaPIN1-RNA interference (TaPIN1-RNAi) transgenic wheat plants, indicating that auxin might mediate the axillary bud production. By contrast, the spikelet number, grain number per panicle, and the 1000-grain weight were decreased in the TaPIN1-RNAi transgenic wheat plants compared with those in the wild type. In summary, a reduction of TaPIN1s expression increased the tiller number and grain yield per plant of wheat. CONCLUSIONS: Phylogenetic analysis and protein structure of nine TaPIN1 proteins were analyzed, and subcellular localization of TaPIN1-6a was located in the plasma membrane. Knock-down expression of TaPIN1 genes increased the tiller number of transgenic wheat lines. Our study suggests that TaPIN1s is required for the regulation of grain yield in wheat.


Assuntos
Regulação para Baixo , Proteínas de Membrana Transportadoras/metabolismo , Caules de Planta/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Triticum/genética , Triticum/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Caules de Planta/genética , Caules de Planta/metabolismo , Sementes/genética , Sementes/metabolismo
16.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639198

RESUMO

Fatty acid desaturases add a second bond into a single bond of carbon atoms in fatty acid chains, resulting in an unsaturated bond between the two carbons. They are classified into soluble and membrane-bound desaturases, according to their structure, subcellular location, and function. The orthologous genes in Camelina sativa were identified and analyzed, and a total of 62 desaturase genes were identified. It was revealed that they had the common fatty acid desaturase domain, which has evolved separately, and the proteins of the same family also originated from the same ancestry. A mix of conserved, gained, or lost intron structure was obvious. Besides, conserved histidine motifs were found in each family, and transmembrane domains were exclusively revealed in the membrane-bound desaturases. The expression profile analysis of C. sativa desaturases revealed an increase in young leaves, seeds, and flowers. C. sativa ω3-fatty acid desaturases CsaFAD7 and CsaDAF8 were cloned and the subcellular localization analysis showed their location in the chloroplast. They were transferred into Arabidopsis thaliana to obtain transgenic lines. It was revealed that the ω3-fatty acid desaturase could increase the C18:3 level at the expense of C18:2, but decreases in oil content and seed weight, and wrinkled phenotypes were observed in transgenic CsaFAD7 lines, while no significant change was observed in transgenic CsaFAD8 lines in comparison to the wild-type. These findings gave insights into the characteristics of desaturase genes, which could provide an excellent basis for further investigation for C. sativa improvement, and overexpression of ω3-fatty acid desaturases in seeds could be useful in genetic engineering strategies, which are aimed at modifying the fatty acid composition of seed oil.


Assuntos
Brassicaceae/metabolismo , Evolução Molecular , Ácidos Graxos Dessaturases/metabolismo , Regulação da Expressão Gênica de Plantas , Óleos Vegetais/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Brassicaceae/genética , Brassicaceae/crescimento & desenvolvimento , Simulação por Computador , Ácidos Graxos Dessaturases/química , Ácidos Graxos Dessaturases/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Frações Subcelulares
17.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638735

RESUMO

In Arabidopsis seeds, ROS have been shown to be enabling actors of cellular signaling pathways promoting germination, but their accumulation under stress conditions or during aging leads to a decrease in the ability to germinate. Previous biochemical work revealed that a specific class of plastid thioredoxins (Trxs), the y-type Trxs, can fulfill antioxidant functions. Among the ten plastidial Trx isoforms identified in Arabidopsis, Trx y1 mRNA is the most abundant in dry seeds. We hypothesized that Trx y1 and Trx y2 would play an important role in seed physiology as antioxidants. Using reverse genetics, we found important changes in the corresponding Arabidopsis mutant seeds. They display remarkable traits such as increased longevity and higher and faster germination in conditions of reduced water availability or oxidative stress. These phenotypes suggest that Trxs y do not play an antioxidant role in seeds, as further evidenced by no changes in global ROS contents and protein redox status found in the corresponding mutant seeds. Instead, we provide evidence that marker genes of ABA and GAs pathways are perturbed in mutant seeds, together with their sensitivity to specific hormone inhibitors. Altogether, our results suggest that Trxs y function in Arabidopsis seeds is not linked to their previously identified antioxidant roles and reveal a new role for plastid Trxs linked to hormone regulation.


Assuntos
Proteínas de Arabidopsis/biossíntese , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Plastídeos/metabolismo , Sementes/metabolismo , Tiorredoxinas/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Germinação , Reguladores de Crescimento de Plantas/genética , Plastídeos/genética , Sementes/crescimento & desenvolvimento , Tiorredoxinas/genética
18.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639024

RESUMO

With no lysine (K) (WNK) kinases comprise a family of serine/threonine kinases belonging to an evolutionary branch of the eukaryotic kinome. These special kinases contain a unique active site and are found in a wide range of eukaryotes. The model plant Arabidopsis has been reported to have 11 WNK members, of which WNK8 functions as a negative regulator of abscisic acid (ABA) signaling. Here, we found that the expression of WNK8 is post-transcriptionally regulated through an upstream open reading frame (uORF) found in its 5' untranslated region (5'-UTR). This uORF has been predicted to encode a conserved peptide named CPuORF58 in both monocotyledons and dicotyledons. The analysis of the published ribosome footprinting studies and the study of the frameshift CPuORF58 peptide with altered repression capability suggested that this uORF causes ribosome stalling. Plants transformed with the native WNK8 promoter driving WNK8 expression were comparable with wild-type plants, whereas the plants transformed with a similar construct with mutated CPuORF58 start codon were less sensitive to ABA. In addition, WNK8 and its downstream target RACK1 were found to synergistically coordinate ABA signaling rather than antagonistically modulating glucose response and flowering in plants. Collectively, these results suggest that the WNK8 expression must be tightly regulated to fulfill the demands of ABA response in plants.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fases de Leitura Aberta , Biossíntese de Proteínas , /genética , Regiões 5' não Traduzidas , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Germinação/genética , Desenvolvimento Vegetal/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transdução de Sinais , Sintenia
19.
BMC Plant Biol ; 21(1): 502, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34717538

RESUMO

BACKGROUND: Proline can promote growth of plants by increasing photosynthetic activity under both non-stress and abiotic stress conditions. However, its role in non-stressed conditions is least studied. An experiment was conducted to assess as to whether increase in growth of wheat due to seed priming with proline under non-stress condition was associated with proline-induced changes in photosystem II (PSII) activity. Seeds of four wheat varieties (S-24, Sehar-06, Galaxy-13, and Pasban-90) were primed with different concentrations of proline (0, 5, 15 and 25 mM) for 12 h and allowed to grow under normal conditions. Biomass accumulation and photosynthetic performance, being two most sensitive features/indicators of plant growth, were selected to monitor proline modulated changes. RESULTS: Seed priming with proline increased the fresh and dry weights of shoots and roots, and plant height of all four wheat varieties. Maximum increase in growth attributes was observed in all four wheat varieties at 15 mM proline. Maximum growth improvement due to proline was found in var. Galaxy-13, whereas the reverse was true for S-24. Moreover, proline treatment changed the Fo, Fm, Fv/Fo, PIABS, PITot in wheat varieties indicating changes in PSII activity. Proline induced changes in energy fluxes for absorption, trapping, electron transport and heat dissipation per reaction center indicated that var. Galaxy-13 had better ability to process absorbed light energy through photosynthetic machinery. Moreover, lesser PSII efficiency in var. S-24 was due to lower energy flux for electron transport and greater energy flux for heat dissipation. This was further supported by the fact that var. S-24 had disturbance at acceptor side of PSI as reflected by reduction in ΔVIP, probability and energy flux for electron transport at the PSI end electron acceptors. CONCLUSION: Seed priming with proline improved the growth of wheat varieties, which depends on type of variety and concentration of proline applied. Seed priming with proline significantly changed the PSII activity in wheat varieties, however, its translation in growth improvement depends on potential of processing of absorbed light energy by electron acceptors of electron transport chain, particularly those present at PSI end.


Assuntos
Germinação/efeitos dos fármacos , Fotossíntese , Prolina/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/genética , Triticum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , Paquistão , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento
20.
BMC Plant Biol ; 21(1): 439, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583646

RESUMO

BACKGROUND: The asynchronous filling between superior spikelets (SS) and inferior spikelets (IS) in rice has become a research hotspot. The stagnant development and poor grain filling of IS limit yields and the formation of good quality rice. A large number of studies on this phenomenon have been carried out from the genome, transcriptome and proteome level, indicating that asynchronous filling of SS and IS filling is a complex, but orderly physiological and biochemical process involving changes of a large number of genes, protein expression and modification. However, the analysis of metabolomics differences between SS and IS is rarely reported currently. RESULTS: This study utilized untargeted metabolomics and identified 162 metabolites in rice spikelets. Among them, 17 differential metabolites associated with unsynchronized grain filling between SS and IS, 27 metabolites were related to the stagnant development of IS and 35 metabolites related to the lower maximum grain-filling rate of IS compared with the SS. We found that soluble sugars were an important metabolite during grain filling for SS and IS. Absolute quantification was used to further analyze the dynamic changes of 4 types of soluble sugars (sucrose, fructose, glucose, and trehalose) between SS and IS. The results showed that sucrose and trehalose were closely associated with the dynamic characteristics of grain filling between SS and IS. The application of exogenous sugar showed that trehalose functioned as a key sugar signal during grain filling of IS. Trehalose regulated the expression of genes related to sucrose conversion and starch synthesis, thereby promoting the conversion of sucrose to starch. The difference in the spatiotemporal expression of TPS-2 and TPP-1 between SS and IS was an important reason that led to the asynchronous change in the trehalose content between SS and IS. CONCLUSIONS: The results from this study are helpful for understanding the difference in grain filling between SS and IS at the metabolite level. In addition, the present results can also provide a theoretical basis for the next step of using metabolites to regulate the filling of IS.


Assuntos
Metaboloma/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sementes/genética , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA