Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.484
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4419-4429, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38957111

RESUMO

The objective of this research was to evaluate changes in flow behavior of chocolate during chocolate grinding using a stone grinder as affected by chocolate formulation. Three different types of chocolates were evaluated. Two chocolates without milk added (70% chocolate) and two chocolates with milk added and with different amounts of cocoa nibs (30% chocolate and 14% chocolate) were tested. For the 70% chocolates, nibs of two different origins were used; therefore, a total of four samples were evaluated. Chocolates were processed in a stone grinder, and samples were taken as a function of grinding time. For each timepoint, the flow behavior of the samples was measured using a rotational rheometer and fitted to the Casson model. Particle size was measured using a laser scattering instrument. Results showed that yield stress increased linearly while the Casson plastic viscosity decreased exponentially with grinding time (smaller particles). Particle size distribution of the chocolates showed a prominent bimodal distribution for short grinding times (∼9 h) with small (∼15 µm) and large (∼100 µm) particles; with longer grinding time, the population of larger particles decreased. Yield stress values were higher for the 70% chocolate, but they were not very different between the two milk chocolates tested. The Casson plastic viscosity was greatest for the 70% chocolate, followed by the 30% chocolate. The 14% chocolate had the lowest Casson plastic viscosity. Changes of Casson plastic viscosity with particle size were more evident for the dark chocolates compared to the milk ones. These results are helpful to small chocolate producers who need better understanding of how the formulation and grinding of chocolate affect its flow behavior, which will ultimately affect chocolate handling during production.


Assuntos
Chocolate , Manipulação de Alimentos , Leite , Tamanho da Partícula , Chocolate/análise , Manipulação de Alimentos/métodos , Viscosidade , Leite/química , Reologia , Cacau/química , Animais
2.
J Texture Stud ; 55(4): e12852, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952166

RESUMO

The development of thickening powders for the management of dysphagia is imperative due to the rapid growth of aging population and prevalence of the dysphagia. One promising thickening agent that can be used to formulate dysphagia diets is basil seed mucilage (BSM). This work investigates the effects of dispersing media, including water, milk, skim milk, and apple juice, on the rheological and tribological properties of the BSM-thickened liquids. Shear rheology results revealed that the thickening ability of BSM in these media in ascending order is milk < skim milk ≈ apple juice < water. On the other hand, extensional rheology demonstrated that the longest filament breakup time was observed when BSM was dissolved in milk, followed by skim milk, water, and apple juice. Furthermore, tribological measurements showed varying lubrication behavior, depending on the BSM concentration and dispersing media. Dissolution of BSM in apple juice resulted in the most superior lubrication property compared with that in other dispersing media. Overall, this study provides insights on BSM's application as a novel gum-based thickening powder in a range of beverages and emphasizes how important it is for consumers to have clear guidance for the use of BSM in dysphagia management.


Assuntos
Ocimum basilicum , Mucilagem Vegetal , Reologia , Sementes , Ocimum basilicum/química , Sementes/química , Mucilagem Vegetal/química , Animais , Leite/química , Viscosidade , Transtornos de Deglutição , Malus/química , Sucos de Frutas e Vegetais/análise , Humanos , Água , Pós , Lubrificação
3.
J Texture Stud ; 55(4): e12850, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952176

RESUMO

This study examined the effects of spread formulation and the structural/lubricant properties of six different commercial hazelnut and cocoa spreads on sensory perception. Rheology, tribology, and quantitative descriptive analysis (QDA) was assessed by also evaluating the correlation coefficients between the quality descriptor and the rheological and textural parameters. The viscosity was evaluated at different temperatures to better simulate conditions before and after ingestion. Tribological analysis was executed at 37°C to mimic the human oral cavity. The effect of saliva presence and the number of runs on tribological behaviors was investigated. Moreover, textural, calorimetric, and particle size distribution measurements were performed to reinforce the correlation between structural/thermal parameters (e.g., firmness, stickiness, sugar melting point) and sensory aspects. "Visual viscosity," defined as a sensory attribute evaluated prior to consumption, negatively correlated with apparent viscosity measured at 20°C and 10 s-1, whereas "body," defined during oral processing and related to creaminess, positively correlated with apparent viscosity measured at 37°C and 50 s-1. These attributes were mainly influenced by particulate microstructure and solid volume fraction within the formulation. Textural stickiness positively correlated with sensory "adhesiveness" and was related to fat composition and milk powder addition, while "sweetness" was related to sucrose content and sugar melting enthalpy. Tribological data provided meaningful information related to particle-derived attributes, as well as after-coating perception (fattiness/oiliness), thus better predicting food evolution during oral consumption.


Assuntos
Cacau , Corylus , Reologia , Paladar , Humanos , Viscosidade , Cacau/química , Boca/fisiologia , Tamanho da Partícula , Adulto , Feminino , Masculino , Saliva/química , Adulto Jovem
4.
J Texture Stud ; 55(4): e12851, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38952153

RESUMO

Rheological properties of gastric contents depend on the food ingested, and on the volume and composition of secretions from the host, which may vary. This study investigates the impact of saliva regular incorporation in the stomach after a meal on the rheological properties of gastric contents, considering two levels of salivary flow (low = 0.5 and high = 1.5 mL/min). In vitro chymes were obtained by mixing sour cream, simulated gastric fluid, two different volumes of oral fluid (at-rest human saliva, SSF for Simulated Salivary Fluid or water) and adjusting pH at 3. Chymes samples were characterized at 37°C for their particle size and rheological properties. Overall, particle size distribution was not different between samples: incorporating a larger volume of saliva resulted in more heterogeneity, but the surface area moment D[3,2] and volume moment D[4,3] did not differ significantly with the oral fluid type. Shear viscosity of chyme samples was higher when saliva was incorporated, in comparison with water or SSF. In addition, as shown from data extracted at γ ̇ $$ \dot{\gamma} $$ = 20 s-1 the higher the fluid volume the lower the shear viscosity, which is attributed to a dilution effect. However, this dilution effect was attenuated in the case of saliva, most likely due to its composition in organic compounds (e.g., mucins) contributing to the rheological properties of this biological fluid. In these in vitro conditions, both saliva and the salivation rate had a significant but slight impact on the rheological properties of gastric contents (of the order of 1-5 mPa s at γ ̇ $$ \dot{\gamma} $$ = 20 s-1).


Assuntos
Tamanho da Partícula , Reologia , Saliva , Saliva/química , Humanos , Viscosidade , Conteúdo Gastrointestinal/química , Concentração de Íons de Hidrogênio , Suco Gástrico/química
5.
Front Cell Infect Microbiol ; 14: 1411286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947124

RESUMO

Background: Convergence of Klebsiella pneumoniae (KP) pathotypes has been increasingly reported in recent years. These pathogens combine features of both multidrug-resistant and hypervirulent KP. However, clinically used indicators for hypervirulent KP identification, such as hypermucoviscosity, appear to be differentially expressed in convergent KP, potential outbreak clones are difficult to identify. We aimed to fill such knowledge gaps by investigating the temperature dependence of hypermucoviscosity and virulence in a convergent KP strain isolated during a clonal outbreak and belonging to the high-risk sequence type (ST)307. Methods: Hypermucoviscosity, biofilm formation, and mortality rates in Galleria mellonella larvae were examined at different temperatures (room temperature, 28°C, 37°C, 40°C and 42°C) and with various phenotypic experiments including electron microscopy. The underlying mechanisms of the phenotypic changes were explored via qPCR analysis to evaluate plasmid copy numbers, and transcriptomics. Results: Our results show a temperature-dependent switch above 37°C towards a hypermucoviscous phenotype, consistent with increased biofilm formation and in vivo mortality, possibly reflecting a bacterial response to fever-like conditions. Furthermore, we observed an increase in plasmid copy number for a hybrid plasmid harboring carbapenemase and rmpA genes. However, transcriptomic analysis revealed no changes in rmpA expression at higher temperatures, suggesting alternative regulatory pathways. Conclusion: This study not only elucidates the impact of elevated temperatures on hypermucoviscosity and virulence in convergent KP but also sheds light on previously unrecognized aspects of its adaptive behavior, underscoring its resilience to changing environments.


Assuntos
Biofilmes , Infecções por Klebsiella , Klebsiella pneumoniae , Temperatura , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/classificação , Biofilmes/crescimento & desenvolvimento , Virulência/genética , Animais , Infecções por Klebsiella/microbiologia , Larva/microbiologia , Plasmídeos/genética , Mariposas/microbiologia , Humanos , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lepidópteros/microbiologia , Viscosidade , Fenótipo , Perfilação da Expressão Gênica
6.
Anal Chim Acta ; 1316: 342802, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969400

RESUMO

BACKGROUND: Cirrhosis represents the terminal stage of liver disease progression and timely intervention in a diseased liver can enhance the likelihood of recovery. Viscosity, a crucial parameter of the cellular microenvironment, is intricately linked to the advancement of cirrhosis. However, viscosity monitoring still faces significant challenges in achieving non-invasive and rapid early diagnosis of cirrhosis. Near-infrared (NIR) fluorescence imaging has the advantages of high sensitivity, non-destructive detection, and ignoring background fluorescence interference, plays an important role in diagnosing and treating various biological diseases. Hence, monitoring cellular viscosity changes with NIR fluorescence probe holds great significance in the early diagnosis of cirrhosis. RESULTS: In this study, the NIR fluorescence probe based on the intramolecular charge transfer (TICT) mechanism was developed for imaging applications in mouse model of liver cirrhosis. A molecular rotor-type viscosity-responsive probe was synthesized by linking dioxanthracene groups via carbon-carbon double bonds. The probe demonstrated remarkable sensitivity, high selectivity and photostability, with its responsiveness to viscosity largely unaffected by factors such as polarity, pH, and interfering ions. The probe could effectively detect various drug-induced changes in cellular viscosity, enabling the differentiation between normal cells and cancerous cells. Furthermore, the enhanced tissue penetration capabilities of probe facilitated its successful application in mouse model of liver cirrhosis, allowing for the assessment of liver disease severity based on fluorescence intensity and providing a powerful tool for early diagnosis of cirrhosis. SIGNIFICANCE: A NIR viscosity-sensitive fluorescent probe was specifically designed to effectively monitor alterations in cellular and organ viscosity, which could advance the understanding of the biological characteristics of cancer and provide theoretical support for the early diagnosis of cirrhosis. Overall, this probe held immense potential in monitoring viscosity-related conditions, expanding the range of biomedical tools available.


Assuntos
Corantes Fluorescentes , Cirrose Hepática , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Animais , Humanos , Camundongos , Imagem Óptica , Viscosidade , Raios Infravermelhos , Estrutura Molecular
7.
Drug Deliv ; 31(1): 2372277, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38952058

RESUMO

Skin melanoma is considered the most dangerous form of skin cancer due to its association with high risk of metastasis, high mortality rate and high resistance to different treatment options. Genistein is a natural isoflavonoid with known chemotherapeutic activity. Unfortunately, it has low bioavailability due to its poor aqueous solubility and excessive metabolism. In the current study, genistein was incorporated into transferosomal hydrogel to improve its bioavailability. The prepared transferosomal formulations were characterized regarding: particle size; polydispersity index; zeta potential; encapsulation efficiency; TEM; FTIR; DSC; XRD; in vitro drug release; viscosity; pH; ex vivo anti-tumor activity on 3D skin melanoma spheroids and 1-year stability study at different storage temperatures. The optimized formulation has high encapsulation efficiency with an excellent particle size that will facilitate its penetration through the skin. The transfersomes have a spherical shape with sustained drug release profile. The anti-tumor activity evaluation of genistein transfersome revealed that genistein is a potent chemotherapeutic agent with enhanced penetration ability through the melanoma spheroids when incorporated into transfersomes. Stability study results demonstrate the high physical and chemical stability of our formulations. All these outcomes provide evidence that our genistein transferosomal hydrogel is a promising treatment option for skin melanoma.


Assuntos
Liberação Controlada de Fármacos , Genisteína , Hidrogéis , Melanoma , Tamanho da Partícula , Neoplasias Cutâneas , Genisteína/administração & dosagem , Genisteína/farmacologia , Genisteína/farmacocinética , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Humanos , Hidrogéis/química , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Solubilidade , Portadores de Fármacos/química , Química Farmacêutica , Viscosidade , Disponibilidade Biológica , Administração Cutânea , Esferoides Celulares/efeitos dos fármacos
8.
Int Wound J ; 21(7): e14964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994863

RESUMO

Negative pressure wound therapy is currently one of the most popular treatment approaches that provide a series of benefits to facilitate healing, including increased local blood perfusion with reduced localized oedema and control of wound exudate. The porous foam dressing is a critical element in the application of this therapy and its choice is based on its ability to manage exudate. Industry standards often employ aqueous solutions devoid of proteins to assess dressing performance. However, such standardized tests fail to capture the intricate dynamics of real wounds, oversimplifying the evaluation process. This study aims to evaluate the technical characteristics of two different commercial polyurethane foam dressings during negative pressure wound therapy. We introduce an innovative experimental model designed to evaluate the effects of this therapy on foam dressings in the presence of viscous exudates. Our findings reveal a proportional increase in dressing fibre occupancy as pressure intensifies, leading to a reduction in dressing pore size. The tests underscore the pressure system's diminished efficacy in fluid extraction with increasing fluid viscosity. Our discussion points to the need of establishing standardized guidelines for foam dressing selection based on pore size and the necessity of incorporating real biological exudates into industrial standards.


Assuntos
Exsudatos e Transudatos , Microscopia Confocal , Tratamento de Ferimentos com Pressão Negativa , Poliuretanos , Cicatrização , Tratamento de Ferimentos com Pressão Negativa/métodos , Humanos , Viscosidade , Microscopia Confocal/métodos , Bandagens , Ferimentos e Lesões/terapia
9.
Methods Enzymol ; 701: 457-514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39025579

RESUMO

In this chapter, we present a novel computational framework to study the dynamic behavior of extensive membrane systems, potentially in interaction with peripheral proteins, as an alternative to conventional simulation methods. The framework effectively describes the complex dynamics in protein-membrane systems in a mesoscopic particle-based setup. Furthermore, leveraging the hydrodynamic coupling between the membrane and its surrounding solvent, the coarse-grained model grounds its dynamics in macroscopic kinetic properties such as viscosity and diffusion coefficients, marrying the advantages of continuum- and particle-based approaches. We introduce the theoretical background and the parameter-space optimization method in a step-by-step fashion, present the hydrodynamic coupling method in detail, and demonstrate the application of the model at each stage through illuminating examples. We believe this modeling framework to hold great potential for simulating membrane and protein systems at biological spatiotemporal scales, and offer substantial flexibility for further development and parametrization.


Assuntos
Proteínas de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Hidrodinâmica , Membrana Celular/química , Membrana Celular/metabolismo , Cinética , Simulação de Dinâmica Molecular , Viscosidade , Difusão , Bicamadas Lipídicas/química
10.
Proc Natl Acad Sci U S A ; 121(31): e2407501121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042697

RESUMO

This study explores the impact of electrostatic interactions and hydrogen bonding on tear film stability, a crucial factor for ocular surface health. While mucosal and meibomian layers have been extensively studied, the role of electrolytes in the aqueous phase remains unclear. Dry eye syndrome, characterized by insufficient tear quantity or quality, is associated with hyperosmolality, making electrolyte composition an important factor that might impact tear stability. Using a model buffer solution on a silica glass dome, we simulated physiologically relevant tear film conditions. Sodium chloride alone induced premature dewetting through salt crystal nucleation. In contrast, trace amounts of solutes with hydroxyl groups (sodium phosphate dibasic, potassium phosphate monobasic, and glucose) exhibited intriguing phenomena: quasi-stable films, solutal Marangoni-driven fluid influx increasing film thickness, and viscous fingering due to Saffman-Taylor instability. These observations are rationalized by the association of salt solutions with increased surface tension and the propensity of hydroxyl-group-containing solutes to engage in significant hydrogen bonding, altering local viscosity. This creates a viscosity contrast between the bulk buffer solution and the film region. Moreover, these solutes shield the glass dome, counteracting sodium chloride crystallization. These insights not only advance our understanding of tear film mechanics but also pave the way for predictive diagnostics in dry eye syndrome, offering a robust platform for personalized medical interventions based on individual tear film composition.


Assuntos
Eletrólitos , Ligação de Hidrogênio , Lágrimas , Lágrimas/química , Eletrólitos/química , Humanos , Viscosidade , Cloreto de Sódio/química , Fosfatos/química , Tensão Superficial , Eletricidade Estática , Síndromes do Olho Seco/metabolismo , Molhabilidade , Compostos de Potássio
11.
MAbs ; 16(1): 2379560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39028186

RESUMO

The self-association of therapeutic antibodies can result in elevated viscosity and create problems in manufacturing and formulation, as well as limit delivery by subcutaneous injection. The high concentration viscosity of some antibodies has been reduced by variable domain mutations or by the addition of formulation excipients. In contrast, the impact of Fc mutations on antibody viscosity has been minimally explored. Here, we studied the effect of a panel of common and clinically validated Fc mutations on the viscosity of two closely related humanized IgG1, κ antibodies, omalizumab (anti-IgE) and trastuzumab (anti-HER2). Data presented here suggest that both Fab-Fab and Fab-Fc interactions contribute to the high viscosity of omalizumab, in a four-contact model of self-association. Most strikingly, the high viscosity of omalizumab (176 cP) was reduced 10.7- and 2.2-fold by Fc modifications for half-life extension (M252Y:S254T:T256E) and aglycosylation (N297G), respectively. Related single mutations (S254T and T256E) each reduced the viscosity of omalizumab by ~6-fold. An alternative half-life extension Fc mutant (M428L:N434S) had the opposite effect in increasing the viscosity of omalizumab by 1.5-fold. The low viscosity of trastuzumab (8.6 cP) was unchanged or increased by ≤2-fold by the different Fc variants. Molecular dynamics simulations provided mechanistic insight into the impact of Fc mutations in modulating electrostatic and hydrophobic surface properties as well as conformational stability of the Fc. This study demonstrates that high viscosity of some IgG1 antibodies can be mitigated by Fc mutations, and thereby offers an additional tool to help design future antibody therapeutics potentially suitable for subcutaneous delivery.


Assuntos
Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Mutação , Omalizumab , Trastuzumab , Humanos , Trastuzumab/química , Viscosidade , Omalizumab/química , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoglobulina G/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética
12.
Molecules ; 29(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999010

RESUMO

Hypochlorite (ClO-) and viscosity both affect the physiological state of mitochondria, and their abnormal levels are closely related to many common diseases. Therefore, it is vitally important to develop mitochondria-targeting fluorescent probes for the dual sensing of ClO- and viscosity. Herein, we have explored a new fluorescent probe, XTAP-Bn, which responds sensitively to ClO- and viscosity with off-on fluorescence changes at 558 and 765 nm, respectively. Because the emission wavelength gap is more than 200 nm, XTAP-Bn can effectively eliminate the signal crosstalk during the simultaneous detection of ClO- and viscosity. In addition, XTAP-Bn has several advantages, including high selectivity, rapid response, good water solubility, low cytotoxicity, and excellent mitochondrial-targeting ability. More importantly, probe XTAP-Bn is successfully employed to monitor the dynamic change in ClO- and viscosity levels in the mitochondria of living cells and zebrafish. This study not only provides a reliable tool for identifying mitochondrial dysfunction but also offers a potential approach for the early diagnosis of mitochondrial-related diseases.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Mitocôndrias , Peixe-Zebra , Ácido Hipocloroso/análise , Corantes Fluorescentes/química , Animais , Mitocôndrias/metabolismo , Viscosidade , Humanos , Imagem Óptica/métodos , Células HeLa
13.
Nutrients ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999863

RESUMO

The emptying rate of specific nutrients in enteral formulas is poorly understood, despite the importance of controlling the emptying rate in tube-fed patients. Because of their viscosity, thickened formulas are widely used to avoid gastric reflux and reduce the burden on caregivers. This study examined how thickeners in enteral formulas affected the gastric emptying rates of proteins and carbohydrates. A semi-dynamic gastric model was used to prepare and digest test enteral formulas that contained either no thickeners or agar (0.2%). The amounts of protein and carbohydrates in each emptied aliquot were determined, and the emptying rate was calculated. We found that agar accelerated protein emptying, and an exploratory experiment with agar (0.5%) suggested the possibility of concentration dependence. Additionally, experiments using gellan gum (0.08%), guar gum (0.2%), or carrageenan (0.08%, 0.2%) suggested that protein emptying could vary depending on the thickener type and that carrageenan might slow it. These results could help with the appropriate selection of thickeners added to liquid foods based on the patient's metabolic profile to manage nutrition, not only for tube-fed patients but also for those with oropharyngeal dysphagia or diabetes.


Assuntos
Proteínas Alimentares , Nutrição Enteral , Alimentos Formulados , Galactanos , Esvaziamento Gástrico , Mananas , Gomas Vegetais , Esvaziamento Gástrico/efeitos dos fármacos , Nutrição Enteral/métodos , Humanos , Mananas/farmacologia , Mananas/administração & dosagem , Viscosidade , Galactanos/farmacologia , Proteínas Alimentares/administração & dosagem , Carboidratos da Dieta/administração & dosagem , Carragenina , Ágar , Polissacarídeos Bacterianos/farmacologia , Modelos Biológicos
14.
Transl Vis Sci Technol ; 13(7): 5, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967936

RESUMO

Purpose: First- (monomers), second- (pre-gelated), and third- (in situ gelating after injection) generation hydrogels were previously introduced to replace the vitreous body after vitrectomy surgery. In this study, we evaluated the surgical, optical, and viscoelastic properties of vitreous body replacement hydrogels before and after an accelerated aging protocol previously applied to intraocular implants. Methods: Measurements of injection force, removal speed using a clinically established vitrectomy setup, as well as evaluation of forward light scattering and viscoelastic properties before and after an accelerated aging protocol were conducted. Results were compared to porcine and human vitreous bodies, as well as currently clinically applied lighter- and heavier-than-water silicone oils. Results: Removal speed of all tested hydrogels is substantially lower than the removal speed of porcine vitreous body (0.2 g/min vs. 2.7 g/min for the best performing hydrogel and porcine vitreous body, respectively). Forward light scattering in second-generation vitreous body replacement hydrogels was higher after the aging process than the straylight of the average 70-year-old vitreous body (9.4 vs. 5.5 deg2/sr, respectively). The viscoelastic properties of all hydrogels did not change in a clinically meaningful manner; however, trends toward greater stiffness and greater elasticity after aging were apparent. Conclusions: This study demonstrates surgical weaknesses of the hydrogels that need to be addressed before clinical use, especially low removal speed. Pre-linked hydrogels (second-generation) showed inferior performance regarding surgical properties compared to in situ gelating hydrogels (third-generation). Translational Relevance: This study highlights possible pitfalls regarding surgical and optical properties when applying vitreous replacement hydrogels clinically.


Assuntos
Hidrogéis , Óleos de Silicone , Vitrectomia , Corpo Vítreo , Corpo Vítreo/cirurgia , Animais , Hidrogéis/química , Óleos de Silicone/química , Suínos , Vitrectomia/métodos , Viscosidade , Humanos , Elasticidade , Idoso , Envelhecimento/fisiologia
15.
Sci Rep ; 14(1): 15493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969808

RESUMO

Dispersion of Basil seed gum has high viscosity and exhibits shear-thinning behavior. This study aimed to analyze the influence of microwave treatment (MT) at various time intervals (0, 1, 2, and 3 min) on the viscosity and rheological behavior of Basil seed gum dispersion (0.5%, w/v). The finding of this study revealed that the apparent viscosity of Basil seed gum dispersion (non-treated dispersion) reduced from 0.330 Pa.s to 0.068 Pa.s as the shear rate (SR) increased from 12.2 s-1 to 171.2 s-1. Additionally, the apparent viscosity of the Basil seed gum dispersion reduced from 0.173 Pa.s to 0.100 Pa.s as the MT time increased from 0 to 3 min (SR = 61 s-1). The rheological properties of gum dispersion were successfully modeled using Power law (PL), Bingham, Herschel-Bulkley (HB), and Casson models, and the PL model was the best one for describing the behavior of Basil seed gum dispersion. The PL model showed an excellent performance with the maximum r-value (mean r-value = 0.942) and the minimum sum of squared error (SSE) values (mean SSE value = 5.265) and root mean square error (RMSE) values (mean RMSE value = 0.624) for all gum dispersion. MT had a considerable effect on the changes in the consistency coefficient (k-value) and flow behavior index (n-value) of Basil seed gum dispersion (p < 0.05). The k-value of Basil seed gum dispersion decreased significantly from 3.149 Pa.sn to 1.153 Pa.sn (p < 0.05) with increasing MT time from 0 to 3 min. The n-value of Basil seed gum dispersion increased significantly from 0.25 to 0.42 (p < 0.05) as the MT time increased. The Bingham plastic viscosity of Basil seed gum dispersion increased significantly from 0.029 Pa.s to 0.039 Pa.s (p < 0.05) while the duration of MT increased. The Casson yield stress of Basil seed gum dispersion notably reduced from 5.010 Pa to 2.165 Pa (p < 0.05) with increasing MT time from 0 to 3 min.


Assuntos
Micro-Ondas , Ocimum basilicum , Gomas Vegetais , Reologia , Sementes , Ocimum basilicum/química , Sementes/química , Viscosidade , Gomas Vegetais/química
16.
Sci Rep ; 14(1): 15498, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969829

RESUMO

Black liquor (BL) is the major bioproduct and biomass fuel in pulp mill processes. However, the high viscosity of BL makes it a challenging material to work with, resulting in issues with evaporators and heat exchangers during its transport and processing. The thermal and rheological properties of BLs from Pinus sp. (PBL) and Eucalyptus sp. (EBL) were studied. FTIR spectra revealed the presence of the characteristic functional groups and the chemical composition in liquors. TGA/DTG curves showed three characteristic degradation stages related to evaporation of water, pyrolysis of organic groups, and condensation of char. Rheologically, liquors are classified as non-Newtonian and with comportment pseudoplastic. Their rheological dynamic shear properties included a linear viscoelastic region up to 1% shear strain, while frequency sweeps showed that storage modulus (G') > loss modulus (G''), thus confirming the solid-like behavior of both BLs. The rheological study demonstrated that increasing the temperature and oscillatory deformations of PBL and EBL decreased their degree of viscoelasticity, which could favor their pumping and handling within the pulp mill, as well as the droplet formation and swelling characteristics in the recovery furnace.


Assuntos
Eucalyptus , Pinus , Reologia , Eucalyptus/química , Pinus/química , Viscosidade , Brasil , Finlândia , Temperatura , Espectroscopia de Infravermelho com Transformada de Fourier
17.
PLoS One ; 19(7): e0302202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950007

RESUMO

It is structurally pertinent to understudy the important roles the self-compacting concrete (SCC) yield stress and plastic viscosity play in maintaining the rheological state of the concrete to flow. It is also important to understand that different concrete mixes with varying proportions of fine to coarse aggregate ratio and their nominal sizes produce different and corresponding flow- and fill-abilities, which are functions of the yield stress/plastic viscosity state conditions of the studied concrete. These factors have necessitated the development of regression models, which propose optimal rheological state behavior of SCC to ensure a more sustainable concreting. In this research paper on forecasting the rheological state properties of self-compacting concrete (SCC) mixes by using the response surface methodology (RSM) technique, the influence of nominal sizes of the coarse aggregate has been studied in the concrete mixes, which produced experimental mix entries. A total of eighty-four (84) concrete mixes were collected, sorted and split into training and validation sets to model the plastic viscosity and the yield stress of the SCC. In the field applications, the influence of the sampling sizes on the rheological properties of the concrete cannot be overstretched due to the importance of flow consistency in SCC in order to achieve effective workability. The RSM is a symbolic regression analysis which has proven to exercise the capacity to propose highly performable engineering relationships. At the end of the model exercise, it was found that the RSM proposed a closed-form parametric relationship between the outputs (plastic viscosity and yield stress) and the studied independent variables (the concrete components). This expression can be applied in the design and production of SCC with performance accuracies of above 95% and 90%, respectively. Also, the RSM produced graphical prediction of the plastic viscosity and yield stress at the optimized state conditions with respect to the measured variables, which could be useful in monitoring the performance of the concrete in practice and its overtime assessment. Generally, the production of SCC for field applications are justified by the components in this study and experimental entries beyond which the parametric relations and their accuracies are to be reverified.


Assuntos
Materiais de Construção , Reologia , Reologia/métodos , Materiais de Construção/análise , Viscosidade , Teste de Materiais/métodos , Previsões/métodos
18.
Biophys Chem ; 312: 107286, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964115

RESUMO

1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17-0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds âˆ¼ Î·-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.


Assuntos
Glicerol , Muramidase , Muramidase/química , Muramidase/metabolismo , Glicerol/química , Viscosidade , Espectroscopia de Prótons por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Difusão , Animais , Galinhas
19.
Nat Commun ; 15(1): 5782, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987269

RESUMO

Self-regenerating trigger waves can spread rapidly through the crowded cytoplasm without diminishing in amplitude or speed, providing consistent, reliable, long-range communication. The macromolecular concentration of the cytoplasm varies in response to physiological and environmental fluctuations, raising the question of how or if trigger waves can robustly operate in the face of such fluctuations. Using Xenopus extracts, we find that mitotic and apoptotic trigger wave speeds are remarkably invariant. We derive a model that accounts for this robustness and for the eventual slowing at extremely high and low cytoplasmic concentrations. The model implies that the positive and negative effects of cytoplasmic concentration (increased reactant concentration vs. increased viscosity) are nearly precisely balanced. Accordingly, artificially maintaining a constant cytoplasmic viscosity during dilution abrogates this robustness. The robustness in trigger wave speeds may contribute to the reliability of the extremely rapid embryonic cell cycle.


Assuntos
Citoplasma , Mitose , Xenopus laevis , Animais , Citoplasma/metabolismo , Apoptose , Viscosidade , Extratos Celulares/química , Modelos Biológicos , Xenopus , Ciclo Celular
20.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023347

RESUMO

Tear viscosity is a critical property affecting tear distribution and ocular surface stability. While not widely established as a primary diagnostic marker, deviations from normal viscosity can impact ocular health, potentially contributing to conditions such as dry eye syndrome. Despite their importance, traditional viscometers require sample volumes that are not feasible to use with tear volume. This research introduces a novel Quartz Crystal Microbalance (QCM)-based method for tear viscosity measurement, offering a viscometer prototype that operates with minimal sample volumes. Human tear samples, solutions used in artificial eye drops, and various commercial eye drop brands were evaluated. Results show that the QCM method aligns with established viscosity ranges. The average viscosity of healthy human tears was found to be 1.73 ± 0.61 cP, aligning with the typical range of 1-10 cP. Variability in the viscosities of eye drop can be attributed to differences in their chemical compositions. The QCM method offers benefits such as reduced sample consumption and rapid results, enhancing understanding of tear dynamics for ocular health. Further research with larger sample sizes is needed to establish normative viscosity values in healthy individuals and those with dry eye syndrome, which is crucial for validating the device's clinical efficacy.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Lágrimas , Viscosidade , Lágrimas/química , Técnicas de Microbalança de Cristal de Quartzo/instrumentação , Técnicas de Microbalança de Cristal de Quartzo/métodos , Humanos , Soluções Oftálmicas/química , Síndromes do Olho Seco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA