Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.334
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Food Res Int ; 188: 114440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823857

RESUMO

The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.


Assuntos
Emulsões , Lipoproteínas HDL , Miosinas , Reologia , Emulsões/química , Concentração de Íons de Hidrogênio , Lipoproteínas HDL/química , Miosinas/química , Produtos da Carne/análise , Tamanho da Partícula , Óleo de Soja/química , Viscosidade , Análise Espectral Raman
2.
Food Res Int ; 188: 114511, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823884

RESUMO

This study investigated the relationship between rheological properties, sensory perception, and overall acceptability in healthy young and old groups for dysphagia thickened liquids. Unflavored (UTL) and flavored (FTLP) thickened liquids were prepared using tap water or pomegranate juice at 10 different viscosity levels. The rheological properties were then evaluated via syringe flow test and line spread test (LST). When the apparent viscosity levels of UTL and FTLP were similar, the syringe test and LST results were also similar, indicating consistent flow behavior. Sensory perception evaluations showed that the young group better distinguished viscosity differences between stages compared to the old group. Regarding overall acceptability, the old group preferred samples with higher apparent viscosity than the young group. Principal component analysis and k-means cluster analysis were used to explore correlations between variables and classify thickened liquids into four groups. This can serve the foundation for standardized texture grades of dysphagia thickened liquids, considering rheological characteristics and sensory profiles.


Assuntos
Transtornos de Deglutição , Reologia , Humanos , Viscosidade , Adulto Jovem , Feminino , Masculino , Adulto , Idoso , Paladar , Percepção Gustatória , Pessoa de Meia-Idade , Bebidas , Sucos de Frutas e Vegetais , Análise de Componente Principal , Voluntários Saudáveis
3.
Carbohydr Polym ; 339: 122268, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823931

RESUMO

The influence of locust bean gum (LBG) galactomannans (GMs) molecular weight (Mw) to assemble microparticulate systems was evaluated, and carriers for deep lung delivery were developed. A commercial batch of LBG with a mannose/galactose (M/G) ratio of 2.4 (batch 1) was used to study the influence of different microwave partial acid hydrolysis conditions on carbohydrate composition, glycosidic linkages, and aqueous solutions viscosity. The microwave treatment did not affect the composition, presenting 4-Man (36-42 %), 4,6-Man (27-35 %), and T-Gal (24-25 %) as the main glycosidic linkages. Depolymerization led to a viscosity reduction (≤0.005 Pa·s) with no major impact on polysaccharide debranching. The structural composition of the LBG galactomannans were further elucidated with sequence-specific proteins using carbohydrate microarray technologies. A second batch of LBG (M/G 3.3) was used to study the impact of GMs with different Mw on microparticle assembling, characteristics, and insulin release kinetics. The low-Mw GMs microparticles led to a faster release (20 min) than the higher-Mw (40 min) ones, impacting the release kinetics. All microparticles exhibited a safety profile to cells of the respiratory tract. However, only the higher-Mw GMs allowed the assembly of microparticles with sizes suitable for this type of administration.


Assuntos
Galactose , Mananas , Peso Molecular , Gomas Vegetais , Mananas/química , Galactose/química , Galactose/análogos & derivados , Gomas Vegetais/química , Humanos , Pulmão/metabolismo , Portadores de Fármacos/química , Tamanho da Partícula , Viscosidade , Insulina/química , Insulina/administração & dosagem , Liberação Controlada de Fármacos , Galactanos/química , Manose/química , Animais
4.
Carbohydr Polym ; 339: 122264, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823928

RESUMO

Normal rice starch consists of amylopectin and amylose, whose relative amounts and chain-length distributions (CLDs) are major determinants of the digestibility and rheology of cooked rice, and are related to metabolic health and consumer preference. Here, the mechanism of how molecular structural features of pure amylopectin (waxy) starches affect starch properties was explored. Following debranching, chain-length distributions of seven waxy varieties were measured using size-exclusion chromatography, and parameterized using biosynthesis-based models, which involve breaking up the chain-length distribution into contributions from five enzyme sets covering overlapping ranges of chain length; structure-property correlations involving the fifth set were found to be statistically significant. Digestibility was measured in vitro, and parameters for the slower and longer digestion phase quantified using non-linear least-squares fitting. The coefficient for the significant correlation involving amylopectin fine structure for the fifth set was -0.903, while the amounts of amylopectin short and long chains were found to dominate breakdown viscosity (correlation coefficients 0.801 and - 0.911, respectively). This provides a methodology for finding or developing healthier starch in terms of lower digestion rate, while also having acceptable palatability. As rice breeders can to some extent control CLDs, this can help the development of waxy rices with improved properties.


Assuntos
Amilopectina , Amilose , Oryza , Oryza/química , Amilopectina/química , Viscosidade , Amilose/química , Amilose/análise , Amido/química , Digestão , Reologia
5.
Carbohydr Polym ; 339: 122292, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823937

RESUMO

Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.


Assuntos
Antioxidantes , Fermentação , Glicerol , Peso Molecular , Sphingomonas , Glicerol/química , Glicerol/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Sphingomonas/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/farmacologia , Viscosidade , Prebióticos , Bifidobacterium/metabolismo
6.
Reprod Domest Anim ; 59(6): e14637, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864674

RESUMO

A variety of parameters, including liquefaction and semen viscosity, affect the sperm's ability to travel and reach the egg for fertilization and conception. Given that the details behind the viscosity of the semen in male camels have not yet been fully clarified, the purpose of this study was to ascertain how the addition of papain affected the viscosity of fresh diluted camel semen. The study examined semen samples derived from camels that had distinct viscosities. Sperm motility, viability, abnormal sperm percentage, concentration, viscosity, morphometry, acrosome integrity and liquefaction were among the evaluations following 0, 5, 10, 20 or 30 min of incubation at 37°C with papain (0.004 mg/mL, 0.04 mg/mL or 0.4 mg/mL; a semen sample without papain was used as a control). A statistically significant interaction between the effects of papain concentrations and incubation time was found (F = 41.68, p = .0001). Papain concentrations (p = .0001) and incubation times (p = .0001) both had a statistically significant impact on viscosity, according to a simple main effects analysis. A lower viscosity was found (p < .05) at 0.04 mg/mL (0.1 ± 0.0) after 10 min of incubation. A simple main effects analysis showed that papain concentrations and incubation time have a statistically significant effect on sperm motility (p = .0001). At 0.04 mg/mL papain, the sperm motility % was higher (p < .05) after 10 min (64.4 ± 4.8), 20 min (68.4 ± 6.2), and 30 min incubation (72.2 ± 6.6) compared to 0, 5 min (38.3 ± 4.1 and 51.6 ± 5.0, respectively). In conclusion, the fresh diluted camel semen had the lowest viscosity properties after 10 min of incubation with 0.04 mg/mL papain, without compromising sperm motility, viability, acrosome integrity and sperm morphology.


Assuntos
Camelus , Papaína , Preservação do Sêmen , Sêmen , Motilidade dos Espermatozoides , Animais , Papaína/farmacologia , Masculino , Viscosidade , Motilidade dos Espermatozoides/efeitos dos fármacos , Sêmen/efeitos dos fármacos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Análise do Sêmen/veterinária , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Acrossomo/efeitos dos fármacos
7.
Carbohydr Polym ; 340: 122303, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38858024

RESUMO

The objective of this work was to study the effects of heat-moisture treatment (HMT) of freshly harvested mature high-amylose maize (HAM) kernels on its starch structure, properties, and digestibility. Freshly harvested HAM kernels were sealed in Pyrex glass bottles and treated at 80 °C, 100 °C, or 120 °C. HMT of HAM kernels had no impact on its starch X-ray diffraction pattern but increased the relative crystallinity. This result together with the increased starch gelatinization temperatures and enthalpy change indicated starch molecules reorganization forming long-chain double-helical crystalline structure during HMT of HAM kernels. The aggregation of starch granules were observed after HMT, indicating interaction of starch granules and other components. This interaction and the high-temperature crystalline structure led to reductions in the starch digestibility, swelling power, solubility, and pasting viscosity of the HAM flours. Some starch granules remained intact and showed strong birefringence after the HAM flours were precooked at 100 °C for 20 min and followed by enzymatic hydrolysis, and the amount of undigested starch granules increased with increasing HMT temperatures. This result further supported that HMT of HAM kernels with high moisture level could increase the starch thermal stability and enzymatic resistance.


Assuntos
Amilose , Temperatura Alta , Amido , Zea mays , Zea mays/química , Amilose/química , Amido/química , Hidrólise , Viscosidade , Solubilidade , Água/química , Difração de Raios X , Farinha/análise
8.
PLoS One ; 19(6): e0303981, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848399

RESUMO

Nanofluids have a wide range of applications due to their unique properties, such as enhanced thermal conductivity, convective heat transfer, and mass transfer. These applications can be seen in heat exchangers, cooling systems, and electronic devices to improve thermal performance. To enhance the cooling efficiency and lifespan of electronic devices such as smartphones, televisions, and computers nanofluids are used. These novel types of fluids can be used in energy storage systems, cancer treatment, imaging, and drug deliveryKeeping in mind, the real-time applications in engineering, industry, and science, the current study is carried out. In the present study for heat and mass transportation, the two-phase Buongiorno model for nanofluid is employed to scrutinize Brownian motion and thermophoresis aspects using stationary sphere and plume region. The temperature-dependent viscosity and thermal conductivity effects are encountered in momentum and energy equations, respectively are encountered. The proposed mechanism in the partial differential equations having dimensional form is converted to a non-dimensional form using appropriate dimensionless variables. The solution of the current non-linear and coupled model is obtained using the finite difference method. The numerical solutions presented in graphs and tables indicate that along with heat and mass transfer phenomena are entirely dependent on thermophoresis, Brownian motion, temperature-dependent viscosity, and thermal conductivity. The results indicate that the quantitative behavior of the velocity field is enhanced by increasing values of thermal conductivity variation parameters for both the sphere and the plume region at each position. On the other hand, the reverse trend is noted against the rising magnitudes of the viscosity variation parameter, thermophoresis parameter, and Brownian diffusion parameter. Additionally, the temperature in the plume region declines to enhance thermal conductivity variation parameter. A test for grid independence was performed by considering various grid points. Excellent solution accuracy has been seen as the number of grid points has risen. This ensures the validity and accuracy of the currently employed method. The current results are compared with already published solutions for the validation of the current model for specific cases. It has been noted that there is excellent agreement between both of the results. This close agreement between the results indicates the validation of the current solutions.


Assuntos
Modelos Teóricos , Condutividade Térmica , Viscosidade , Temperatura Alta , Temperatura
9.
Appl Opt ; 63(14): 3745-3752, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856336

RESUMO

The preservation method to store bone tissue for posterior analysis is a widespread practice. However, the method's potential influence on the material's mechanical properties is often overlooked during single-point experimentation. Saline and formaldehyde solutions are the most common among the employed preservation media. A full field analysis of the mice femoral bone deformation using non-destructive optical techniques is conducted to assess the influence of the storage media on the viscoelastic properties of the tissue. Three different groups are subjected to a standard three-point bending test. The first group is the control, with fresh post-mortem samples. The second and third groups used saline and formaldehyde solutions, respectively. During the mechanical test, the bone's surface and internal deformation are monitored simultaneously using digital holographic interferometry and Fourier-domain optical coherence tomography. A mechanical comparison among the three groups is presented. The results show that after 48 h of immersion in saline solution, the mice bones keep their viscoelastic behavior similar to fresh bones. Meanwhile, 48 h in formaldehyde modifies the response and affects the marrow structure. The high sensitivity of the optical phase also makes it possible to observe changes in the anisotropy of the samples. As a comparison, Raman spectroscopy analyzes the three bone groups to prove that the preservation media does not affect a single-point inspection.


Assuntos
Fêmur , Formaldeído , Análise Espectral Raman , Tomografia de Coerência Óptica , Animais , Camundongos , Formaldeído/farmacologia , Tomografia de Coerência Óptica/métodos , Análise Espectral Raman/métodos , Fêmur/diagnóstico por imagem , Fêmur/fisiologia , Testes Mecânicos , Elasticidade/efeitos dos fármacos , Viscosidade , Soluções para Preservação de Órgãos/farmacologia , Interferometria/métodos , Solução Salina
10.
Commun Biol ; 7(1): 683, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834871

RESUMO

In the context of soft matter and cellular mechanics, microrheology - the use of micron-sized particles to probe the frequency-dependent viscoelastic response of materials - is widely used to shed light onto the mechanics and dynamics of molecular structures. Here we present the implementation of active microrheology in an Acoustic Force Spectroscopy setup (AFMR), which combines multiplexing with the possibility of probing a wide range of forces ( ~ pN to ~nN) and frequencies (0.01-100 Hz). To demonstrate the potential of this approach, we perform active microrheology on biological samples of increasing complexity and stiffness: collagen gels, red blood cells (RBCs), and human fibroblasts, spanning a viscoelastic modulus range of five orders of magnitude. We show that AFMR can successfully quantify viscoelastic properties by probing many beads with high single-particle precision and reproducibility. Finally, we demonstrate that AFMR to map local sample heterogeneities as well as detect cellular responses to drugs.


Assuntos
Elasticidade , Eritrócitos , Fibroblastos , Reologia , Humanos , Viscosidade , Fibroblastos/fisiologia , Reologia/métodos , Colágeno/química , Acústica
11.
Sci Rep ; 14(1): 13038, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844503

RESUMO

This study aimed to develop an assessment framework for evaluating the quality of different chicken soup variants. Three types of chicken soup, traditional chicken soup (TCS), concentrated chicken soup (CCS), and blended chicken soup (BCS), were prepared and analyzed for various physicochemical parameters, including gross protein content, crude fat content, pH level, solid content, viscosity, and chromatic aberration value. Sensory evaluation was also conducted to assess overall quality. Correlation analysis helped identify three key evaluation indicators: gross protein content, L* value (lightness), and b* value (chromatic aberration). The weight assigned to gross protein content was the highest using the entropy weight method (EWM). Moreover, the grey correlation degree method was comprehensively applied to evaluate the chicken soup's quality. This analysis identified TCS and CCS as varieties with superior overall quality, showing a positive correlation with sensory evaluation, consistent with the results of nuclear magnetic resonance (NMR) used in this paper. These results provide theoretical support for assessing comprehensive quality and selecting chicken soup varieties.


Assuntos
Galinhas , Entropia , Animais , Qualidade dos Alimentos , Viscosidade , Concentração de Íons de Hidrogênio
12.
Sci Rep ; 14(1): 12756, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38830930

RESUMO

Caenorhabditis elegans is an appealing tool for experimental evolution and for working with antiparasitic drugs, from understanding the molecular mechanisms of drug action and resistance to uncover new drug targets. We present a new methodology for studying the impact of antiparasitic drugs in C. elegans. Viscous medium was initially designed for C. elegans maintenance during long-term evolution experiments. Viscous medium provides a less structured environment than the standard nematode growth media agar, yet the bacteria food source remains suspended. Further, the Viscous medium offers the worm population enough support to move freely, mate, and reproduce at a rate comparable to standard agar cultures. Here, the Viscous medium was adapted for use in antiparasitic research. We observed a similar sensitivity of C. elegans to anthelmintic drugs as in standard liquid media and statistical difference to the standard agar media through a larval development assay. Using Viscous medium in C. elegans studies will considerably improve antiparasitic resistance research, and this medium could be used in studies aimed at understanding long-term multigenerational drug activity.


Assuntos
Anti-Helmínticos , Caenorhabditis elegans , Meios de Cultura , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Animais , Anti-Helmínticos/farmacologia , Meios de Cultura/química , Viscosidade , Ágar , Resistência a Medicamentos/efeitos dos fármacos , Larva/efeitos dos fármacos
13.
Chem Pharm Bull (Tokyo) ; 72(5): 518-523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38825446

RESUMO

We have developed a series of 2-monoaryl-5-diarylmethylene analogs of the green fluorescent protein chromophore to study their viscosity-induced emission (VIE) properties. The analogs were synthesized by a condensation with methyl imidate and N-(diarylmethylene)glycinate. Among the analogs, the N-methylpyrrol-2-yl-substituted analog 1h induced the most remarkable VIE behavior in triglyceride and lipid bilayers probably due to the high π-electron-rich property of the pyrrole ring. The pyrrole substituent in imidazolone analogs can be expected to become a common template for introducing VIE behavior.


Assuntos
Imidazóis , Pirróis , Pirróis/química , Pirróis/síntese química , Viscosidade , Imidazóis/química , Imidazóis/síntese química , Estrutura Molecular , Bicamadas Lipídicas/química , Proteínas de Fluorescência Verde/química
14.
Pediatr Dent ; 46(3): 204-208, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38822497

RESUMO

Purpose: The purpose of this study was to investigate the microleakage of atraumatic glass ionomer restorations with and without silver diammine fluoride (SDF) application. Restorations with SDF are termed silver-modified atraumatic restorations (SMART). Methods: Sixty carious extracted permanent teeth were randomly allocated to two SMART groups and two control groups (n equals 15 per group) for a total of four groups. After selective caries removal, test specimens were treated with 38 percent SDF and polyacrylic acid conditioner was applied and rinsed; teeth were restored with Fuji IX GP® glass ionomer (n equals 15) or with SMART Advantage™ glass ionomer (SAGI; n equals 15). For control groups, specimens were restored with their respective GI material after selective caries removal, both without SDF. Restored teeth were placed in Dulbecco's Phosphate-Buffered Saline solution at 37 degrees Celsius for 24 hours. Teeth were thermocycled between five and 55 degrees Celsius for 1,000 cycles, stained with two percent basic fuchsin, sectioned, and visually inspected for microleakage utilizing stereomicroscopy on a four-point scale. Data were statistically analyzed using Kruskal-Wallis one-way analysis of variance on ranks using Dunn's method (P<0.05). Results: Microleakage between the two SMART restoration groups was insignificant. SAGI alone demonstrated significantly more microleakage than all other groups. There was no statistical significance between the Fuji IX GP® control group and the two SMART restoration groups. Conclusions: This in vitro study indicated that silver diammine fluoride placed before glass ionomer restoration does not increase microleakage. Polyacrylic acid may be used after SDF placement without increasing microleakage.


Assuntos
Tratamento Dentário Restaurador sem Trauma , Cárie Dentária , Infiltração Dentária , Fluoretos Tópicos , Cimentos de Ionômeros de Vidro , Compostos de Prata , Infiltração Dentária/prevenção & controle , Humanos , Compostos de Prata/química , Cimentos de Ionômeros de Vidro/química , Tratamento Dentário Restaurador sem Trauma/métodos , Fluoretos Tópicos/química , Cárie Dentária/prevenção & controle , Cariostáticos/química , Compostos de Amônio Quaternário/química , Viscosidade , Resinas Acrílicas/química , Restauração Dentária Permanente/métodos
15.
Food Res Int ; 188: 114453, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823833

RESUMO

In this study, whipped cream with blends of micellar casein (MCN) and whey protein (WPI) in different ratios were prepared to investigate the role of protein interfacial behavior in determining foam properties at multiple scales, using theoretical modeling, and microscopic and macroscopic analysis. Fluid force microscopy has been used for the first time as a more realistic and direct means of analyzing interfaces properties in multiphase systems. The adsorption kinetics showed that the interfacial permeability constant of WPI (4.24 × 10-4 s-1) was significantly higher than that of the MCN (2.97 × 10-4 s-1), and the WPI interfacial layer had a higher modulus of elasticity (71.38 mN/m) than that of the MCN (47.89 mN/m). This model was validated via the mechanical analysis of the fat globules in real emulsions. The WPI-stabilized fat globule was found to have a higher Young's modulus (219.67 Pa), which contributes to the integrity of its fat globule morphology. As the ratio of MCN was increased in the sample, however, both the interfacial modulus and Young's modulus decreased. Moreover, the rate of partial coalescence was found to increase, a phenomenon that decreased the stability of the emulsion and increased the rate of aeration. The mechanical analysis also revealed a higher level of adhesion between MCN-stabilized fat globule (25.16 nN), which increased fat globule aggregation and emulsion viscosity, while improving thixotropic recovery. The synergistic effect of the blended MCN and WPI provided the highest overrun, at 194.53 %. These studies elucidate the role of the interfacial behavior of proteins in determining the quality of whipped cream and provide ideas for the application of proteins in multiphase systems.


Assuntos
Caseínas , Micelas , Proteínas do Soro do Leite , Proteínas do Soro do Leite/química , Caseínas/química , Emulsões/química , Laticínios , Gotículas Lipídicas/química , Adsorção , Cinética , Permeabilidade , Manipulação de Alimentos/métodos , Glicolipídeos/química , Módulo de Elasticidade , Viscosidade , Glicoproteínas
16.
Food Res Int ; 188: 114531, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823850

RESUMO

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Assuntos
Carboximetilcelulose Sódica , Curcumina , Digestão , Emulsões , Géis , Interações Hidrofóbicas e Hidrofílicas , Reologia , Curcumina/química , Emulsões/química , Carboximetilcelulose Sódica/química , Géis/química , Proteínas Musculares , Óleo de Soja/química , Viscosidade , Tamanho da Partícula , Miofibrilas/química , Miofibrilas/metabolismo , Ondas Ultrassônicas
17.
Sci Rep ; 14(1): 13273, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858470

RESUMO

In this study, we conducted a numerical analysis on catheter sizes using computational fluid dynamics to assess urinary flow rates during intermittent catheterization (IC). The results revealed that the fluid (urine) movement within a catheter is driven by intravesical pressure, with friction against the catheter walls being the main hindrance to fluid movement. Higher-viscosity fluids experienced increased friction with increasing intravesical pressure, resulting in reduced fluid velocity, whereas lower-viscosity fluids experienced reduced friction under similar pressure, leading to increased fluid velocity. Regarding urine characteristics, the results indicated that bacteriuria, with lower viscosity, exhibited higher flow rates, whereas glucosuria exhibited the lowest flow rates. Additionally, velocity gradients decreased with increasing catheter diameters, reducing friction and enhancing fluid speed, while the friction increased with decreasing diameters, reducing fluid velocity. These findings confirm that flow rates increased with larger catheter sizes. Furthermore, in terms of specific gravity, the results showed that a 12Fr catheter did not meet the ISO-suggested average flow rate (50 cc/min). The significance of this study lies in its application of fluid dynamics to nursing, examining urinary flow characteristics in catheterization. It is expected to aid nurses in selecting appropriate catheters for intermittent catheterization based on urinary test results.


Assuntos
Hidrodinâmica , Humanos , Cateteres Urinários , Viscosidade , Cateterismo Urinário/instrumentação , Cateterismo Urinário/métodos , Urina/química , Catéteres , Fricção
18.
Int J Biol Macromol ; 269(Pt 2): 132044, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701998

RESUMO

To develop natural complex materials as starch-dominated emulsifiers, pregelatinization was conducted on potato flour. The effects of gelatinization degrees (GDs, 0 %-50 %) on the structural characteristics, physicochemical properties, and emulsifying potentials of potato flour were investigated. Increasing GD of potato flour promoted protein aggregation on starch granules surfaces and transformed starch semicrystalline structures into melted networks. The emulsion stabilized with 50 % GD potato flour exhibited excellent storage stability (7 d) and gel-like behavior. With increasing GD from 0 to 50 %, the respective apparent viscosities and elastic moduli of emulsion increased from 21.4 Pa to 1126.7 Pa, and from 0.133 Pa·s to 1176.6 Pa·s, promoting the formation of a stable network structure in the emulsion. Fourier transform infrared spectra from emulsions with a continuous phase of >20 % GD displayed a new peak around 1740 cm-1, suggesting improved covalent interactions between droplets, thereby facilitating emulsion stability. Confocal laser scanning microscopy images indicated that droplets could be anchored in the melted networks and broken starch granules, inhibiting droplets coalescence. These results suggest that pregelatinization is a viable strategy for customizing natural starch-dominated emulsions.


Assuntos
Emulsões , Gelatina , Solanum tuberosum , Amido , Solanum tuberosum/química , Amido/química , Emulsões/química , Gelatina/química , Farinha/análise , Emulsificantes/química , Viscosidade , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Biol Macromol ; 269(Pt 1): 131912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704071

RESUMO

In order to broaden the application range of squash polysaccharide (WESP/SWESP) and caffeic acid (CAA) and improve the quality of potato starch (PS) products, the effects of WESP/SWESP and CAA on the gelatinization, rheology, thermodynamics, microstructure and in vitro digestion of PS were investigated. Meanwhile, the synergistic effect of WESP/SWESP and CAA on PS was further analyzed. Differently, due to WESP and SWESP had different monosaccharide composition and structure, they had different effects on the system. Pasting properties results showed that the presence of WESP/SWESP and CAA significantly reduced the peak viscosity, trough viscosity, breakdown viscosity and final viscosity of PS, especially under the combined action. In rheological tests, all sample gels belonged to the pseudoplastic fluids and weak gel system (tan δ < 1). Besides, thermodynamic properties revealed that WESP/SWESP and CAA synergistic effect had better retrogradation delay effect. In the ternary system, WESP/SWESP, CAA and PS can form a new network structure and improve the stability of the gel system. In addition, the results of infrared spectroscopy, Raman spectroscopy, x-ray diffraction and scanning electron microscopy exhibited that the ternary system can promote the accumulation and winding of the spiral structure of PS chain, and make the structure of PS gel network more orderly and stable. Furthermore, compared with PS gel, the ternary system had lower RDS and higher SDS and RS content, suggesting that the addition of WESP/SWESP and CAA at the same time was more conducive to reducing the hydrolysis rate of PS. This work revealed the interaction between WESP/SWESP, CAA and PS, which improved the physicochemical and digestive properties of PS. It will provide a theoretical basis for improving the quality of potato starch-related products and developing functional foods.


Assuntos
Ácidos Cafeicos , Polissacarídeos , Reologia , Solanum tuberosum , Amido , Água , Ácidos Cafeicos/química , Solanum tuberosum/química , Amido/química , Polissacarídeos/química , Água/química , Viscosidade , Termodinâmica , Temperatura , Géis/química
20.
Int J Biol Macromol ; 269(Pt 1): 132059, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710250

RESUMO

The fermentation of the high-viscosity polysaccharide WL gum has always been associated with poor mass transfer. Appropriate impeller configurations are key factors in maintaining homogeneity and sufficient mass transfer conditions. Therefore, a flat-folded disc turbine impeller (FFDT) taking into account both the reduced cavitation effect and the increased contact area was designed. Besides, a curved cross impeller (CC) and a fishbone-shaped impeller (FS) generating axial flow were also designed. The energy consumption and efficiency of the designed impellers and eight reported impellers were evaluated through fermentation and principal component analysis (PCA). Compared to the commonly-used six-blade flat-blade disc turbine (FBDT), the ungassed power number of FFDT was reduced by 50 %. Combinations of six-blade Brumajin impeller (BM) + FFDT and CC + FFDT produced high WL gum production and viscosity (34.0 g/L, 35.50 g/L, and 62.64 Pa·s, 61.68 Pa·s, respectively) and were suitable impellers for WL biosynthesis. WL gum from BM + FFDT showed higher viscosity, viscoelasticity, and molecular weight than that from FBDT + FBDT. In addition, fewer amino acids and pyruvic acid intermediates were formed using BM + FFDT, indicating a greater metabolic flux towards WL gum synthesis. This work provided an important reference for the design of impellers in high-viscosity fermentation systems.


Assuntos
Fermentação , Viscosidade , Polissacarídeos Bacterianos/química , Peso Molecular , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA