RESUMO
Protein-RNA complexes exist in many forms within the cell, from stable machines such as the ribosome to transient assemblies like the spliceosome. All protein-RNA assemblies rely on spatially and temporally coordinated interactions between specific proteins and RNAs to achieve a functional form. RNA folding and structure are often critical for successful protein binding and protein-RNA complex formation. RNA modifications change the chemical nature of a given RNA and often alter its folding kinetics. Both these alterations can affect how and if proteins or other RNAs can interact with the modified RNA and assemble into complexes. N6-methyladenosine (m6A) is the most common base modification on mRNAs and regulatory noncoding RNAs and has been shown to impact RNA structure and directly modulate protein-RNA interactions. In this review, focusing on the mechanisms and available quantitative information, we discuss first how the METTL3/14 m6A writer complex is specifically targeted to RNA assisted by protein-RNA and other interactions to enable site-specific and co-transcriptional RNA modification and, once introduced, how the m6A modification affects RNA folding and protein-RNA interactions.
Assuntos
RNA não Traduzido , RNA , RNA/metabolismo , RNA Mensageiro/metabolismo , Ligação Proteica , Ribossomos/metabolismoRESUMO
The intramedullary total femoral reconstruction (ITFR) was used successfully in a 62-year-old patient with myxoid liposarcoma of the thigh and post-radiation fracture nonunion of the proximal femur and osteonecrosis of the ipsilateral knee. This described technique offers the advantage of a less invasive prosthesis insertion, preservation of the surrounding muscle attachments, better functional outcomes, and lower complication rates. Total femoral reconstruction using ITFR, preserving the femoral diaphysis, could be an option to address concomitant hip and knee defects, especially in patients with poor soft tissue quality.
Assuntos
Fêmur , Fraturas não Consolidadas , Humanos , Pessoa de Meia-Idade , Diáfises , Fêmur/cirurgia , Extremidade Inferior , Coxa da PernaRESUMO
IFN-I secretion provides a rapid host defense against infection with RNA viruses. Within the host cell, viral RNA triggers the activation of the RIG-I signaling pathway, leading to the production of IFN-I. Because an exaggerated IFN-I response causes severe tissue damage, RIG-I signaling is tightly regulated. One of the factors that control the IFN-I response is the ubiquitin-like modifier FAT10, which is induced by TNF and IFNγ and targets covalently FAT10-linked proteins for proteasomal degradation. However, the mechanism of how FAT10 modulates IFN-I secretion remains to be fully elucidated. Here, we provide strong evidence that FAT10 is phosphorylated by IκB kinase ß (IKKß) upon TNF stimulation and during influenza A virus infection on several serine and threonine residues. FAT10 phosphorylation increases the binding of FAT10 to the TRAF3-deubiquitylase OTUB1 and its FAT10-mediated activation. Consequently, FAT10 phosphorylation results in a low ubiquitylation state of TRAF3, which is unable to maintain interferon regulatory factor 3 phosphorylation and downstream induction of IFN-I. Taken together, we reveal a mechanism of how phosphorylation of FAT10 limits the production of tissue-destructive IFN-I in inflammation.
Assuntos
Quinase I-kappa B , Interferon Tipo I , Fator 3 Associado a Receptor de TNF , Proteínas Serina-Treonina Quinases , AntiviraisRESUMO
Levans of different structures and molecular weights (MW) can display various techno-functional and health-promoting properties. In the present study, selected levans were produced by the transfructosylation of sucrose catalyzed by levansucrases from Bacillus amyloliquefaciens and Gluconobacter oxydans, and their structural, techno-functional and anti-inflammatory properties were investigated. NMR and methylation/GC analysis confirmed the structure of ß-(2, 6) levans. The structural characterization led to the classification of levans as high MW (HMW, ≥100 kDa), low MW (LMW, ≤20 kDa) and mix L/HMW ones. Levan with higher MW had more linear fructosyl units with fewer reducing ends and branching residues. LMW levan showed the highest foaming capacity and stability while HMW levan had the highest emulsion stability. HMW and mix L/HMW levans showed comparable water and oil-holding capacities, which were higher than LMW. HMW and mix L/HMW levans were found to have gelling properties at low concentrations. The rheological behaviour of HMW levan-based gel was a more viscous-like gel, while that of mix L/HMW levan-based one showed more elastic solid like-gel. The temperature also influenced the rheology of levan, showing that the mix L/HMW levan gel network was the most thermal stable as its viscoelasticity remained constant at the highest temperature (75 °C). Studies on the biological activity of levans of HMW and LMW revealed in-vitro anti-inflammatory properties as they significantly reduced the production of LPS-triggered pro-inflammatory cytokines in differentiated Caco-2 cells.
Assuntos
Bacillus amyloliquefaciens , Gluconobacter oxydans , Humanos , Células CACO-2 , Frutanos/química , Anti-Inflamatórios/farmacologiaRESUMO
Cyclodextrins (CDs), recognized for their unique ability to form inclusion complexes, have seen broad utilization across various scientific fields. Recently, there has been a surge of interest in the use of charged cyclodextrins for biomedical applications, owing to their enhanced properties, such as superior solubility and improved molecular recognition compared to neutral CDs. Despite the growing literature, a comprehensive review of the biomedical utilisations of multi-charged cyclodextrins is scarce. This review provides a comprehensive exploration of the emerging prospects of charged cyclodextrin-based assemblies in the field of biomedical applications. Focusing on drug delivery systems, the review details how charged CDs enhance drug solubility and stability, reduce toxicity, and enable targeted and controlled drug release. Furthermore, the review highlights the role of charged CDs in gene therapy, notably their potential for DNA/RNA binding, cellular uptake, degradation protection, and targeted gene delivery. The promising potential of charged CDs in antibacterial and antiviral therapies, including photodynamic therapies, biofilm control, and viral replication inhibition, is discussed. Concluding with a future outlook, this review highlights the potential challenges and advancements that could propel charged CDs to the forefront of biomedicine.
Assuntos
Ciclodextrinas , Ciclodextrinas/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Técnicas de Transferência de Genes , DNARESUMO
From the environmental perspective, it is essential to develop cheap, eco-friendly, and highly efficient materials for water and wastewater treatment. In this regard, hydrogels and hydrogel-based composites have been widely employed to mitigate global water pollution as this methodology is simple and free from harmful by-products. Notably, alginate and cellulose, which are natural carbohydrate polymers, have gained great attention for their availability, price competitiveness, excellent biodegradability, biocompatibility, hydrophilicity, and superior physicochemical performance in water treatment. This review outlined the recent progress in developing and applying alginate- and cellulose-based hydrogels to remove various pollutants such as dyes, heavy metals, oils, pharmaceutical contaminants, and pesticides from wastewater streams. This review also highlighted the effects of various physical or chemical methods, such as crosslinking, grafting, the addition of fillers, nanoparticle incorporation, and polymer blending, on the physiochemical and adsorption properties of hydrogels. In addition, this review covered the alginate- and cellulose-based hydrogels' current limitations such as low mechanical performance and poor stability, while presenting strategies to improve the drawbacks of the hydrogels. Lastly, we discussed the prospects and future directions of alginate- and cellulose-based hydrogels. We hope this review provides valuable insights into the efficient preparations and applications of hydrogels.
Assuntos
Celulose , Hidrogéis , Hidrogéis/química , Celulose/química , Águas Residuárias , Alginatos , PolímerosRESUMO
Recent findings suggest that optimal application of nitrogen fertilizers can effectively improve the quality of proso millet (PM). Here, we aimed to investigate the pathways associated with starch synthesis and metabolism to elucidate the effect and molecular mechanisms of nitrogen fertilization in starch synthesis and properties in waxy and non-waxy PM varieties using transcriptomic techniques. Co-expression network analysis revealed that the regulation of starch synthesis and quality in PM by nitrogen fertilizer mainly occurred in the S2 and S3 stages during grain filling. Nitrogen fertilization inhibited glycolysis/gluconeogenesis and starch biosynthesis in grains, but increased starch degradation to maltose and dextrin and then to glucose. Moreover, nitrogen fertilization increased starch accumulation by upregulating the expression of SuS and malZ genes, thereby increasing the total starch content in grains. In contrast, nitrogen fertilization suppressed the expression of GBSS gene and decreased amylose content in PM grains, resulting in a relatively higher crystallinity, light transmittance, and breakdown viscosity in the two PM varieties. Overall, these results provided transcriptomics insights into the molecular mechanisms by which nitrogen fertilization regulates starch quality in PM, identified key genes that associated with the starch properties, and provided new insights into the quality cultivation of PM.
Assuntos
Fertilizantes , Panicum , Panicum/genética , Panicum/metabolismo , Ceras , Nitrogênio , Amido/metabolismo , Perfilação da Expressão GênicaRESUMO
This work aimed to develop novel particle-filled microgels based on zein and carboxymethyl starch for delivering quercetin (Que). The anti-solvent precipitation and chemical cross-linking methods were combined to produce the zein-carboxymethyl starch particle-filled microgels (SM-Z). The critical finding of the study was that adding zein nanoparticles significantly improved the strength, water holding capacity, and thermal stability of carboxymethyl starch microgel (SM). Besides, SM-Z had good biodegradability, and the particle size was about 44-61 µm. SM-Z successfully encapsulated Que with a high encapsulation efficiency of 86.7 %. Que-loaded SM-Z (Q/SM-Z) significantly enhanced 30 d storage and UV light stability (up to 89.4 % retention rate) of Que than the Que-loaded SM (Q/SM). Q/SM-Z exhibited pH-responsive swelling behavior, and the swelling was greatest in the simulated intestinal fluid (pH = 7). Besides, the Q/SM-Z showed good stability in simulated gastric fluids and sustained release of Que in simulated intestinal fluids, 72.5 % Que was released at 8 h. During Que transport in Caco-2 cell monolayers, Q/SM (5.8 %) and Q/SM-Z (9.7 %) were significantly higher than free Que (1.93 %). Therefore, as an oral delivery system for hydrophobic active substances, SM-Z possesses good biodegradability and pH-responsive intestinal-targeted delivery capability, providing a new strategy for designing starch-based encapsulation materials.
Assuntos
Microgéis , Nanopartículas , Zeína , Humanos , Quercetina , Zeína/química , Células CACO-2 , Nanopartículas/química , Amido/química , Tamanho da PartículaRESUMO
Quaternary-ammonium chitosan (QAC) is a polysaccharide with good water solubility, bacteriostasis, and biocompatibility. QAC is obtained by methylating or grafting the quaternary-ammonium group of chitosan and is an important compound in the food industry. Various QAC-based complexes have been prepared using reversible intermolecular interactions, such as electrostatic interactions, hydrogen bonding, metal coordination, host-guest interactions, and covalent bonding interactions consisting of Schiff base bonding and dynamic chemical bond cross-linking. In the food industry, QAC is often used as a substrate in film or coating for food preservation and as a carrier for active substances to improve the encapsulation efficiency and storage stability of functional food ingredients. In this review, we have assimilated the latest information on QAC to facilitate further discussions and future research. Advancement in research on QAC would contribute toward technology acceleration and its increased contribution to the field of food technology.
Assuntos
Compostos de Amônio , Quitosana , Quitosana/química , Compostos de Amônio Quaternário/química , Tecnologia de Alimentos , Solubilidade , Embalagem de Alimentos , Antibacterianos/químicaRESUMO
Due to the features of high porosity, high water content, and tunable viscoelasticity, hydrogels have attracted numerous attentions in the promotion of wound closure. However, the lack of abilities to adapt the wounds of complex shapes and prevent postoperative adhesion limits their therapeutic outcomes in wound healing. To address the above challenges, the supramolecular chitin-based (SMCT) hydrogels are created via the host-guest pre-assembly strategy of ß-cyclodextrin (ßCD) and adamantane (Ad). The reversible host-guest crosslinks endow the SMCT hydrogels with highly dynamic networks, which can better accommodate irregularly shaped wounds compared with the covalent chitin-based hydrogels with similar mechanical properties. In addition, the SMCT hydrogels show rapid in vivo degradability (degradation time ≈ 2 days) due to the enzyme-triggered degradability of chitin, which do not need to be removed from the wounds after service and thus avoid the secondary damage to skin during dressing change. Owing to the hydrophobic cavity of ßCD, the SMCT hydrogels can facilitate the load and release of curcumin with anti-inflammatory, antibacterial, and antioxidative activities, thereby significantly improving the wound healing efficiency. This work provides valuable guidance to the design of self-adaptive and fast-degradable hydrogels that hold great potential for enhancing the wound healing in skin and other tissues.
Assuntos
Quitina , Hidrogéis , Quitina/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Pele , Antioxidantes/química , Antibacterianos/químicaRESUMO
A class of cyclodextrin (CD) dimers has emerged as a potential new treatment for atherosclerosis; they work by forming strong, soluble inclusion complexes with oxysterols, allowing the body to reduce and heal arterial plaques. However, characterizing the interactions between CD dimers and oxysterols presents formidable challenges due to low sterol solubility, the synthesis of modified CDs resulting in varying number and position of molecular substitutions, and the diversity of interaction mechanisms. To address these challenges and illuminate the nuances of CD-sterol interactions, we have used multiple orthogonal approaches for a comprehensive characterization. Results obtained from three independent techniques - metadynamics simulations, competitive isothermal titration calorimetry, and circular dichroism - to quantify CD-sterol binding are presented. The objective of this study is to obtain the binding constants and gain insights into the intricate nature of the system, while accounting for the advantages and limitations of each method. Notably, our findings demonstrate â¼1000× stronger affinity of the CD dimer for 7-ketocholesterol in comparison to cholesterol for the 1:1 complex in direct binding assays. These methodologies and findings not only enhance our understanding of CD dimer-sterol interactions, but could also be generally applicable to prediction and quantification of other challenging host-guest complex systems.
Assuntos
Ciclodextrinas , Oxisteróis , Ciclodextrinas/química , Esteróis , Calorimetria/métodos , Dicroísmo CircularRESUMO
Direct cytosolic delivery of the Cas9 ribonucleoprotein is the most promising method for inducing CRISPR-Cas9 genome editing in mammalian cells. Recently, we focused the movable properties of cyclodextrin-based polyrotaxanes (PRXs), which consist of numerous cyclodextrins threaded onto the axile molecule with bulky endcaps at both ends of the axile molecule, and developed aminated PRXs as multistep transformable carriers for Cas9 ribonucleoprotein, ensuring efficient complexation, cellular internalization, endosomal escape, release, and nuclear localization. This study reports the structural fine-tuning and structure-property relationship of multistep transformable PRXs for more efficient Cas9 ribonucleoprotein delivery. Among various PRXs, PRX derivatives with a longer molecular length (35 kDa polyethylene glycol as the axile molecule) and a low total degree of substitution (1.5 amino groups/α-cyclodextrins), as well as the modified ratio of two modified amines (cystamine and diethylenetriamine) = ≈1:1, exhibited the highest genome-editing efficacy and intracellular dynamics control. These structural properties are important for efficient endosomal escape and Cas9 RNP release. Furthermore, ligand-modified-ß-CD, which can endow the ligand through complexation with PRX termini, improved the cellular uptake and genome-editing effects of the optimized PRX/Cas9 RNP in target cells. Thus, structural fine-tuning and the addition of ligand-modified-ß-cyclodextrin enabled efficient genome editing by the Cas9 RNP.
Assuntos
Ciclodextrinas , Rotaxanos , Animais , Edição de Genes , Rotaxanos/química , Ligantes , Ribonucleoproteínas/genética , Mamíferos/genéticaRESUMO
Hyaluronan (HA) has been widely used to construct nanocarriers for cancer-targeted drug delivery, due to its excellent biocompatibility and intrinsic affinity towards CD44 that is overexpressed in most cancer types. However, the HA-based nanocarriers are prone to trapping in lysosomes following the HA-mediated endocytosis, which limited the delivered drug to access its pharmacological action sites and subsequently compromised the therapeutic efficacy. To overcome this intracellular obstacle, here we demonstrated the co-loading of chloroquine (CQ) in HA nanogel could efficiently promote the intracellular delivery of cisplatin. The cisplatin coordination with HA generated the nanogel that could also co-encapsulate CQ (HA/Cis/CQ nanogel). Compared with cisplatin-loaded HA nanogel (HA/Cis), HA/Cis/CQ significantly promoted the lysosomal escape of cisplatin as well as enhanced tumor inhibition in the triple-negative breast cancer model. Mechanism studies suggested that co-delivery of CQ not only induced the lysosomal membrane permeabilization but also inhibited the lysophagy, which collectively contributed to the lysosomal instability and cisplatin escape. This HA/Cis/CQ nanogel elicited less toxicity compared with the combination of free Cis and CQ, thus suggesting a promising HA nanocarrier to boost the cisplatin delivery towards cancer-targeted therapy.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Cisplatino/farmacologia , Ácido Hialurônico , Nanogéis , Macroautofagia , Cloroquina/farmacologia , Neoplasias/tratamento farmacológico , Lisossomos , Linhagem Celular TumoralRESUMO
Plant defense mechanisms begin with the recognition of microbe-associated molecular patterns or pathogen-associated molecular patterns (MAMPs/PAMPs). Several carbohydrates, such as chitin, were reported to induce plant defenses, acting as elicitors. Regrettably, the structures of polysaccharide elicitors have rarely been characterized, and their recognition receptors in plants remain unknown. In the present study, PCAP-1a, an exopolysaccharide (PCAP-1a) purified from Pectobacterium actinidiae, was characterized and found to induce rapid cell death of dicotyledons, acting as a polysaccharide elicitor to induce plant immunity. A series of pattern-triggered immunity (PTI) responses were triggered, including reactive oxygen species production, phosphorylation of mitogen-activated protein kinases and gene transcriptional reprogramming. Moreover, we confirmed that CERK1 is probably one of the immune coreceptors for plants to recognize PCAP-1a. Notably, PCAP-1a also promotes the infection caused by P. actinidiae. In conclusion, our study supports the potential of PCAP-1a as a toxin that plays a dual role of virulence and immune induction in pathogen-plant interactions.
Assuntos
Pectobacterium , Transdução de Sinais , Virulência , Plantas/metabolismo , Polissacarídeos/metabolismo , Doenças das Plantas/microbiologiaRESUMO
Multifunctional mulch films with robust mechanical behaviors of biopolymer-based biodegradable mulch materials were highly demanded in promoting the development of "green" agriculture. Herein, a sort of mechanically robust and all-biodegradable soybean protein isolate-graftsodium carboxymethyl cellulose composite mulch film was innovatively proposed through the amidation reactions between -COOH on protonated sodium carboxymethyl cellulose and -NH2 on soybean protein isolate. Arising from the reinforced intermolecular interactions upon chemical covalent bonds and physical hydrogen bonds, the maximum tensile strength and the elongation at break were increased from 10.61 MPa and 20.67 % for sodium carboxymethyl cellulose film to 42.15 MPa and 24.8 % for the optimized soybean protein isolate-graftsodium carboxymethyl cellulose composite mulch film, respectively. In addition, experimental results showed that the optimized soybean protein isolate-graftsodium carboxymethyl cellulose composite mulch film possesses soil moisture retention and controlled urea release properties. When employed as mulch film in practice, the cabbage seed presents higher germination when soil was covered with this versatile mulch film compared to commercial low-density polyethylene mulch film. Our discoveries build a prototype for the manufacture of eco-friendly mulch films with high mechanical strength, soil moisture retention, controlled urea release features.
Assuntos
Carboximetilcelulose Sódica , Proteínas de Soja , Proteínas de Soja/química , Carboximetilcelulose Sódica/química , Agricultura , Solo , Ureia , SódioRESUMO
Several lactic acid bacteria are able to produce water-soluble and water-insoluble homoexopolysaccharides (HoEPS) from sucrose. In this study, structures of all HoEPS which were fermentatively produced by Leuconostoc mesenteroides subsp. dextranicum NRRL B-1121 and B-1144, Leuconostoc mesenteroides subsp. mesenteroides NRRL B-1149, B-1438 and B-1118, Leuconostoc suionicum DSM 20241, and Liquorilactobacillus satsumensis DSM 16230 were systematically analyzed. Monosaccharide analysis, methylation analysis, NMR spectroscopy, size-exclusion chromatography, and different enzymatic fingerprinting methods were used to obtain detailed structural information. All strains produced water-soluble dextrans and/or levans as well as water-insoluble glucans. Levans showed different degrees of branching and high molecular weights, whereas dextrans had comparable structures and broader size distributions. Fine structures of water-soluble HoEPS were analyzed after endo-dextranase and endo-levanase hydrolysis. Water-insoluble glucans were composed of different portions of 1,3-linkages (5 to 40 %). Hydrolysis with endo-dextranase and endo-mutanase yielded further information on block sizes and varying fine structures. Overall, clear differences between HoEPS yields and structures were observed.
Assuntos
Dextranos , Lactobacillales , Dextranos/química , Dextranase , Água , Leuconostoc/química , Glucanos/química , FrutanosRESUMO
(1 â 4)-ß-D-Xylans are the second most abundant plant biopolymers on Earth after cellulose. Although their structures have been extensively studied, and industrial applications have been found for them and their derivatives, they are still investigated due to the diversity of their structures and uses. In this work, hemicellulose fractions obtained previously with 1 M KOH from two species of woody bamboos, Phyllostachys aurea and Guadua chacoensis, were purified, and the structures of the glucuronoarabinoxylans (GAX) were studied by chemical and spectroscopic methods. In both cases, major amounts of α-L-arabinofuranose residues were linked to C3 of the xylose units of the backbone, and also α-D-glucuronic acid residues and their 4-O-methyl-derivatives were detected in minor quantities, linked to C2 of some xylose residues. Methylation analysis of the carboxyl-reduced derivative from GAX from P. aurea indicated the presence of terminal and 5-linked arabinofuranose units. NMR spectroscopy showed the presence of disaccharidic side chains of 5-O-α-l-arabinofuranosyl-L-arabinofuranose for the GAX from P. aurea, while for those of G. chacoensis, only single side chains were found. To the best of our knowledge, this disaccharide was not found before as side chain of xylans.
Assuntos
Xilanos , Xilose , Xilanos/química , Xilose/análise , Celulose , Madeira/química , PoaceaeRESUMO
Hydrocolloids are important food additives and have potential regulatory effects on gut microbiota. The development of colitis is closely related to changes in gut microbiota. The effect of food hydrocolloids on the structure of the gut microbiota and their impact on colitis has not been well investigated. Therefore, this study investigated the effects of four hydrocolloids (carrageenan, guar gum, xanthan gum, and pectin) on colitis, and explored their regulatory effects on gut microbiota. The results indicated that pectin and guar effectively alleviated body weight loss and disease activity index, reduced inflammatory cytokine levels, and promoted short-chain fatty acids (SCFAs) production. They increased the abundance of Akkermansia muciniphila, Oscillospira, and Lactobacillus, and Akkermansia abundance had a negative correlation with the severity of colitis. In contrast, carrageenan and xanthan gum did not significantly improve colitis, and carrageenan reduced the production of SCFAs. Both carrageenan and xanthan gum increased the abundance of Ruminococcus gnavus, and Ruminococcus abundance was positively correlated with the severity of colitis. These findings suggest that food additives have an impact on host health and provide guidance for the diet of patients with colitis.
Assuntos
Colite , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Carragenina/química , Colite/induzido quimicamente , Colite/tratamento farmacológico , Aditivos Alimentares/química , Pectinas/farmacologia , Ácidos Graxos Voláteis , Coloides/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de DoençasRESUMO
Probiotics are essential to improve the health of the host, whereas maintaining the viability of probiotics in harsh environments remains a challenge. Polysaccharides have non-toxicity, excellent biocompatibility, and outstanding biodegradability, which can protect probiotics by forming a physical barrier and show a promising prospect for probiotic delivery. In this review, we summarize polysaccharides commonly used for probiotic microencapsulation and introduce the microencapsulation technologies, including extrusion, emulsion, spray drying, freeze drying, and electrohydrodynamics. We discuss strategies for better protection of probiotics and introduce the applications of polysaccharides-encapsulated probiotics in functional food, oral formulation, and animal feed. Finally, we propose the challenges of polysaccharides-based delivery systems in industrial production and application. This review will help provide insight into the advances and challenges of polysaccharides in probiotic delivery.
Assuntos
Polissacarídeos , Probióticos , Animais , Liofilização , Alginatos , Viabilidade MicrobianaRESUMO
A new super-branched amylopectin with longer exterior chains was produced from normal maize starch by modification with branching enzyme followed by 4-α-glucanotransferase, and applied for co-entrapment of a curcumin-loaded emulsion in alginate beads. The network structure of the gel beads was obtained with Ca2+-cross-linked alginate and a modest load of retrograded starch. The dual enzyme modified starch contained more and longer α-1,6-linked branch chains than single enzyme modified and unmodified starches and showed superior resistance to digestive enzymes. Alginate beads with or without starch were of similar size (1.69-1.74 mm), but curcumin retention was improved 1.4-2.8-fold in the presence of different starches. Thus, subjecting the curcumin-loaded beads to in vitro simulated gastrointestinal digestion resulted in retention of 70, 43 and 22 % of the curcumin entrapped in the presence of modified, unmodified, or no starch, respectively. Molecular docking provided support for curcumin interacting with starch via hydrogen bonding, hydrophobic contacts and π-π stacking. The study highlights the potential of utilizing low concentration of dual-enzyme modified starch with alginate to create a versatile vehicle for controlled release and targeted delivery of bioactive compounds.