Your browser doesn't support javascript.
loading
Synthesis of pyrophosphate-containing compounds that stimulate Vgamma2Vdelta2 T cells: application to cancer immunotherapy.
Tanaka, Y; Kobayashi, H; Terasaki, T; Toma, H; Aruga, A; Uchiyama, T; Mizutani, K; Mikami, B; Morita, C T; Minato, N.
Affiliation
  • Tanaka Y; Laboratory of Immunology and Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-Cho, Sakyo-Ku, Kyoto 606-8501, Japan.
Med Chem ; 3(1): 85-99, 2007 Jan.
Article in En | MEDLINE | ID: mdl-17266628
ABSTRACT
Human Vgamma2Vdelta2 T cells recognize nonpeptide antigens, such as isoprenoid pyrophosphomonoester intermediates, alkylamine compounds, and bisphosphonate drugs, as well as some tumor cells. Although attempts have been made to derive novel cancer immunotherapies based on the discovery of these unconventional antigens, effective therapies remain to be developed. Here, we synthesized a series of pyrophosphate-containing compounds and examined the chemical requirements for the recognition of pyrophosphomonoester antigens by gammadelta T cells. The structural analysis clearly demonstrated that a proximal methylene moiety plays a crucial role in the stimulatory activity of the antigens. For optimal gammadelta T cell proliferation, we find that the use of human serum albumin was preferred and that pyrophosphomonoesters were superior to nitrogen-containing bisphosphonate compounds. Using these techniques, we have successfully expanded gammadelta T cells from healthy donors as well as from cancer patients using one of the most active compounds, 2-methyl-3-butenyl-1-pyrophosphate (2M3B1PP). The resulting expanded gammadelta T cells exhibited potent, cytotoxic activity against a wide variety of tumor cell lines. Even gammadelta T cells from a patient with advanced liver carcinoma efficiently responded to 2M3B1PP and exhibited strong cytotoxic activity against tumor cells. The pretreatment of tumor cells with nonpeptide antigens was essential for efficient cytotoxicity via TCR-gammadelta. The present study suggests a novel strategy for cancer immunotherapy using synthetic small pyrophosphate-containing compounds and nitrogen-containing bisphosphonates.
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Diphosphates / Immunotherapy / Neoplasms / Antineoplastic Agents Type of study: Prognostic_studies Limits: Humans Language: En Journal: Med Chem Year: 2007 Document type: Article
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: Diphosphates / Immunotherapy / Neoplasms / Antineoplastic Agents Type of study: Prognostic_studies Limits: Humans Language: En Journal: Med Chem Year: 2007 Document type: Article