Finite element model development of a child pelvis with optimization-based material identification.
J Biomech
; 42(13): 2191-5, 2009 Sep 18.
Article
in En
| MEDLINE
| ID: mdl-19646702
A finite element (FE) model of a 10-years-old child pelvis was developed and validated against experimental data from lateral impacts of pediatric pelves. The pelvic bone geometry was reconstructed from a set of computed tomography images, and a hexahedral mesh was generated using a new octree-based hexahedral meshing technique. Lateral impacts to the greater trochanter and iliac wing of the seated pelvis were simulated. Sensitivity analysis was conducted to identify material parameters that substantially affected the model response. An optimization-based material identification method was developed to obtain the most favorable material property set by minimizing differences in biomechanical responses between experimental and simulation results. This study represents a pilot effort in the development and validation of age-dependent musculoskeletal FE models for children, which may ultimately serve to evaluate injury mechanisms and means of protection for the pediatric population.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Pelvic Bones
/
Bone Density
/
Models, Biological
Type of study:
Diagnostic_studies
Limits:
Child
/
Female
/
Humans
/
Male
Language:
En
Journal:
J Biomech
Year:
2009
Document type:
Article