Your browser doesn't support javascript.
loading
Benfotiamine increases glucose oxidation and downregulates NADPH oxidase 4 expression in cultured human myotubes exposed to both normal and high glucose concentrations.
Fraser, D A; Hessvik, N P; Nikolic, N; Aas, V; Hanssen, K F; Bøhn, S K; Thoresen, G H; Rustan, A C.
Affiliation
  • Fraser DA; Diabetes Research Centre, Oslo University Hospital, Oslo, Norway.
Genes Nutr ; 7(3): 459-69, 2012 Jul.
Article in En | MEDLINE | ID: mdl-21984258
ABSTRACT
The aim of the present work was to study the effects of benfotiamine (S-benzoylthiamine O-monophosphate) on glucose and lipid metabolism and gene expression in differentiated human skeletal muscle cells (myotubes) incubated for 4 days under normal (5.5 mM glucose) and hyperglycemic (20 mM glucose) conditions. Myotubes established from lean, healthy volunteers were treated with benfotiamine for 4 days. Glucose and lipid metabolism were studied with labeled precursors. Gene expression was measured using real-time polymerase chain reaction (qPCR) and microarray technology. Benfotiamine significantly increased glucose oxidation under normoglycemic (35 and 49% increase at 100 and 200 µM benfotiamine, respectively) as well as hyperglycemic conditions (70% increase at 200 µM benfotiamine). Benfotiamine also increased glucose uptake. In comparison, thiamine (200 µM) increased overall glucose metabolism but did not change glucose oxidation. In contrast to glucose, mitochondrial lipid oxidation and overall lipid metabolism were unchanged by benfotiamine. The expression of NADPH oxidase 4 (NOX4) was significantly downregulated by benfotiamine treatment under both normo- and hyperglycemic conditions. Gene set enrichment analysis (GSEA) showed that befotiamine increased peroxisomal lipid oxidation and organelle (mitochondrial) membrane function. In conclusion, benfotiamine increases mitochondrial glucose oxidation in myotubes and downregulates NOX4 expression. These findings may be of relevance to type 2 diabetes where reversal of reduced glucose oxidation and mitochondrial capacity is a desirable goal.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Genes Nutr Year: 2012 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Genes Nutr Year: 2012 Document type: Article