Your browser doesn't support javascript.
loading
Extension of the TDCR model to compute counting efficiencies for radionuclides with complex decay schemes.
Kossert, K; Cassette, Ph; Carles, A Grau; Jörg, G; Gostomski, Christroph Lierse V; Nähle, O; Wolf, Ch.
Affiliation
  • Kossert K; Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany. Electronic address: Karsten.Kossert@ptb.de.
  • Cassette P; Laboratoire National Henri Becquerel, CEA-LNHB, CE-Saclay, 91191 Gif sur Yvette Cedex, France.
  • Carles AG; C/Voluntarios Catalanes, 62, 28039 Madrid, Spain.
  • Jörg G; Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany; Radiochemie München (RCM), Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany.
  • Gostomski CL; Radiochemie München (RCM), Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany.
  • Nähle O; Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany.
  • Wolf Ch; Naturwissenschaftlich-Technische Akademie (NTA), Seidenstr. 12-35, D-88316 Isny, Germany.
Appl Radiat Isot ; 87: 242-8, 2014 May.
Article in En | MEDLINE | ID: mdl-24296068
ABSTRACT
The triple-to-double coincidence ratio (TDCR) method is frequently used to measure the activity of radionuclides decaying by pure ß emission or electron capture (EC). Some radionuclides with more complex decays have also been studied, but accurate calculations of decay branches which are accompanied by many coincident γ transitions have not yet been investigated. This paper describes recent extensions of the model to make efficiency computations for more complex decay schemes possible. In particular, the MICELLE2 program that applies a stochastic approach of the free parameter model was extended. With an improved code, efficiencies for ß(-), ß(+) and EC branches with up to seven coincident γ transitions can be calculated. Moreover, a new parametrization for the computation of electron stopping powers has been implemented to compute the ionization quenching function of 10 commercial scintillation cocktails. In order to demonstrate the capabilities of the TDCR method, the following radionuclides are discussed (166m)Ho (complex ß(-)/γ), (59)Fe (complex ß(-)/γ), (64)Cu (ß(-), ß(+), EC and EC/γ) and (229)Th in equilibrium with its progenies (decay chain with many α, ß and complex ß(-)/γ transitions).
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Appl Radiat Isot Year: 2014 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Appl Radiat Isot Year: 2014 Document type: Article